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Abstract

Elucidating the neural basis of social behavior is a long-standing challenge in neuro-

science. Such endeavors are driven by attempts to extend the isolated perspective

on the human brain by considering interacting persons' brain activities, but a theoret-

ical and computational framework for this purpose is still in its infancy. Here, we posit

a comprehensive framework based on bipartite graphs for interbrain networks and

address whether they provide meaningful insights into the neural underpinnings of

social interactions. First, we show that the nodal density of such graphs exhibits non-

random properties. While the current hyperscanning analyses mostly rely on global

metrics, we encode the regions' roles via matrix decomposition to obtain an inter-

pretable network representation yielding both global and local insights. With Bayes-

ian modeling, we reveal how synchrony patterns seeded in specific brain regions

contribute to global effects. Beyond inferential inquiries, we demonstrate that graph

representations can be used to predict individual social characteristics, outperforming

functional connectivity estimators for this purpose. In the future, this may provide a

means of characterizing individual variations in social behavior or identifying bio-

markers for social interaction and disorders.

K E YWORD S

Bayesian modeling, brain-to-brain synchrony, fNIRS, graph machine learning, hyperscanning,
interbrain networks, network embeddings

1 | INTRODUCTION

Network models have provided new insights into the neural basis of

social behavior. Traditionally, neuroscience studies have examined

functional connectivity within the brain of a single subject using stan-

dardized tasks. These studies have yielded mounting evidence that

the integrative processes and dynamic interplay among different brain

regions and systems underpin many of our cognitive processes (van
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den Heuvel & Sporns, 2013). While these studies have focused on sin-

gle brains, each person is embedded in a larger network of social part-

ners and continuously affects and is affected by others (Falk &

Bassett, 2017; Hari et al., 2015). Thus, to reach a deeper comprehen-

sion of the neural underpinnings of social interactions, it may not be

sufficient to study individual brains in isolation (Hari et al., 2015).

Instead, the continuous reciprocal exchange between interacting

brains should be the target of investigation.

Studies that record the brain activities of two or more persons

concurrently, a mode of investigation referred to as hyperscanning,

indicate that the brain activities of interacting persons become syn-

chronized, that is, show statistical dependencies (interpersonal neural

synchrony [INS]) (Babiloni & Astolfi, 2014). However, many of these

studies have analyzed INS only between region pairs of the two par-

ticipants, and often in homologous brain regions, thereby neglecting

the fact that each brain is organized and operates as a complex system

(e.g., Cui et al., 2012; Djalovski et al., 2020; Reindl et al., 2018). Hence,

for research questions that do not explicitly target a priory specified

brain regions, such pairwise comparisons of region pairs may not be

sufficient to fully capture INS, given the large number of dynamic

dependencies between brain regions as well as individual variability in

functional networks. While the first few, mostly electroencephalogra-

phy (EEG)-based, hyperscanning studies have adopted a graph analytic

approach to study INS (e.g., Ciaramidaro et al., 2018; Santamaria

et al., 2020), graph analysis for hyperscanning data is still in its infancy

(Toppi et al., 2015). Here, we posit a comprehensive analytical frame-

work for inference and prediction based on bipartite interbrain graphs.

Specifically, we extend current analyses by (i) considering both global

and nodal topological properties, (ii) comparing the properties of inter-

brain graphs to those of random graphs, and (iii) exploring whether

graph representations can be used to infer relationships and predict

social characteristics.

Conceptually, synchrony can be understood as the coordinated or

aligned temporal relationship between events or time series. To quan-

tify the statistical dependencies between neural signals, a variety of

methods exist, each under its own premises (see Bastos &

Schoffelen, 2016). Based on these estimators, a bipartite graph can be

constructed from two sets of nodes representing each person's brain

regions and edges encoding their statistical dependencies. Impor-

tantly, such a bipartite graph enables full preservation of spatial preci-

sion in two nonoverlapping region-of-interest (ROI) sets, which sets it

apart from traditional seed-based connectivity mapping, in which the

seed ROI must be averaged, causing its spatial information to be lost.

From such a bipartite graph, both global and nodal properties can be

derived. Previous graph-based hyperscanning studies have often

focused on global metrics (e.g., Ciaramidaro et al., 2018; Santamaria

et al., 2020). A global metric, such as global efficiency, is a single met-

ric (scalar) that aggregates a specific graph topological property across

the entire graph (Latora & Marchiori, 2001). Hence, global metrics

cannot provide insights into the local differences in a graph's topology

and may thereby overlook smaller and/or more localized effects. Thus,

understanding how connectivity varies across nodes is an important

step in network analysis (Fornito et al., 2016). One of the most

fundamental nodal metrics, to which most other network metrics are

ultimately linked, is the nodal degree, that is, the number of edges per

node, or the nodal density, that is, the degree normalized with respect

to the number of possible edges (Bullmore & Sporns, 2009).

1.1 | Local topology of real-world networks

Nodal metrics not only provide deeper insights into network organiza-

tion but were also used in early network neuroscience studies to

assess the general properties and feasibility of graph formulations

(e.g., Achard et al., 2006). In an intrabrain network, as in many other

large, real-world networks, not every node is equally important to the

network's topology. While most nodes have very few connections

(a low degree), some nodes have many connections (a high degree),

facilitating integration across the network (Barabási & Albert, 1999;

Fornito et al., 2016). Consequently, the degree distribution shows

heavy-tailed characteristics and differs from the degree distribution of

a random graph with uniform edge probabilities, such as an Erd}os-

Rényi graph (Erdös & Rényi, 1959). However, these fundamental

topological properties have so far not been examined for interbrain

networks, although they may provide first evidence for the validity of

a network-based perspective on INS. Thus, in this study, we investi-

gate whether interbrain networks show similar heavy-tailed proper-

ties, indicating the presence of seed regions, and importantly, whether

their nodal density distributions differ from those of random graphs.

1.2 | Bayesian inference based on interbrain
network representations

Nodal metrics offer an in-depth view of a graph's topology. However,

they come at the cost of high computational complexity and multiple

comparison issues. Hence, an approach that can yield localized, interpret-

able insights into interbrain networks while avoiding multiple comparison

issues is currently lacking. To address this problem, we use an

unsupervised machine learning technique, the nonnegative matrix factor-

ization (NMF; Lee & Seung, 1999), to decompose an interbrain network

into several collections of nodes. This allows us to encode the nodal

topologies in a low-dimensional vector while preserving the contribu-

tions of the individual nodes to each component. The coefficients of

these components are then analyzed within a multivariate Bayesian hier-

archical model (BHM), thereby integrating all nodal effects into a single

model and avoiding multiple comparisons. Furthermore, Bayesian analy-

sis goes beyond the point estimates of a frequentist approach by all-

owing a probability statement to be derived for each parameter at both

the individual and population levels (see also Kruschke, 2014).

1.3 | Interbrain network-based prediction

The Bayesian model explicitly follows the explanatory goal of infer-

ence for building and testing neuroscientific claims (see also
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Shmueli, 2010). While many previous hyperscanning studies have

used inferential modeling, an important long-term goal may be to pre-

dict behavioral responses, clinical phenotypes, or treatment outcomes.

In addition, predictive modeling provides a straightforward way to

quantify the performance of our NMF-based approach by comparing

its ability to predict known properties of the data to the

corresponding capabilities of other approaches. This enables us to

address whether interbrain networks provide an informative repre-

sentation that goes beyond functional connectivity estimators.

