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Background: CD4+ memory T cells are an important component of the tumor
microenvironment (TME) and affect tumor occurrence and progression. Nevertheless,
there has been no systematic analysis of the effect of CD4+ memory T cells in gastric
cancer (GC).

Methods: Three datasets obtained frommicroarray and the corresponding clinical data of
GC patients were retrieved and downloaded from the Gene Expression Omnibus (GEO)
database. We uploaded the normalize gene expression data with standard annotation to
the CIBERSORT web portal for evaluating the proportion of immune cells in the GC
samples. The WGCNA was performed to identify the modules the CD4+ memory T cell
related module (CD4+ MTRM) which was most significantly associated with CD4+ memory
T cell. Univariate Cox analysis was used to screen prognostic CD4+ memory T cell-related
genes (CD4+ MTRGs) in CD4+ MTRM. LASSO analysis and multivariate Cox analysis were
then performed to construct a prognostic gene signature whose effect was evaluated by
Kaplan-Meier curves and receiver operating characteristic (ROC), Harrell’s concordance
index (C-index), and decision curve analyses (DCA). A prognostic nomogram was finally
established based on the CD4+ MTRGs.

Result:We observed that a high abundance of CD4+ memory T cells was associated with
better survival in GC patients. CD4+ MTRM was used to stratify GC patients into three
clusters by unsupervised clustering analysis and ten CD4+ MTRGs were identified. Overall
survival, five immune checkpoint genes and 17 types of immunocytes were observed to
be significantly different among the three clusters. A ten-CD4+ MTRG signature was
constructed to predict GC patient prognosis. The ten-CD4+ MTRG signature could divide
GC patients into high- and low-risk groups with distinct OS rates. Multivariate Cox analysis
suggested that the ten-CD4+ MTRG signature was an independent risk factor in GC. A
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nomogram incorporating this signature and clinical variables was established, and the C-
index was 0.73 (95% CI: 0.697–0.763). Calibration curves and DCA presented high
credibility for the OS nomogram.

Conclusion: We identified three molecule subtypes, ten CD4+ MTRGs, and generated a
prognostic nomogram that reliably predicts OS in GC. These findings have implications for
precise prognosis prediction and individualized targeted therapy.
Keywords: gastric cancer, prognostic signature, CD4+ memory T cell, tumor microenvironment, weighted gene co-
expression network analysis
INTRODUCTION

Gastric cancer (GC) is the fifth most diagnosed malignancy and
is the third highest cause of cancer mortality worldwide (1). The
incidence of GC greatly varies among regions, with more than
70% of cases occurring in developing countries, mainly in
Eastern Asia (2). The prognosis of GC patients is still not
optimistic owing to genetic heterogeneity and the difficulty of
early-stage screening, especially in China (3). Therefore, the
identification of effective biomarkers is of great importance to
better evaluate tumor progression, predict overall survival and
enhance therapeutic efficacy.

After years of in-depth research, the scientific understanding
of tumor progression has become more comprehensive and
recognizes single malignant cells and the very complex niche
called the tumor microenvironment (TME). The TME has a
considerable impact on the occurrence and development of GC
(4). Disorders of the immune system can enable tumor cells to
evade immune surveillance. Molecular profiles of immune cells
and immune-related genes (IRGs) within their TME represent
promising candidates for predictive and prognostic biomarkers
(5, 6). Recently, T cell immunity has been an area of active
research. T cells progressively lose function and become
exhausted during cancer; however, effective T cell responses
are essential to ultimately controlling tumors (7). Several
studies have revealed a relationship between T cell immunity
and tumor development. This has been found in lung cancer (8),
breast cancer (9), and ovarian cancer (10). CD4+ memory T cell
has been reported to be an important role in TME. In colorectal
cancer, it has been suggested in more infiltrated than normal
tissue (11); in triple-negative breast cancer, CD4+ memory T cell
enrichment score seem higher in invasive tumors (12); in lung
adenocarcinoma, it seemed relative hypometabolism and
favorable prognosis (13), but the relationship is not yet clear in
the case of GC. Subsequently, through the bioinformatics tool of
CIBERSORT and Kaplan-Meier survival curves, we explored the
relationship between immune infiltration and outcome of
patients with gastric cancer according to the gene expression
profiles from the GEO database and found that prognosis were
closely associated to memory CD4+ T cells.