Prediction based on vectorized connectivity estimators (see also

“connectivity fingerprinting” Finn et al., 2015; Passingham et al., 2002)

captures only pairwise dependencies while neglecting the multiple

dependencies among regions of the same network. In contrast, predictive

models for classifying graph-structured data represent a new direction in

neuroscience (Rosenthal et al., 2018). The underling computational prob-

lem of such graph comparison is well known in graph theory; formally,

under the premise to determine whether two graphs are topologically

equivalent, termed graph isomorphism problem (Fortin, 1996). Going

beyond first attempts, such as the pairwise Weisfeiler-Lehman test,

graph representation learning (GRL) is gaining enormous traction

(Goyal & Ferrara, 2018; Wu et al., 2021). The aim of GRL is to learn low-

dimensional continuous vector representations for graph-structured data,

called embeddings (Bronstein et al., 2017; Chami et al., 2022). These

methods involve embedding nodes or graphs that are similar with

respect to a certain association into a graph space and then transforming

them into Euclidean space (Chami et al., 2022). Since our NMF-based

approach preserves the topological properties of a graph, it can be

understood as a “structural embedding” of a graph. However, since our

approach is based on topological properties, other network embeddings

based on other lower- or higher-order proximities could potentially yield

superior network representations. Hence, in a rigorous testing regime,

we compare the performance of our network representation with state-

of-the-art network embeddings (Graph2Vec: Narayanan et al., 2017;

GL2Vec: Chen & Koga, 2019; GeoScattering: Gao et al., 2019; LDP:

Cai & Wang, 2018) and predictions based on functional connectivity

estimators.

We demonstrate the proposed analytical framework and evalu-

ate its utility using a functional near-infrared spectroscopy (fNIRS)

hyperscanning data set with a well-established hyperscanning

design (for more details, see Reindl et al., 2018). fNIRS measures

the hemodynamic response in cortical brain regions, usually with a

higher spatial resolution than EEG, and is based on changes in the

concentrations of both oxy- and deoxyhemoglobin (HbO and HbR).

The latter property is an advantage of fNIRS because it allows us to

conduct analyses based on the HbO signals, as is most commonly

done (e.g., Cui et al., 2012; Reindl et al., 2018), while using the HbR

signals as a hold-out data set for the prediction task to validate the

findings.

In the current study, female children and adolescents performed

both a cooperative and a competitive computer task (with two task

blocks each) with their mother and with an adult stranger, while their

prefrontal brain activities were recorded concurrently. The two task

conditions were compared to a baseline condition in which both par-

ticipants watched a relaxing video together. The mechanisms that

drive synchrony may vary between experimental tasks and are

thought to span different behavioral and biological systems

(Feldman, 2012; Hamilton, 2021; Reindl et al., 2022). For the given

experimental design, it can be hypothesized that, on the one hand,

parent–child attachment is associated with processes of increased

bio-behavioral synchrony (Feldman, 2012) and, on the other hand,

that the mutual engagement in a given task induces similar cognitive

and emotional processes in the dyad which are time-locked to each

other (see Reindl et al., 2022 for more details). Given the adolescent

sample, an age in which children strive for more autonomy from their

parents and orient more toward peers, social cooperation, and compe-

tition with parents, peers, and strangers may play an important role

for their socioemotional development (see Kruppa et al., 2021; Nelson

et al., 2005). Previous research based on the same experimental task

enables a plausibility check of the results: based on previous findings,

stronger INS is expected for mother–child dyads than for stranger–

child dyads (Kruppa et al., 2021; Reindl et al., 2018) and for the two

task conditions compared to the baseline condition in the dorsolateral

and frontopolar brain regions (Kruppa et al., 2021).

2 | MATERIALS AND METHODS

2.1 | Empirical data

2.1.1 | Participants

Data were collected as part of a larger project (see Reindl et al., 2022),

in which the same fNIRS data were analyzed to investigate whether

neural synchrony goes beyond synchrony in the autonomic nervous

system and motor behavior using multimodal models. Participants

were recruited via previous studies, postings on the intranet of the

University Hospital RWTH Aachen and flyers, and they were screened

for severe cardiac, neurological or psychiatric conditions prior to study

inclusion. The final sample consisted of 34 children (all female) who

participated in the study with their mothers (mother–child dyads) and

a previously unacquainted female adult (stranger–child dyads). A total

of 29 strangers were included, some of which participated twice

(n = 1) and some three times (n = 2), thus, comprising 34 mother–

child and 34 stranger–child dyads. The average age of the children

was 14.26 years (SD = 2.21 years, range: 10–18 years), that of the

mothers was 45.32 years (SD = 4.95 years, range: 37–56 years), and

that of the strangers was 23.07 years (SD = 2.09 years, range: 19–29

years). The strangers were significantly younger than the mothers (t

(61) = �22.532, p < .001). All adults gave written informed consent

for their own study participation and, in the case of the mothers, for

the participation of their children. The children gave written informed

assent (aged 10–17 years) or informed consent (aged 18 years). Ethics

approval was obtained from the Ethics Committee of the Medical Fac-

ulty, University Hospital RWTH Aachen (EK 151/18).
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2.1.2 | Data acquisition

fNIRS signals were recorded from both members of each dyad con-

currently using a single fNIRS device (ETG-4000, Hitachi Medical Cor-

poration, Japan; sampling rate: 10 Hz). Fifteen probes, eight sources

and seven detectors, were arranged in grids consisting of three rows

and five probe columns, in which the source-detector separation was

fixed at 3 cm and the sources and detectors were arranged in alternat-

ing order, resulting in 22 measurement channels (CHs). Probe grids

were mounted on modified EEG caps (Easycap GmbH, Germany) and

placed symmetrically on the participant's foreheads, with the middle

probe of the lowest probe row placed on the Fpz point in the 10–20

system and the middle probe column aligned along the sagittal refer-

ence curve. This probe setup, depicted in Figure 1, covered parts of

Brodmann areas (BAs) 8, 9, 10, and 46. The most likely Montreal Neu-

rological Institute (MNI) coordinates of the probes and channels as

well as their underlying brain regions were estimated via the virtual

registration method (Singh et al., 2005; Tsuzuki et al., 2007), using the

Talairach Daemon (Lancaster et al., 2000). The most likely MNI coor-

dinates of the fNIRS channels are provided in the corresponding

repository (Gerloff, 2022). For more details on the data acquisition,

see Reindl et al. (2019).

2.1.3 | Tasks and procedure

The participants in each dyad were seated next to each other in front

of a single computer screen. A towel was placed over their hands to

reduce their ability to view each other's movements. Furthermore, the

participants rested their chins on chin rests to reduce head move-

ments and improve the fNIRS data quality. The experiment consisted

of three experimental conditions: a noninteractive baseline, a cooper-

ative task, and a competitive task. Each child completed the three

conditions either first with the mother (N = 17, 50%) and then, after a

short break, with the stranger or the other way around (N = 17, 50%).

The three conditions were presented in the same order for both dyads

of which each child was a member, always starting with the baseline

condition, followed either by the cooperative (N = 16, 47%) or the

competitive (N = 18, 53%) task. A more detailed task description can

be found in Text S1.

Baseline

A 3-minute excerpt from a relaxing aquatic video (Coral Sea Dream-

ing, Small World Music Inc.) was presented. This served as a control

condition, in which both participants perceived the same stimuli and

were instructed not to interact with each other.

Cooperation and competition

The cooperative and competitive computer games were adapted ver-

sions of the tasks of Cui et al. (2012), modified for use in children

(Kruppa et al., 2021; Reindl et al., 2018). Each player manipulated a

cartoon figure of a dolphin by pressing a computer key to either catch

a ball together (cooperation) or catch the ball faster than the other

player (competition). The cooperative and competitive games were

both organized into two task blocks of 20 trials each, interspersed

with 30 s rest blocks: rest1, task1, rest2, task2, rest3.

2.2 | fNIRS preprocessing

First, the raw intensity data were converted into optical density data.

Second, motion artifacts were detected using a moving standard devi-

ation and reduced through cubic spline interpolation of the affected

part of the signal (Scholkmann et al., 2010). Third, the optical density

data were converted into HbO and HbR concentration changes using

the modified Beer–Lambert law, in which the differential pathlength

factor was individually estimated based on the wavelength and the

participant's age (Scholkmann & Wolf, 2013). Finally, the HbO/HbR

time series were detrended using a discrete cosine transform set.

Noisy fNIRS channels were identified based on a semiautomated pro-

cedure, using several objective criteria (coefficient of variation, “flat
line” detection, anticorrelation of HbO/HbR) in combination with

visual inspection of the HbO/HbR signals and their scalogram. Based

on this procedure, 7.84% of signal pairs were excluded from further

analyses. If more than 25% of a participant's channels under a specific

experimental condition were classified as noisy, the complete fNIRS

measurement was excluded (see Text S2).

2.3 | Graphs

2.3.1 | Connectivity estimator

To formulate the interbrain networks, first the statistical dependen-

cies between the dyad's brain signals have to be quantified. To this

end, the bivariate wavelet coherence (WCO; Torrence &

Compo, 1998) was calculated via the continuous wavelet transforma-

tion, which is a widely applied functional connectivity estimator that

localizes signal dependencies in the time-frequency space and is

appropriate for nonstationary time-series, such as fNIRS signals. The

WCO belongs to the family of undirected connectivity estimators,

which, unlike directed estimators such as Granger causality, do not

allow to deduce the directionality of the relationship between neural

time series (see Bastos & Schoffelen, 2016). Given its well-established

mathematical foundations, its fit to signal characteristics and inter-

pretability, we decided to exemplify this framework using the widely

applied WCO. For each WCO matrix, the coefficients were aggre-

gated into a scalar representing the connectivity estimator. To

increase the robustness of the estimator, we applied padding to

reduce boarder dispersions and considered only salient WCO coeffi-

cients that were higher than a cut-off value, determined on the basis

of surrogate time-series, and lay within the cone-of-influence (for

more information on the calculation of the WCO, the surrogates and

the cut-off value see Text S3). Finally, we calculated the percentage

of salient values within a task-related frequency band between 0.5

and 0.08 Hz (period length: 2.02–12.80 s) for the baseline condition
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as well as each of the two cooperative/competitive task blocks. The

task-related frequency band was chosen based on previous studies

(Kruppa et al., 2021; Reindl et al., 2018) and included the trial duration

(~7 s for cooperation, ~6 s for competition).

2.3.2 | Graph construction

To study interbrain networks and their global properties, we first for-

mulated a complete bipartite graph for each dyad as depicted in

F IGURE 1 Global effects of interbrain networks can be decomposed into nodal effects in specific seed regions. This figure shows the global
and nodal density effects of stranger-child interaction vs. mother–child interaction, baseline vs. competition and baseline vs. cooperation. The
nodal densities were encoded by the coefficients of the four NMF components. Left: The marginal posterior distributions of the population
effects are plotted along with their means, 90% CIs (thick black lines) and 99% CIs (thin gray lines). The width of the CI represents the uncertainty
associated with the estimated parameters. Parameters for which the 90% CI does not include zero (red line) were interpreted as evidence for an
effect. The global results showed a strong partner effect, with increased synchrony for mother–child dyads compared to stranger-child dyads, as
well as a competition effect and some evidence for a cooperation effect, with higher synchrony for the two task conditions compared to the
baseline condition. The nodal results confirmed these global results but provided increased topological detail. Specifically, the partner effect was
rather widespread (in components 3 and 4 as well as for the baseline condition, in component 2), while the competition and cooperation effects
were mostly localized to left and right lateralized prefrontal brain regions (components 1 and 4). Right: Five catplots show how the posterior
global and nodal density values vary between mother–child and stranger-child dyads in the baseline, cooperation and competition conditions.
Bottom: A heatmap visualizes the basis matrix resulting from NMF, showing the contribution of each fNIRS channel of the child (C) and the adult
partner (P) (x-axis) to the corresponding component (y-axis). The fNIRS channels of the child and the adult partner that contribute most to each of
the components in terms of their nodal densities, with weights above the 80th percentile (min = 0, max = 1), are visualized on the brain models
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Figure 2. A bipartite graph G¼ V1[V2,Eð Þ was constructed from the

connectivity between the brain region of participant 1 and the brain

regions of participant 2. The nodes comprising the two disjoint sets

V1 and V2, also termed partite sets, represented the spatially localized

sources for participant 1 and participant 2, respectively. E⊆V1�V2

denotes the edges with the corresponding weights W, defined by the

connectivity estimator (Section 2.3.1). For each dyad and task, a com-

plete bipartite graph Gcomplete was generated with jV1 j¼jV2 j¼22

nodes. Finally, edges from noisy channels were excluded. Thus, after

exclusion of noisy data sets, a total of n = 330 graphs based on HbO

signals and n = 330 graphs based on HbR signals were constructed.

For further implementation details see Text S4.

2.3.3 | Graph reduction

One well-known issue in graph analysis is that complete graphs are

sensitive to errors in the derived edges, leading to spurious connec-

tions and high false positive rates (van den Heuvel et al., 2017).

Hence, complete graphs are often reduced via proportional

thresholding; however, this has been shown to preserve some spuri-

ous connections, particularly in data sets with a low overall functional

connectivity (van den Heuvel et al., 2017). Thus, instead of using a

proportional threshold, we reduced the complete graphs, deriving

thresholds from “shuffled” adult-child pairs. By adapting subsampling-

based reduction (Drakesmith et al., 2015) and deconfounding (Epstein

et al., 2012), shuffled adult-child pairs were constructed by permuting

adults and children who participated in the same experimental condi-

tion but independently of each other. This enabled us to control for

confounding variables during graph reduction by defining the

exchangeability for blockwise permutation, that is, under which condi-

tions the data could be permuted. Specifically, each shuffled signal

pair was formed from two signals from an adult and child who did not

participate in the same experiment. We generated all possible shuffled

adult-child pairs and calculated their connectivity. With this blockwise

permutation, assuming exchangeability of the participant IDs while

holding the channel combination and condition fixed, we created a set

of null distributions. Subsequently, the 95% quantile of each null dis-

tribution was set as the threshold for the respective channel and con-

dition. Through the consideration of the 95% quantile of each null-

distribution, this blockwise permutation of shuffled pairs endowed the

choice of thresholds with a more solid theoretical foundation and gen-

erated multiple large null distributions for each fixed variable combi-

nation. Setting the channel combination as fixed allowed us to control

for systematic differences between channels, such as differences in

the signal-to-noise ratio related to the distance between the brain and

skull or the amount of hair. Furthermore, setting the experimental

condition as fixed allowed us to control for systematic differences

related not to social interaction per se but rather, for instance, to dif-

ferences in activation patterns (see also Kruppa et al., 2021). In the

following the reduced graphs are denoted by G V1[V2,E
�ð Þ,

with Gcomplete V1[V2,Eð Þ,s:t:E� Gð Þ⊆ E Gcomplete

� �
.