Collectively, in this study, we investigated the effects of CD4+

memory T cells in GC patients. We explored the potential role of
CD4+ memory T cells, CD4+ memory T cell-related genes, and
molecular subtypes in GC using bioinformatics models. The
2

results will contribute to the development of precision therapy
strategies for gastric cancer patients.
MATERIALS AND METHODS

Datasets and Patients
The public microarray data sets and corresponding clinical data
of GC patients were retrieved and downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/). Clinical data contained the age, gender,
pathologic TNM stage, and survival information. Three
datasets were selected to merge into a single cohort for further
analysis: GSE34942, GSE57303, and GSE62254, for a total of 426
gastric cancer samples. Another three datasets (GSE26899,
GSE84437, and GSE26901) and the Cancer Genome Atlas
(TCGA) transcriptome data which was downloaded from
https://portal.gdc.cancer.gov/repository, were performed as
external validation. Series matrix files and data tables of the
microarray platform were downloaded from the GEO website.
The preprocessing of data was as follows: (1) GC samples
without clinical survival information were removed; (2) data
on normal GC tissue samples were removed; (3) and only the
expression profile of immune-related genes was included.

Estimation of Immune Cell Type Fractions
Batch effects and noise were inherent in the three datasets
(GSE34942, GSE57303, and GSE62254), which were from
multiples studies spanning diverse cell lines and different
platforms; therefore, combat normalization in the “sva” R
package was used to co-normalize the three datasets into a
single cohort. To quantify the proportion of immune cells in
the GC samples, we uploaded the normalize gene expression data
with standard annotation to the CIBERSORT web portal
(https://cibersort.stanford.edu/), and the algorithm was run
using 1000 permutations and the LM22 gene signature as
previously described (14). Only samples that had a CIBERSORT
output of P < 0.05 were considered in the subsequent Kaplan-
Meier (K-M) analysis (Supplementary Figure 2).

WGCNA Network Analysis
The WGCNA R package was used to build a gene co-expression
network to mine their module membership associated with
immune cells. Immune-related gene (IRG) data were obtained
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from the InnateDB (https://www.innatedb.ca/). The soft threshold
parameter was first applied to ensure a scale-free network. To
further identify the functional blocks in the co-expression network
of the immune-related genes, the topological overlap measure
(TOM) was then performed to calculate the correlation between
genes. Finally, connecting modules with the immune cells
identified the key module that was most associated with OS.

Bioinformatics Analysis
After the key module had been identified, the genes were input to
Metascape (https://metascape.org/) for gene annotation and gene
list enrichment analysis (15), which included biological process
(BP), cellular component (CC), molecular function (MF), and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. The top 20 terms were selected for visualization;
however, more than 20 GO terms or pathway annotations were
identified. Unsupervised clustering analysis via the
“ConsensusClusterPlus” R package was used to perform
consensus molecular subtyping of immune subtypes (16).
Differentially expressed gens (DEGs) analysis of the three clusters
which took the intersection after comparing the two groups
separately including intersection of up-regulated IRGs and
intersection of down-regulated IRGs, was carried out using the
“limma” R package, according to the thresholds of |log2-fold-
change| > 0.5 and an adjusted false discovery rate (FDR) P-value
of < 0.01. The differentially expressed IRGs (DEIRGs) were obtained
by intersecting the list of previously acquired immune-related genes
with the list of DEGs. The “clusterProfiler” R package was used to
perform Gene Ontology function enrichment, which has been
descried in detail in a previous study (17, 18).

Construction and Validation of
Immunoscore Prognostic Model
Univariate Cox regression analysis was used to calculate the hazard
proportions for genes of the yellow module; these were considered
statistically significant at p<0.05. Least absolute shrinkage and
selection operator (LASSO) regression analysis was performed
with the “glmnet” R package (19) to select the most useful gens
with the best predictive performance using 10-fold cross validation.
An immunoscore model of GC patients was then established based
on linearly combining the multiplication of the Cox coefficient (b)
derived from the LASSO regression analysis by its scale expression
value, i.e., immunoscore = S Cox coefficient of gene Xi × scale
expression value of gene Xi. Patients were classified into high- or
low-risk groups according to the optimal cutoff value. The cutoff
value was determined based on the association with overall survival
(OS) using the “survminer” R package. Time independent receiver
operating characteristic (ROC) curves were used to depict the
sensitivity and specificity of the survival prediction based on the
immunoscore, with quantification of the area under the curve
(AUC) using the “timeROC” R package.