2.3.4 | Graph topology

A graph can be described by a multitude of metrics such as central-

ity or degree measures. Here we derived both global and nodal

density indices from the reduced graphs. While other topological

properties of graphs are possible, density is an essential attribute

and topological property that is interpretable at both the global and

nodal level across different graph types and allows correction for

excluded channels.

Global interbrain density, denoted by dglobal, was defined as the

number of interbrain links that survived permutation, normalized with

respect to the total maximum number of possible links (Rubinov &

Sporns, 2010) after “noisy channels” were excluded.

Nodal interbrain density, denoted by dnodal, was defined as the

number of surviving edges for each node of the adult and child partici-

pants, again normalized with respect to the total number of possible

edges. Thus, the nodal density estimates how strongly the neural sig-

nals of a given node are coherent with the signals of all other nodes

of the partner and thereby allows the individual contributions of a

particular node to the global connectivity to be determined.

2.3.5 | Bipartite Erd}os-Rényi graphs

To study whether the nodal characteristics differed between the origi-

nal graphs and graphs with a random nodal structure, we adopted

bipartite versions of binomial Erd}os-Rényi graphs (Batagelj &

Brandes, 2005). Comparing the nodal density distribution of these

random graphs with the nodal density distribution of interbrain net-

works provides an indication of whether it is conceptually valid to

study interbrain networks. Therefore, our adjusted generation proce-

dure creates a rewired undirected graph for each original graph such

that the generated binomial bipartite Erd}os-Rényi graph follows the

same global density as the interbrain network and only the nodal

properties are disturbed.

In this rewiring process, we define the density-corrected bipartite

Erd}os-Rényi graph GReny n,m,pð Þwithn¼ V1j j,m ¼ V2j j, and p¼
dglobal G V1[V2,E

�ð Þð Þ. The graph GReny n,m,pð Þ is constructed with the

binomial bipartite Erd}os-Rényi algorithm such that the vertex sets

E� GRenyð Þ⊆ E Gcomplete

� �
, with Gcomplete V1[V2,Eð Þ have a

corresponding interbrain network G V1[V2,E
�ð Þ. The probability p of

generating an edge in the set E� GRenyð Þ is set equal to the global den-

sity of the corresponding interbrain network G V1[V2,E
�ð Þ. Hence,

this rewiring process aims to preserve the characteristics of the origi-

nal graph such that GReny n,m,pð Þ will have the same global effects as

the corresponding interbrain network G V1[V2,E
�ð Þ.

2.4 | Nonnegative matrix factorization

To jointly learn a low dimensional representation across all graphs,

NMF was applied to the vectorized nodal metrics. To this end, we
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concatenated the nodal densities (m = 44 nodes, 22 each for the child

and adult) of all graphs (n = 330) to form the matrix V �Rm�n
þ . As the

nodal density ranges between zero and one, V contains only nonnega-

tive entries. This matrix was then approximately factorized into a basis

matrix W �Rm�r
þ and a coefficient matrix H�Rr�n

þ ,s:t:V ≈WH (Lee &

Seung, 1999), where the rank, denoted by r, is constrained to

nþmð Þr < nm. The coefficient matrix H encodes the nodal densities

for each of the r components to be used in subsequent analyses. The

basis matrix W provides the assignment of nodes to components, thus,

can be understood as a “dictionary” in which to look up which nodes

contribute how strongly to a component. Due to the nonnegative con-

straint, the individual components are strictly additive, making them nat-

urally interpretable, with higher values indicating higher INS.

Furthermore, each node can contribute to several components with dif-

ferent weights. These properties set the NMF apart from other methods

that yield low vector representations, such as principal component analy-

sis. Of note is that the factorization can also be adjusted to incorporate

nodal-in density and nodal-out density metrics of directed interbrain net-

works, thereby preserving the directionality information of directed con-

nectivity estimators (described in more detail in Text S6).

F IGURE 2 Framework for inference and prediction based on interbrain networks. The proposed framework governs the construction (left)
and analysis (right) of interbrain networks. For each dyad and condition, a bipartite graph was constructed from the functional connectivity
estimators. The complete bipartite graphs for each dyad were reduced via blockwise permutation using distributions obtained from
noninteracting dyads (“shuffled pairs”) to reduce the influence of spurious edges and to stratify for confounds. Next, the nodal densities of the
interbrain networks were decomposed via NMF to obtain an interpretable, lower-rank representation (embedding). Analysis of the interbrain
networks in both the inference and prediction regimes was demonstrated (right). For inference, BHM analysis was introduced, which extends the
point estimates of classical frequentist approaches by quantifying the uncertainty of effects using a probability term. First, the global densities of
the individual graphs were analyzed to quantify partner and task effects (global effects). Second, the coefficient matrix of our NMF-based
network representation was used to formulate a multivariate BHM to yield a more detailed and region-specific quantification of the partner and
task effects (nodal effects). Finally, we demonstrated prediction based on interbrain networks using nested-stratified cross-validation of HbO
signals and an HbR hold-out set. The performance of our NMF-based network representation was compared with that of state-of-the-art
network embeddings and with that of prediction based directly on the functional connectivity estimators
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To obtain stable results, we performed 10,000 iterations of each

NMF procedure. The aim of NMF is to minimize the reconstruction error,

which generally describes the differences between the original matrix

and the product of the decompositions W and H. The reconstruction

error was calculated based on the Frobenius norm. Moreover, the NMF

algorithm was initialized via nonnegative double singular value decompo-

sition to ensure a sparse and meaningful representation (Boutsidis &

Gallopoulos, 2008). For further details see Text S5.

2.5 | Inference for interbrain networks

To analyze task and partner effects on global density (Section 3.1), a

BHM was calculated with the global density as the dependent variable

and competition (0 = baseline, 1 = competition), cooperation

(0 = baseline, 1 = cooperation), and partner (0 = stranger, 1 =mother)

as well as the two-way interactions between task (competition/coop-

eration) and partner as predictors. Moreover, the empirical findings

were validated by formulating a BHM comparing global density of

actual and shuffled pairs per condition. To this end, pair (0 = shuffled,

1 = actual), competition (0 = baseline, 1 = competition), cooperation

(0 = baseline, 1 = cooperation), partner (0 = stranger, 1 = mother) as

well as their two-way interactions were included as predictors. To

obtain one shuffled density value for each dyad and condition, global

density of all independent (“shuffled”) pairs was calculated and the

mean values of these distributions per dyad and condition were

derived (Kruppa et al., 2021). This ex-post validation verifies whether

the graph reduction controls for synchrony of noninteracting pairs.

For the analysis of nodal effects (Section 3.3), an equivalent multi-

variate BHM was fitted, which included all four NMF components as

response variables. The unconditional main effects of competition,

cooperation, and partner are reported across partner and task condi-

tions, respectively. In the results section, for each effect of interest,

we reported the mean of its estimated marginal posterior distribution

as well as its two-sided 90% CI, also termed the “highest posterior

density interval,” which is defined as a probabilistic interval that is

believed to contain a given parameter (Aczel et al., 2020). A detailed

description of the model implementations and quality checks can be

found in Text S7-S8.

While the BHM benefits from its flexibility, its concrete model

formulation can be adapted to a given set of prior information of the

specific data. For example, the distribution of alternative topological

graph metrics (Section 2.3.4) might make a different linking function

of the BHM more appropriate.