Construction and Validation of Nomogram
Model
Multivariate Cox regression analysis was employed via the “rms”
R package to determine independent prognostic factors, resulting
Frontiers in Oncology | www.frontiersin.org 3
in an immunoscore-based prognostic nomogram with three
factors (p < 0.05); only patients with complete clinical data
were included. The predictive accuracy of the nomogram was
measured and compared through the AUC of the ROC curve,
Harrell’s concordance index (C-index), and decision curve
analysis (DCA).
RESULTS

Composition of Immune Cells in GC
The proportions of 22 immune cell types in GC assessed by the
CIBERSORT algorithm are displayed in a box plot (Figure 1A)
and heatmap (Figure 1B). The 22 tumor immune cell types were
weakly or moderately correlated with each other (Figure 1C).

Identification and Functional Enrichment
Analysis of CD4+ MTRM
The K-M survival curves with log-rank tests for the 22 immune
cell types are presented on Supplementary Figure 2. These
results indicated that high CD4 memory resting T cells, low
CD4 memory activated T cells and low M1 macrophages were
significantly associated with poorer OS, p = 0.002, p < 0.001, p =
0.029, respectively (Figure 2A). WGCNA was then performed to
select modules of highly correlated genes related to external
sample characteristics (prognostic immunocytes). After placing
the IRGs with similar expression patterns into modules by
average linkage clustering and determining the soft threshold
parameter, we finally identified 8 modules; each colour
represents a different module (Figures 2B, C). In addition, the
relationships between genes and immunocytes in each modules
were identified and are displayed in a heatmap (Figure 2D). The
yellow module is identified as the CD4+ memory T cell-related
module (CD4+ MTRM). This module was most negatively
associated with resting CD4+ memory T cells, while it was
most positively associated with activated CD4+ memory T cells
andM1 macrophages, as assessed by the heatmap and scatter plot
scores (Figure 3A). Interaction network of gene in the CD4+

MTRM were shown in Figure 3B. These results suggested that
the genes in CD4+ MTRM were closely related with OS;
therefore, CD4+ MTRM was chosen for further analysis. We
loaded the genes in the CD4+ MTRM into Metascape to explore
the underlying biological processes. The Metascape results
revealed functional categories mainly related to immune
regulation, such as the negative regulation of the immune
system process and antigen processing and presentation
(Figures 3D, F). Moreover, the enriched processes were highly
associated and clustered into an intact network (Figures 3C, E).

CD4+ MTRM-Based Clusters Were
Significantly Associated With Prognosis,
Clinicopathological Characteristics, and
Immunocytes
The abundance of tumor-infiltrating immunocytes varied
considerably by individual. To gain greater insight into the
March 2021 | Volume 10 | Article 626912
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molecular heterogeneity of GC, we performed unsupervised
consensus analyses with the k-means algorithm of the yellow
module patient samples based on the immunocyte proportion
(Figure 4B). Three distinct molecular clusters were identified (k-
means = 3, Figure 4D). The cell proportions of each immune
subtype are shown in Figure 4A. To further elucidate the clinical
significance of the identified clusters, we explored the correlation
between the cluster and clinicopathological features. The clusters
were related with distinct patterns of survival in the Kaplan-
Frontiers in Oncology | www.frontiersin.org 4
Meier analysis (Figure 4C). For example, cluster 1, defined by
high levels of activated CD4+ memory T cells and M1

macrophages and low levels of CD4+ memory resting T cells
(all p < 0.001), was significantly associated with a better
prognosis compared with the other clusters (p = 0.0056).