2.6 | Classification of interbrain networks

To explore the interbrain network's capacity to predict individual

social characteristics, we calculated features based on state-of-the-art

network embeddings, vectorized connectivity estimators and our

NMF-based embedding. Common machine-learning classifiers, were

applied to compare the performance of the embeddings.

2.6.1 | Embeddings and classifiers

State-of-the-art embeddings based on four different methodological

approaches were implemented. All embeddings were trained in an

unsupervised fashion on graphs constructed as described in

Section 2.3.

A. Skipgram-based embeddings

Skipgram refers to a feedforward neural network architecture that

was originally applied in natural language processing. Graph2Vec

(Narayanan et al., 2017) is a skipgram-based embedding that decom-

poses each graph into nonlinear substructures by extracting a sub-

graph for each node via a Weisfeiler-Lehman kernel. These subgraphs

are then used in a skipgram model to learn a lower-rank representa-

tion in which graphs composed of similar root subgraphs have similar

vector representations. Additionally, we applied “Graph and Line

graph to vector” (GL2Vec; Chen & Koga, 2019), which uses the edge-

adjacency matrix to reformulate the underlying graphs as line graphs

and allows the incorporation of additional attributes of nodes as fea-

tures. We set the bipartite color, that is, which nodes belong to the

child and which belong to the partner, as a feature.

B. Spectral-based embeddings

Spectral-based embeddings attempt to generalize convolutional oper-

ations to non-Euclidean graph domains. Here, we applied the geomet-

ric scattering embedding (Gao et al., 2019), which performs (signal-)

processing on graphs (Bronstein et al., 2017) via the wavelet scatter-

ing transform. Accordingly, diffusion wavelets calculated from the

adjacency matrix and degree matrix are applied to the node signals.

These node signals encode a series of node attributes that are cap-

tured during random walks across the graph. Again, we adopted the

bipartite color as a node attribute.

C. Structural role-based embedding

The local degree profile (LDP; Cai & Wang, 2018) is a simple embed-

ding that is calculated based on five topological features: the nodal

degree and the mean, minimum, maximum, and standard deviation of

the nodal degree across a 1-neighborhood. These nodal features are

mapped into n¼32 bins of uniform width. These bins encode each

graph into an n-dimensional vector.

D. Our network representation

As described in Section 2.4, we generated a matrix, representing the

nodal densities per node and dyad, which was then decomposed via

NMF to obtain a low-rank representation of the reduced bipartite

graphs. The resulting coefficient matrix was log-transformed, due to

its heavy-tailed distribution.

Due to graph reduction (see Section 2.3.3), deconfounded graphs

may contain isolated nodes, that is, nodes without any edges. How-

ever, most kernel-based and neural-network-based embeddings

require a connected graph to ensure that each node of the graph can

be reached (weak connectivity assumption). Hence, embeddings A

and B were computed based on the connected weighted bipartite
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graphs (see Section 2.3.2) but with adjusted connectivity estimators

to ensure a fair comparison. The connectivity estimators were block

centered with respect to the mean of the shuffled pairs in the

corresponding experimental condition, task block and channel combi-

nation (see also Section 2.3.3) to mitigate the bias induced by nonin-

teractional synchrony. For further details, see Text S9.

The embeddings were then input into classifiers. Here, we applied

a L2-regularized logistic regression classifier (ridge classification:

Hoerl & Kennard, 1970), a Gaussian process classifier (Williams &

Rasmussen, 2006), and a support vector machine with a linear kernel

(Cortes & Vapnik, 1995). We chose these classifiers since they are

well established and represent different linear classification

approaches.

2.6.2 | Hyperparameter optimization

Hyperparameters indirectly adjust the parametrization of elements of

the machine learning algorithms, such as the regularization term of a

cost function. Hence, the choice of hyperparameters can strongly

influence the outcome of machine learning algorithms (Bergstra &

Bengio, 2012). Here, we optimized the hyperparameters separately

for each instance of the cross-validation procedure (Section 2.6.3)

using Bayesian optimization (Snoek et al., 2012). In the case of a mod-

erate parameter space (e.g., Rd with d≤20Þ, Gaussian-process-based
Bayesian optimization may converge faster to a lower bound solution

than alternative approaches. The hyperparameters were optimized

based on the area under the receiver operating characteristic curve

(AUC-ROC). Further details can be found in Text S9. A detailed

parameter space for each classifier and embedding can be found in

Table S2.

2.6.3 | Performance evaluation via repeated,
stratified, nested k-fold cross-validation

To ensure a generalizable quantification of the predictive classification

performance, we applied k-fold cross-validation to the HbO-based

graphs as a resampling strategy. In this implementation, the feature

matrix F was randomly split into k¼5 mutually exclusive subsets of F

of approximately equal size, termed folds (for the choice of k see also

Kohavi, 2015). The folds denoted by F1,F2,…,Fk , were stratified to

preserve the class proportions within each fold. For each fold,

preprocessing was applied (see Table S2). The hyperparameter optimi-

zation was performed separately in a nested loop via stratified cross-

validation (knested ¼3Þ within each fold of the outer cross-validation.

This nested scheme could avoid leakage effects of the training and

test sets caused by the optimization process (Cawley & Talbot, 2010),

which we empirically confirmed (Figure S1). For each instantiation,

the classifier was trained and optimized on the disjoined set F ∖ Ft of

the fold Ft and the feature matrix F and tested on Ft: For each Ft,

three performance measures, namely, ROC-AUC, precision and recall

(also termed sensitivity), were calculated (see Figure 4 and S2). The

cross-validation procedure was repeated 10 times (n¼10) with shuf-

fling to overcome potential bias from the random-partitioning in the

cross-validation. The means (μ) and standard deviations σð Þ of the per-

formance metrics for each repetition and fold were compared across

the test data.

2.6.4 | Out-of-sample performance evaluation via
the hold-out set

In contrast to the cross-validation procedure, in which the classifiers

were trained based on subsets of graphs constructed from the HbO

signals, we also trained classifiers based on all graphs constructed

from the HbO data (n = 330). Next, these trained classifiers were used

for prediction based on the graphs constructed from the HbR signals

(n = 330). This hold-out set was strongly isolated from all previous

training procedures. The postprocessing of the embeddings was anal-

ogous to that applied in the cross-validation procedure. The classifica-

tion performance was measured using the same metrics as in the

cross-validation procedure. It should be noted that while this out-of-

sample prediction procedure benefits from more training and testing

samples compared to the cross-validation procedure, the classifiers

also suffer from the challenges arising from prediction across data

sets. Importantly, HbO and HbR signals have inverse characteristics,

and the magnitude of HbR signals is lower, making this classification

task challenging.

3 | RESULTS

3.1 | Inference based on global graph properties

To study interbrain networks and their global properties, we first for-

mulated a complete bipartite graph for each dyad by calculating the

pairwise statistical dependencies between neural signals from adult and

child regions and reduced the graph via a block permutation-based pro-

cedure. The resulting bipartite graphs control for systematic differences

not related to the dyad's social interaction. The global density was then

quantified as the average number of edges connected to a node, after

correction for noisy fNIRS channels, which were excluded from the

analyses. The global densities of the resulting graphs were analyzed

within a single BHM with competition (0 = baseline, 1 = competition),

cooperation (0 = baseline, 1 = cooperation), and partner (0 = stranger,

1 = mother) as well as the two-way interactions between task (compe-

tition/cooperation) and partner as predictors.

The results are presented in Figure 1 and Table S3 (Model 1) via

the posterior mean (μ), the two-sided 90% credible interval (CI), and

the percentage of samples above zero of the marginal posterior distri-

bution. We found evidence for a competitive task effect and, to a

weaker degree, evidence for a cooperative task effect, with higher

density in the two task conditions compared to the baseline condition

(baseline vs. competition: μ = 0.13, CI = [0.02, 0.25], 96.93% > 0;

baseline vs. cooperation: μ = 0.08, CI = [�0.02, 0.18], 91.38% > 0).
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Further, strong evidence was found for a partner effect, with higher

density for mother–child dyads compared to stranger-child dyads

(μ = 0.13, CI = [0.04, 0.23], 99.3% > 0). In addition to the stratification

for shuffled pairs during the graph reduction procedure, we performed

an ex-post validation using shuffled pairs to assess whether neural

synchrony of the actual dyads was higher than neural synchrony of

independent participants involved in the same experimental condition

as described in Section 2.5. The results, described in Table S3, con-

firmed the previous findings. We found evidence for an interactive

effect between pair and partner (μ = 0.02, CI = [0.00, 0.05], 95.58%

> 0) and between pair and competition (μ = 0.03, CI = [0.00, 0.06],

95.70% > 0) but only weak evidence for an interactive effect between

pair and cooperation (μ = 0.02, CI = [�0.01, 0.04], 88.61% > 0).

Directly comparing actual and shuffled pairs, our results showed

higher density of actual compared to shuffled pairs for mother–child

dyads (μ = 0.03, CI = [0.01, 0.05], 99.08% > 0) but not for stranger–

child dyads (μ = 0.00, CI = [�0.01, 0.02], 61.86% > 0) as well as for

competition (μ = 0.03, CI = [0.01, 0.05], 98.49% > 0), to a weaker

degree for cooperation (μ = 0.02, CI = [�0.00, 0.03], 93.61% > 0) but

not for video (μ =�0.00, CI = [�0.02, 0.02], 44.33% > 0).

3.2 | Nodal properties of interbrain networks

In the previous section, we described the global effects of interbrain

networks. Building on this, nodal graph metrics may yield further

insights into the specific brain regions that facilitate such effects.

Since the nodal degree distribution in a complex system has been

shown to follow a more heavy-tailed distribution than that in a ran-

dom graph with uniform edge probabilities (Barabási & Albert, 1999;

Bullmore & Sporns, 2009), we compared the nodal density distribu-

tions of the interbrain networks to those of random bipartite Erd}os-

Rényi graphs. To rule out the possibility that differences these distri-

butions could arise due to differences in global density, we adopted

the bipartite Erd}os-Renyi graphs so that their rewiring regime pre-

served the global density of the interbrain networks. In the following,

the graphs are compared across all experimental conditions, while

separate analyses for the partner and task effects can be found in

Text S10, Table S4, Figure S3.

Descriptive results showed that the interbrain networks have

both a higher proportion of low-density nodes (density ≤0.01; 83.42%

vs. 81.05%) and a higher proportion of high-density nodes (density

≥0.5; 3.34% vs. 1.49%) than Erd}os-Rényi graphs with the same global

density. These higher proportions of both low-density and high-

density nodes indicate that the interbrain networks are more heavy-

tailed (Figure 3). These differences between the nodal distributions of

the interbrain networks and Erd}os-Rényi graphs were confirmed by a

significant result from the two-sided Kolmogorov–Smirnov test

(0.117, p < 0.001). To summarize, our results indicate that the distribu-

tions of interbrain graphs were more heavy-tailed than distributions

of bipartite Erdös-Renyi graphs with the same global properties.

3.3 | Inference based on nodal graph properties

To analyze the nodal densities while avoiding multiple comparison

issues, we derived subsets of nodes showing similar behaviors, reduc-

ing the dimensionality of the nodal metrics of each deconfounded

graph to four components via NMF. The NMF procedure yields two

matrices. The basis matrix can be understood as a dictionary in which

F IGURE 3 Interbrain networks
show nonrandom characteristics
typical of many real-world networks.
The depicted empirical
complementary cumulative
distribution functions (ECCDFs) show
the tail behavior of the nodal density
distributions of interbrain networks
(blue) and bipartite Erd}os-Rényi
graphs (black). The ECCDF describes
the probability with which a node
reaches a specific density. As
illustrated, the higher steepness of
the interbrain ECCDF curve
compared to the bipartite Erd}os-
Rényi ECCDF curve implies a
heavier-tailed nature of the
distribution, meaning larger
proportions of high- and low-density
nodes. Such heavy-tailed
characteristics are known to be a
fundamental property of many real-
world networks
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to look up the contributions of each node to each of the components

that are constant across dyads and conditions (Figure 1), whereas the

coefficient matrix encodes the nodal densities of each dyad in the

respective condition. To analyze the nodal densities, a multivariate

BHM was again calculated to examine the effects of cooperation,

competition, and partner as well as the two-way task � partner inter-

actions on the four NMF components.

The nodal density results confirmed the global results, showing evi-

dence for partner, competition and cooperation effects (Figure 1 and

Table S3, Model 2). Specifically, NMF component 1 showed strong evi-

dence for both task effects, with increased INS for cooperation

(μ = 0.12, CI = [0.02, 0.22], 97.7%> 0) and competition (μ = 0.16,

CI = [0.04, 0.29], 98.56%>0), as well as weaker evidence for a partner

effect (μ = 0.08, CI = [�0.02, 0.18], 91.31%> 0), with increased INS for

mother–child dyads compared to stranger-child dyads. Component

2 showed evidence for task � partner interactions (competition � part-

ner: μ = �0.27, CI = [�0.49, �0.05], 2.07%> 0; cooperation � partner:

μ = �0.21, CI = [�0.44, 0.02], 6.32%> 0), indicating that mother–child

dyads exhibited a higher density than stranger-child dyads in the baseline

condition. Component 3 did not show any strong task effects but

showed evidence for a partner effect, with higher synchrony of mother–

child dyads (μ = 0.09, CI = [0.00, 0.18], 95.58%> 0). Component

4 showed a strong partner effect (μ = 0.15, CI = [0.04, 0.27], 98.44%>

0), a competition and a cooperation effect (baseline vs. competition:

μ = 0.13, CI = [0.02, 0.25], 97.48%> 0; baseline vs. cooperation:

μ = 0.09, CI = [�0.02, 0.20], 90.92%> 0). The brain regions that contrib-

ute most to each of the components can be found in Figure 1. The

obtained NMF solution was validated by showing that (i) the brain

regions that contribute to the NMF components show the same or simi-

lar effects as the NMF components themselves (Text S11) and (ii) the

procedure is not permutation biased, an essential requirement in the

graph space, meaning that the results are independent of the ordering of

the nodes (Text S12).