Using the “limma” R package, we screened 222 DEGs among
the three clusters by taking the intersection after comparing the
two groups separately, including 133 up-regulated genes and 89
down-regulated genes that met the thresholds of |log2 FC| > 0.5
A

B C

FIGURE 1 | Tumor microenvironment (TME) composition of GC. (A) Box plot of immune cell composition. (B) Relative proportion of immune cells in each sample.
(C) Correlation matrix of immune cells.
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A

B

C

D

FIGURE 2 | Identification of key gene module associated with overall survival (OS). (A) Kaplan-Meier survival curve of two immune cells: CD4 memory resting T cells,
CD4 memory activated T cells, and M1 macrophages. (B) Sample clustering and corresponding external traits. (C) Average linkage hierarchical clustering
dendrogram of the genes. (D) Heatmap of the correlation between module eigengenes and immunocytes.
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A B

C

D

E

F

FIGURE 3 | Functional and pathway enrichment analysis in the CD4+ MTRM. (A) Scatter plot of gene significance versus module membership in the CD4+ MTRM.
(B) Subnetwork of gene in the CD4+ MTRM. (D, F) GO and KEGG enrichment analysis for genes in the CD4+ MTRM. (C, E) Interaction network of enriched
biological processes in the CD4+ MTRM.
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A

B C

D

FIGURE 4 | CD4+ MTRM-based clusters significantly associated with prognosis, clinicopathological characteristics and immunocytes. (A) Violin plot comparing
immunocyte proportions between the three clusters. (B) Unsupervised hierarchical clustering of CD4+ MTRM gene subsets in patients with gastric cancer.
(C) Kaplan-Meier analysis with log-rank test of the three clusters. (D) Consensus matrixes of GC samples in CD4+ MTRM.
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and adjusted P < 0.01 (Figure 5A). Upon further comparison
with the list of IRGs, 108 DEIRGs were obtained; 86 were
upregulated and 22 were downregulated (Figures 5B, C). To
understand how these DEIRGs might drive GC development,
functional enrichment analyses were performed. The results
revealed that upregulated DEIRGs were mainly involved in T
cell activation, regulation of responses to biotic stimuli, and
Frontiers in Oncology | www.frontiersin.org 8
regulation of the innate immune response. Downregulated
DEIRGs were closely associated with receptor ligand activity,
signalling receptor activator activity, and cytokine activity based
on the top three terms confirmed in the GO analyses (Figures
5D, E). According to the KEGG pathway analysis results, we
identified most significantly enriched pathways (Figures 5F, G).
The cytokine-cytokine receptor interaction was the most
A

B

D

E

F

G
C

FIGURE 5 | Expression and enrichment analyses of DEIRGs between the three clusters. (A) Volcano plot of DEGs. (B, C) Venn diagram of up- and downregulated
DEIRGs. (D, E) Dot plot showing the top 10 most significant GO terms of up- and downregulated DEIRGs, including BP, CC, and MF. (F, G) The top 20 KEGG
pathways of up- and downregulated DEIRGs that are shown in the dot plot.
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FIGURE 6 | Identification of survival-associated genes in CD4+ MTRM. (A) Forest plot of prognosis-related genes with univariate Cox regression analysis.
(B, C) LASSO analysis result. (D) Immune risk score distribution of 10 CD4+ MTRG signature.
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enriched pathway in both the up- and downregulated DEIRGs. A
difference of P < 0.05 indicated statistical significance. Moreover,
the expression levels of seven immune checkpoint genes (PD-L1,
CTLA4, HAVCR2, IDO1, PD1, PD-L2, and TIGIT) were
analyzed in the 3 clusters (Supplementary Figure 3A). Cluster
1 showed more enrichment in immune checkpoint genes (all p <
0 . 0 5 ) and th e r e f o r e m i gh t b e mo r e r e s pon s i v e
to immunotherapy.