3.4 | Exploring predictive applications

As described above, the NMF components were first used in an

inference task. Next, we explored whether our network representa-

tion can also be applied for a predictive goal. To this end, we trained

and tested classifiers to discriminate between graphs according to

the task conditions (baseline/task), whereby cooperation and compe-

tition are summarized to one category (“task”) and compared to

baseline, and the partner conditions (stranger/mother). To establish

a rigorous evaluation setting given the sample size and the available

chromophores, the models were benchmarked via out-of-sample

classification performance in the following two regimes (see also

Poldrack et al., 2020):

F IGURE 4 Network representations of interbrain networks might improve the classification of interaction partners and tasks. Classification
performance based on network representations and functional connectivity was compared using three widely applied classifiers. For the two
classification tasks, baseline/task (top) and stranger/mother (bottom), out-of-sample performance was evaluated via the ROC-AUC. The
evaluation regimes consisted of nested cross-validation (CV;kout ¼5,kinner ¼3Þ and an additional hold-out set (HbR). The CV was stratified to
preserve the class distribution across folds and was repeated (n = 10) to avoid the bias that may arise from the splitting of the folds. The “letter-
value plots” and the table display the means, standard deviations, and quantiles of the CV performance. To quantify each embedding's ability to
generalize across data sets, models were trained on the HbO data and used to predict task and partner conditions based on the HbR data. The
obtained ROC-AUC results for the CV and hold-out set regimes showed that our proposed NMF-based network representation can successfully
discriminate between partners (stranger/mother). GL2Vec showed better performance for task prediction (baseline/task), although task prediction
generally appeared more challenging, particularly on the hold-out data. In addition to the network embeddings, the same analysis was performed

directly on the functional connectivity estimators. The results showed that prediction based on network representations generally outperformed
prediction based on functional connectivity, supporting the validity of using interbrain networks for the analysis of INS
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i. A repeated, stratified, nested k-fold cross-validation procedure

was applied based on graphs derived from the HbO signals (see

Section 2.6.3).

ii. In a true hold-out regime, the classifiers were trained on all HbO

graphs and tested on graphs derived from the HbR signals (see

Section 2.6.4).

First, we assessed whether the predictive models were able to dis-

criminate task conditions (baseline/task) in the two evaluation settings

(i, ii). For (i), GL2Vec and our network representation showed results

that were better than chance across all classifiers (Figure 4). However,

neither method was able to uphold its performance on the hold-out

set. GeoScattering was superior in regime (ii) but showed performance

below chance on (i) for the Gaussian process classifier. Prediction

based on the functional connectivity estimators did not reach the

level of chance for any classifier in both regimes (i) and (ii).

Second, we evaluated whether the graphs could be classified

based on the partner condition (stranger/mother). Consistent with the

partner effect evidenced by the BHM analysis (see Sections 3.1 and

3.3), most embeddings showed results better than chance. Generally,

the performance was higher for partner classification than for task

classification across all classifiers, with the exception of GL2Vec. Our

NMF-based approach outperformed all network embeddings as well

as the functional connectivity estimators across all classifiers in both

evaluation settings (i, ii). Again, GeoScattering reached competitive

results in regime (ii). Both GeoScattering and our approach showed

comparable performance between (i) and (ii). GL2Vec showed rela-

tively consistent performance better than chance in the cross-

validation regime (i) but exhibited poor generalization across data sets

(ii) (Figure S2B). A closer look at the recall of Graph2Vec, revealed that

it tended to assign a majority of graphs to the same class (Figure S2B).

Detailed results, including additional performance metrics, classifiers,

and parameters, can be found in the Figure S2 and Table S2.

4 | DISCUSSION

Extending the isolated view of a single brain by examining the statisti-

cal dependencies between interacting brains, may shed new light on

the neurobiological underpinnings of social interactions. While net-

work analysis is an established, state-of-the-art tool for investigating

brain connectivity, hyperscanning studies often analyze only the

pairwise relationships between the brain regions of one participant

and the brain regions of another. Moving beyond this pairwise analy-

sis, we here present the first comprehensive analytical framework for

inference and prediction based on bipartite interbrain networks.

4.1 | Bipartite graphs as a representation of
interbrain synchrony

In hyperscanning studies, INS is often calculated region-by-region

between homologous brain regions (e.g., Cui et al., 2012; Djalovski

et al., 2020; Reindl et al., 2018). However, this approach implicitly

assumes that synchrony arises primarily in homologous brain regions,

thereby neglecting the fact that each brain is organized and operates

as a complex network. Along these lines, mentalizing in more natural

social interactions may elicit activity in a broader network than the

activity elicited in response to static, isolated stimuli. This may be the

case either because this broader network may be characteristic of

how the brain processes real-world social stimuli or because multiple

processes are simultaneously engaged (Redcay & Moraczewski, 2020).

In the cooperative and competitive tasks, these processes may include

prediction and adaption processes, emotional process, social compari-

son processes but also processing of stimuli and shared attention to

the task (see also Kruppa et al., 2021; Reindl et al., 2018). Thus, infor-

mation processing in social interactions is complex and likely goes

beyond activity occurring in a single, circumscribed brain region, but

most likely engages multiple, interacting brain networks in both sub-

jects. Examining synchrony only in a pairwise, region-by-region fash-

ion may fall short of capturing this complexity. This general critique of

pairwise analyses is grounded in system theory, as such analyses

ignore the multiple dependencies among the entities of a system

(Goyal & Ferrara, 2018).

In addition to neuroscientific arguments for a graph-based

approach, there are also several methodological advantages. First,

research shows that interindividual differences exist in both the brain

structures and networks in which cognitive, emotional, and social pro-

cesses are substantiated (e.g., Kanai & Rees, 2011; Vanderwal

et al., 2017). These differences may be even more pronounced when

studying dyads of different age groups, such as adults and infants/

children, considering the ongoing maturation of brain structures and

development of functions in the latter group (see also Power

et al., 2010). Such inter-individual differences may obscure effects in a

pairwise (region-by-region) analysis. On top of such anatomical differ-

ences, uncertainties in channel localization may arise due to the spa-

tial resolution of the technique, as both fNIRS and EEG are inferior in

this respect to functional magnetic resonance imaging (fMRI).

Yet, it should be noted that the most appropriate choice of ana-

lytical method depends on the specific research question at hand. For

example, for a research question testing hypotheses on the pairwise

relationship between specific brain regions, it may be beneficial to cal-

culate a connectivity estimator between these (e.g., homologous)

brains regions. Since a more complete description of a complex sys-

tem may come at the expense of precision on entity level, accounting

for multiple dependencies across regions that are not of research

interest may not be advantageous. For other research questions

targeting multiple dependencies, inferential models that aim to mimic

the underlying biophysical processes might be beneficial, such as the

dynamic causal model (Bilek et al., 2022). Alternatively, other research

questions could favor avoiding such priors via the proposed graph-

based framework when focusing on global and local insights within

the cross-brain network.

To summarize, we propose to move away from a pairwise analysis

and towards a graph-based analytical approach when measuring INS

between interacting persons for the reasons described above, namely,

(i) the engagement of brain networks rather than single brain regions,

(ii) inter-individual anatomical differences, and (iii) uncertainties in
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localization. Yet, this system perspective comes with several analytical

challenges, such as how to identify and deal with spurious edges (see

Sections 2.3.3 and 3.1) and how to gain local insights into a network

(see Section 3.3).

4.2 | Nodal properties of interbrain networks

Investigating the properties of interbrain networks, we have shown

that the nodal density distribution is more heavy-tailed than the distri-

bution of random graphs with the same global density. Such skewed

distributions can be found on nearly all physiological and anatomical

levels of the brain as well as in many other networks—encountered in

fields ranging from biology to social sciences to infrastructure

(Broido & Clauset, 2019; Buzsáki & Mizuseki, 2014). Thus, these

results indicate that interbrain networks have properties similar to

those of many complex real-world networks and are significantly dif-

ferent from random graphs. Such high-density nodes may act as hubs

and play an important structural role in their respective network

topologies (see also Henderson et al., 2012; Rossi & Ahmed, 2014).