Construction and Validation of
Immunoscore Prognostic Model
Each gene in the CD4+ MTRM was analyzed by univariate Cox
regression analysis. We identified 105 genes that were
significantly associated with the prognosis of gastric cancer
(Figure 6A and Supplementary Table 1) that were defined as
CD4+ memory cell-related genes (CD4+ MTRGs). In the
subsequent LASSO regression analysis and multivariate Cox
analysis (Figures 6B, C), 10 CD4+ MTRGs were identified
(Table 1), which indicated that these CD4+ MTRGs would be
selected to establish a prognostic model. The downregulated
expression of IL-1, CTSW, NR1H3 and CCR8 (with HR < 1)
indicated these molecules as tumor suppressors, whereas the
upregulated expression levels of LY86, RABGEF1, CYFIP2 and
SERINC3 (with HR > 1) indicated these molecules as oncogenes.
The patients were separated into training and validation cohort
in a ratio of 1:1 using the stratified randomization method. We
constructed a prognostic model in training cohort that divided
patients into high- and low-risk groups based on the optimal
cutoff value of the immune-risk score that was calculated by the
“survminer” R package (Figure 6D). The Immune-risk score =
0.87096 × LY86 expression + (−0.446079131) × IL7 expression +
(−1.182540714) × CTSW expression + (−0.690489234) × NR1H3
expression + (−1.49913792) × CCR8 expression + 0.728725268 ×
RABGEF1 expression + 0.420982806 × CYFIP2 expression +
0.800957561 × SERINC3 expression + 0.649569536 × TIMD4
expression + (−0.565943213) × MAP3K5 expression. The results
showed that high score patients had a worse OS than those of low
score patients (p < 0.0001). The area under the ROC curves
(AUC) of the prognostic model for OS, assessed as a continuous
variable, was investigated in the training cohort by using time‐
dependent ROC analysis at the time points 1, 3 and 5 years
(AUC: 0.774, 0.6875–0.8610, 95%CI; 0.774, 0.7114–0.8368, 95%
CI, and 0.806, 0.7431–0.8680, 95%CI, respectively, Figure 7A).
To determine if the immune-risk score model is solid in different
Frontiers in Oncology | www.frontiersin.org 10
populations, the same formula was applied to the validation
cohort and also to the entire cohort. The patients were then
divided into high- or low-risk groups using the cut off value
obtained from training cohort. Consistent with the findings in
the training cohort, in both the validation cohort and entire
cohort the K-M curves illustrated that the high-risk group was
associated with a notably poorer prognosis than the low-risk
group (all p < 0.001). The results revealed that the predictive
potential of the immune-risk score model is applicable in
different populations. The prognostic accuracy of the
immunoscore in the validation cohort and the entire cohort
was also evaluated; the AUC achieved 0.58 (0.4741–0.6861, 95%
CI); 0.663 (0.5858–0.7404, 95%CI), and 0.694 (0.6154–0.7719,
95%CI) in the validation cohort and 0.68 (0.6086–0.7520, 95%
CI); 0.722 (0.6721–0.7716, 95%CI) and 0.751 (0.7002–0.8012,
95%CI) in the entire cohort at 1, 3, and 5 years, respectively
(Figures 7B, C).

Furthermore, three external datasets GSE26899, GSE84437,
and GSE26901 and the TCGA transcriptome data were used to
confirm the association between the immunoscore prognostic
model and survival outcomes in GC patients. Immune-risk
scores were calculated with the same formula for each patient.
Patients were divided into high- and low-risk groups according
to the optimal cutoffs identified for each dataset. The KM
survival curves revealed significant difference in OS between
groups in both datasets. High-risk groups had markedly poorer
outcomes than low-risk groups (Supplementary Figure 5).

All these suggested that the 10 DEIRG signature had high
sensitivity and accuracy and could be used for monitoring
survival. The expression of five immune checkpoint genes (PD-
L1, CTLA4, HAVCR2, IDO1, PD1, PD-L2, and TIGIT) were
assessed in the high- and low-risk groups (Supplementary
Figure 3B). The patients in the low-risk group were more
enriched in these immune checkpoint genes (all p < 0.05) and
therefore might be more responsive to immunotherapy.

Relationship Between Immune Infiltration
and the Prognostic Signature
To further explore whether CD4+ MTRGs reflected the status of
GC TME, an association analysis was used to evaluate the
relationship between CD4+ MTRGs in the prognostic model
and immune cell infiltration. The risk factors based on the model
were positively associated with naive B cells (r = 0.296, P <
0.001), activated mast cells (r = 0.137, P = 0.005), M2
TABLE 1 | The results of multivariate Cox regression analyses.

id coef HR HR.95L HR.95H pvalue

LY86 0.87096 2.389203387 1.403461238 4.067296389 0.001333693
IL7 -0.446079131 0.640133115 0.485773326 0.843542416 0.001532239
CTSW -1.182540714 0.306499022 0.135934623 0.691079641 0.004362266
NR1H3 -0.690489234 0.501330741 0.30266654 0.830394109 0.007322481
CCR8 -1.49913792 0.223322599 0.059804773 0.833929817 0.025739371
RABGEF1 0.728725268 2.072437122 1.041916035 4.122208971 0.037801916
CYFIP2 0.420982806 1.523458084 1.01971892 2.276043416 0.039850263
SERINC3 0.800957561 2.22767304 1.022095648 4.855247338 0.043910504
TIMD4 0.649569536 1.914716435 0.936923802 3.912953241 0.074864124
MAP3K5 -0.565943213 0.567824315 0.300613298 1.072555521 0.081140893
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macrophages (r = 0.234, P < 0.001), naive CD4 T cells (r = 0.097,
P < 0.05), and resting memory CD4 T cells (r = 0.136, P = 0.005).
They were negatively related with memory B cells (r = −0.110,
P = 0.024), M1 macrophages (r = −0.113, P = 0.020), plasma cells
(r = −0.169, P < 0.001), CD8 T cells (r = −0.186, P < 0.001), and
activated memory CD4 T cells (r = −0.247, P < 0.001)
(Supplementary Figure 4).

Construction and Validation of CD4+

MTRG-Clinical Nomogram Model
Several clinicopathological variables are independent features in
GC patient prognosis; these include tumor site, tumor size, and
TNM stage (20, 21). Therefore, we used clinicopathological
variables and the risk score to construct a nomogram to obtain
a more accurate prediction of GC prognosis. First, we used
univariate and multivariate Cox regression analysis to identify
three independent OS factors: Lauren histologic type, stage, and
risks score (Figure 8A). A CD4+ MTRG-clinical nomogram was
then developed based on these independent factors for OS are
shown in (Figure 8C). AUCs for the nomogram at 5 years were
0.611 (55.92–66.36%, 95%CI), 0.744 (69.51–79.23%, 95%CI), and
Frontiers in Oncology | www.frontiersin.org 11
0.753 (70.27–80.37%, 95%CI) for Lauren histologic type, stage,
and risk score, respectively (Figure 8B). The C-index was 0.73
(95% CI: 0.697–0.763) for the OS nomogram. We also established
calibration curves and the DCA of the nomogram at 1, 3, and 5
years (Figures 8D, E). These results presented high credibility.
DISCUSSION

Gastric cancer is a prevalent malignant tumor with high
recurrence. The prognosis of GC exhibits a wide range, from
less than 5 months to over 10 years (1, 22). Precise prognosis
prediction and risk stratification can help to determine which
patients would benefit from more radical treatment, such as
immunotherapy. The efficacy of adjuvant therapy for GC was
controversial for many years until Macdonald and Smalley et al.
(23, 24). found that postoperative chemotherapy and
chemoradiotherapy was a rational standard therapy strategy
for GC. Unfortunately, due to tumor heterogeneity, the
prognosis can vary widely among patients of the same GC
stage who undergo the same adjuvant therapy (25, 26).
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FIGURE 7 | Establishment of a prognostic model based on CD4+ MTRGs in GC, including Kaplan-Meier analysis between high-risk and low-risk groups of patients
with GC; risk score distribution of patients in high- versus low-risk group; the scatter plots for survival status in GC high-risk group and low-risk group; the heatmaps
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prognostic model constructed using training set (A), testing set (B), and the entire sample set (C).
March 2021 | Volume 10 | Article 626912

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ning et al. Immunocyte-Related Prognostic Model in GC
Therefore, a sensitive and reliable prognostic signature is desired
to identify patients who might benefit from adjuvant treatment.
Tumor progression develops in the complex tissue
microenvironment on which they rely to support their
proliferation, infiltration and metastasis (27–29). Different
from cancer cells, stromal cell types of TME are stable at the
genetic level, which indicates that the TME is a potential
Frontiers in Oncology | www.frontiersin.org 12
therapeutic target (30). Furthermore, accumulating research
has confirmed that the TME plays a significant role in
predicting patient prognosis (31–33). Owing to this particular
insight of the TME, this study selected key genes by screening for
gene modules that were significantly correlated with prognostic-
related immunocytes. Immune subtypes were then identified and
classified, and a risk score model was established on the basis of
A

C

D

E

B

age

gender

lauren

stage

riskScore

0.143

0.586

<0.001

<0.001

<0.001

pvalue

1.010(0.997−1.023)

0.923(0.693−1.230)

1.443(1.181−1.764)

2.256(1.907−2.668)

1.095(1.058−1.134)

Hazar

Hazard r

0.0 0.5 1.0 1.5 2.0 2.5

lauren

stage

riskScore

0.005

<0.001

<0.001

pvalue

1.353(1.097−1.669)

2.371(1.991−2.823)

1.114(1.070−1.160)

Hazar

Hazard r

0.0 0.5 1.0 1.5 2.0 2.5

Points
0 10 20 30 40 50 60 70 80 90 100

lauren
mixed

diffuse

stage
Stage I Stage III

Stage II Stage IV

riskScore
0 2 4 6 8 10 12 14 16 18 20 22 24

Total Points
0 20 40 60 80 100 120 140 160 180

1−Yeas OS
0.95 0.85 0.80 0.70 0.6 0.5 0.4 0.3

3−Year OS
0.85 0.80 0.70 0.6 0.5 0.4 0.3 0.2 0.1

5−YearOS
0.85 0.80 0.70 0.6 0.5 0.4 0.3 0.2 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=422 d=211 p=6, 140 subjects per group
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=422 d=211 p=6, 140 subjects per group
0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

n=422 d=211 p=6, 140 subjects per group

0.0

0.1

0.2

0.0 0.1 0.2 0.3 0.4

risk
stage
complex
All
None

−0.2

0.0

0.2

0.4

0.00 0.25 0.50 0.75

risk
stage
complex
All
None

−0.2

0.0

0.2

0.4

0.00 0.25 0.50 0.75 1.00

risk
stage
complex
All
None

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F ve rate

Tr
ve

 ra
te

      AUC at 5 years  95%CI
risk score (AUC=0.753)  70.27%−80.37%
age (AUC=0.525)  46.51%−58.55%
gender (AUC=0.499)  44.95%−54.8%
lauren (AUC=0.611)  55.92%−66.36%
stage (AUC=0.744)  69.51%−79.23%

FIGURE 8 | Development of a CD4+ MTRG clinical nomogram to predict OS in GC patients. (A) Forest plot visualization of prognosis-related factors based on the
univariate and multivariate Cox regression analysis. (B) ROC curve analysis of the independent prognostic factors. (C) Nomogram of GC patient OS combining the
risk score and two clinicopathological variables. Calibration curves (D) and DCA (E) of the nomogram at 1, 3, and 5 years.
March 2021 | Volume 10 | Article 626912

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ning et al. Immunocyte-Related Prognostic Model in GC
10 CD4+ MTRGs in the key gene module to evaluate patient
prognosis. The efficacy of this prediction strategy was proved in
two internal datasets. Nomograms can fit several independent
prognostic factors, including molecular and clinicopathological
features, which are widely used to assess prognosis in clinical
oncology (34). With the ability to calculate an individual
numerical probability of a clinical event, nomograms may be
more effective than individual prognostic factors for
prognosis prediction.

Three immune molecular subtypes were identified in the
present study, cluster 1/2/3, by unsupervised clustering analysis
based on the expression of the most aberrant immune genes
belonging to the yellow module. There were significant differences
among the three immune subtypes, including differences in
immune status, biological processes and prognosis. Patients in
the cluster 1 subtype with the best prognosis suffered from a
hyperactivated immunocompetent status. Functional enrichment
analyses were applied to the DEIRGs among the three subtypes to
elucidate underlying mechanisms. The DEIRGs were found to be
significantly associated with T cell activation and cytokine-
cytokine receptor interaction, consistent with previous reports.
CD8+ cytotoxic T cells bind MHC I-presented antigens; these
antigens enable the T cells to target tumor cells. Additionally,
CD4+ T cells have complex and important biological functions in
the TME. Clinical research has indicated that combined
immunotherapy strategies are effective in treating metastatic
cancers because they promote T cell activation (35). Gastric
cancer is associated with immune system evasion. Immune
checkpoints are inhibitory pathways that can prevent tissue
damage by controlling the intensity of the physiological immune
response. Especially when the immune system is fighting an
infection, these inhibitory pathways are essential for maintaining
self-tolerance and physiological homeostasis. In addition, immune
checkpoint pathways may also cause immune escape of cancer
cells (36). We evaluated the distribution of immune checkpoint
gene expression among the three clusters. The subtype with the
highest expression of programmed death ligand 1 (PD-L1)
provided the best prognosis, and a similar conclusion was
obtained in previous research (37, 38). However, others have
indicated that programmed cell death protein-1 (PD-1)/PD-L1
expression in cancer cells is significantly associated with poor
prognosis (39, 40), and Kawazoe et al (41) found that PD-L1 had
no effect on gastric cancer prognosis. To achieve precision therapy,
a larger cohort and more controlled research should be applied to
clarify the function of PD-L1 in GC.

The heterogeneity of immune cell proportions in different
cancers results in a complex immune network in the TME and
differentially affects tumor occurrence and progression. Some
studies have reported an association between immune cell
populations and the prognosis of cancer progression (42–45).
CD4 T cells act on tumor immunity by secreting various cytokines
or by activating other immune cells (7). CD4+ regulatory T cells
are the main cells involved in self-tolerance and inhibit tumor
immunity (46, 47). Regarding the impact of CD4+ T cells in GC
patient prognosis, several opposite conclusions have been
reported. Shen et al. indicated that CD4+ T cells were related
Frontiers in Oncology | www.frontiersin.org 13
with more advanced stages of gastric cancer (48); Kindlund et al.
also found that CD4+ regulatory T cells can enhance tumor
proliferation mediated by IL-10 and TGF-b (49). However,
Wang et al. showed that GC patients with higher levels of CD4+
T cells were associated with a good prognosis (50), which was
consistent with the findings of the current study.

A novel CD4+ MTRG signature that can predict OS in GC
patients was constructed through the use of univariate Cox
regression analysis and LASSO regression analysis. This CD4+

MTRG signature was an independent prognostic factor of GC.
Patients with a high immune risk score had significantly poorer
outcomes than those in the low-risk group. IL-7, CTSW, NR1H3
and CCR8 were downregulated; these were considered to be
protective genes. LY86, RABGEF1, CYFIP2 and SERINC3 were
upregulated and were related with a poor outcome. IL-7 has been
found to play an anti-tumor role in melanoma (51). By contrast,
others have shown that IL-7 might have a pro-tumor function.
By limiting p27kip, IL-7 was shown to promote lung cancer
proliferation (52) and accelerate bladder cancer invasion and
migration (53). Nathan suggested that blocking the CCR8-CCL1
interaction, alone or combined with other immune checkpoint
inhibitors, was a therapeutic strategy for malignant diseases (54).
However, the role of IL-7 and CCR8 in gastric cancer
development has not yet been clarified. Furthermore, there are
few studies of the other eight genes in the ten-gene signature. The
potential biological function of these genes in GC requires
further clarification through experimental research.

A nomogram is a practical and intuitive evaluation approach.
Here, we established a nomogram with meaningful AUC values
based on the expression levels of genes in a selected panel. The
nomogram was used to evaluate the deterioration and outcome
of patients in this study, which is more economical and clinically
practical than whole-genome sequencing. DCA and calibration
curves showed the efficacy of this nomogram. A ten-gene
signature and clinicopathological variables were integrated into
the graphical scoring system, which was easy to understand. This
scoring system could be used to facilitate individual treatment
and determine a medical strategy. To be the best of our
knowledge, this is the first study to report the feasibility and
accuracy of a risk assessment model based on the identified ten
CD4+ MTRGs for predicting GC prognosis. These findings
provide novel ideas for risk assessment in gastric cancer patients.

Despite the significant results obtained in this study, several
limitations must be acknowledged. First, all data series were
obtained from the GEO database in which the population
distribution is mainly Caucasians, Africans, and Latinos.
Therefore, caution should be taken in extrapolating the findings
to patients with Asian heritage. In addition, several clinical
features were not available from these databases, including
severity, complications, and details of the individual treatment
of each patient; therefore, we did not conduct a longitudinal
analysis. Furthermore, it will be necessary to validate the ten-
gene signature using external datasets. Finally, as a retrospective
bioinformatic analysis study, the potential functional mechanisms
of these molecular subtypes and CD4+ MTRGs need to be further
verified in basic experimental research and clinical trials.
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CONCLUSION

In conclusion, three immune molecular clusters and a ten CD4+

MTRG signature were established for gastric cancer patients. The
clusters showed significant relationships with immune status,
biological processes and patient prognosis. Furthermore, a
prognostic nomogram was constructed that incorporated a gene
signature and independent clinical risk factors to predict the overall
survival of GC patients. This nomogram might accurately identify
GC patients who would benefit from immunotherapy.
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