These findings have important practical implications for future

research. First, many classical frequentist tests require a Gaussian dis-

tribution and thus are ill suited for analyzing heavy-tailed distribu-

tions. Second, this study provides the first evidence that some nodes

have unproportionally high degrees, which implies that focusing on

global metrics alone is not sufficient to examine how brain activities

synchronize during social interactions. In contrast, a nodal analysis not

only may yield more topological details but could also reveal more

localized effects that would otherwise be obscured when considering

global metrics alone. Finally, these findings should be considered a

first starting point that raises new questions about the role of high-

density regions in interacting yet structurally unconnected brains. For

instance, future research may address whether and how high-density

nodes in inter- and intrabrain networks are related to each other.

4.3 | Inference based on interbrain networks

We have successfully demonstrated that interbrain networks can be

constructed in the form of bipartite graphs. Regarding the global den-

sity, our BHM results show that the density was higher for the two

interactive conditions in our study (cooperation/competition) than for

the noninteractive baseline condition. In line with our previous find-

ings in male children and adolescents (Kruppa et al., 2021), this indi-

cates that interbrain networks can encode interaction specific neural

processes distinct from those associated with a noninteractive, rest-

like state. Moreover, the mother–child dyads showed higher INS than

the stranger-child dyads. This was a general effect, observed across

the baseline and task conditions, suggesting that the brain responses

may be more in tune with each other due to genetic factors, the

dyad's affiliation or shared past experiences. This finding is consistent

with several other studies showing increased INS in close relation-

ships when performing joint motor tasks (Djalovski et al., 2020;

Kruppa et al., 2021; Pan et al., 2017; Reindl et al., 2018). For a more

detailed discussion of the task and partner effects, see (Reindl

et al., 2022).

Subsequently, a NMF was used to enable the comparison of

nodal properties. The NMF is applied in various domains and to

address a variety of problems, such as the detection of communities

or the clustering of neural connections (e.g., Goldstein et al., 2018).

One of its key advantages is its ability to extract sparse and meaning-

ful features. While there are nearly infinite possibilities to decompose

a matrix or picture, NMF allows to identify latent factors that can be

interpreted as “parts-of-whole”, such as eyes within a picture of a per-

son (Lee & Seung, 1999).

Analogously, here, we found that the NMF was able to decom-

pose the global density effect into subsets of nodes showing partic-

ular distinct result patterns. Specifically, we found cooperative and

competitive task effects in components 1 and 4, located mostly in

the left and right lateralized dorsolateral and frontopolar brain

regions of adult and child, as well as evidence for a partner effect in

components 3 and 4, located mostly in the left, right and medial

frontopolar brain regions of both partners as well as the right dor-

solateral brain regions of the adult (for further discussion of the

brain regions, see Reindl et al., 2022). Thus, the NMF results con-

firmed the global results but provided additional topological details

and thereby allow to interpret the brain regions which drive neural

synchrony. Importantly, we were able to show that our NMF based

method is not permutation biased and thus fulfills an essential

requirement for graph representations.

Since we applied an undirected connectivity estimator, the results

assume a bidirectional interaction between signals (Section 2.3.1). For

research inquiries addressing the directionality of INS, for example,

from adult to child or child to adult, we have described in Text S6 how

the NMF-based embedding can be adapted to encode-directed

graphs. Further, the current approach is based on a static graph. A

future extension to dynamic graphs could potentially gain additional

insights into the temporal unfolding of neural synchrony.

4.4 | Classification performance of network
embeddings

Next, we extended the application of the NMF-based method from

inference to prediction to answer the question of whether network

representations have the capacity to predict experimental conditions

on an individual level. Although all network representations achieved

a performance above the chance level for predicting the interaction

partner (stranger/mother), the NMF-based representation presented

here showed the best performance across both a rigorous cross-

validation regime and prediction on a second data set (HbR hold-out

set). In contrast to our NMF-based representation, graph embeddings

often rely on higher-order proximities, that is, similarities that can be

derived from complex operations on the adjacency matrix, at the cost

that they are difficult or impossible to interpret. This makes them suit-

able for predictive tasks but less so for inference tasks (Zhang
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et al., 2020). In contrast, a few embeddings, such as LDP (Cai &

Wang, 2018), exploit the possibility that nodes may play similar struc-

tural roles within the network. LDP is therefore most similar to our

approach but considers the structural role of a node by its degree,

whereas our NMF-based representation is based on nodal density,

which is less biased by excluded channels, and considers more com-

plex, additive patterns. LDP showed a ROC-AUC above chance level

and yielded somewhat competitive results compared to other embed-

dings but was consistently outperformed by our NMF-based

approach. This finding supports the concept of encoding the brain

regions' structural roles but shows that considering more complex,

additive patterns and a graph metric that is not biased by excluded

channels may be advantageous. Importantly, it was found that both

GeoScattering, a state-of-the-art graph embedding based on adjusted

wavelet transformation for graphs, and the NMF-based representa-

tion could be trained on one data set and successfully ported to

another data set, indicating reasonable generalization across diverse

settings. Such inhomogeneous data sets are likely to arise in neurosci-

ence due to different experimental designs, possible confounders or

reduced standardization in naturalistic settings. Consequently, to elu-

cidate the neural basis of social interaction, generalization across data

sets will probably be a challenging key factor for predictive

applications.

While partner classification showed promising results, task classi-

fication was challenging. GL2Vec showed the best performance and

reasonable behavior in terms of precision and recall in the cross-

validation setting (Figures 4 and S2A). Interestingly, GL2Vec, which is

based on a line graph (Evans & Lambiotte, 2009), achieved relatively

consistent performance above the chance level for cross-validation

but showed poor generalization across data sets. A line graph provides

an edge-centric representation because it maps the edges of the origi-

nal graph onto the nodes of the line graph. Recent studies

(e.g., Faskowitz et al., 2020) suggest that edge-centric approaches

may be advantageous in considering individual differences in brain

networks. Overall, the lower performance for task classification may

be explained by the class imbalance between the baseline

(nbaseline ¼64Þ and task (ntask ¼266Þ conditions. Very high and low

precision and recall values, respectively, indicate that especially

Graph2Vec but also our NMF-based approach might suffer from class

imbalance and, for some instances, classify the majority of graphs only

as task or only as baseline (Figure S2A). Although we have made some

effort to tackle the imbalance (Text S9), low performance may be

driven by the fact that not all dyads showed an increased INS during

task conditions.

A central finding from our analyses pertains to the general

capacities of network representations. Network representations

performed at least as well as or better than predictions based

directly on the functional connectivity estimators. These results

indicate that network representations of INS may carry further

information compared to the “pure” functional connectivity estima-

tors. Importantly, in contrast to the other embeddings, our NMF-

based approach not only yielded competitive results but also pre-

served interpretability.

4.5 | Limitations

Although the current study provides the first evidence that the pro-

posed graph analytical framework can be successfully applied to stud-

ies on interbrain connectivity, a number of caveats must be

considered. First, intrabrain relationships were not explicitly modeled

in the current study, a limitation that could be addressed by other

graph formulations. Second, the current reduction procedure enables

stratification for confounds but does not ensure a weakly connected

graph without isolated nodes, that is, nodes with no connection to

any node. Thus, it cannot be applied to network embeddings that

require all nodes to be connected. Third, while our results show that

network representations could potentially serve for predictive tasks in

hyperscanning, the baseline/task classification task in particular pre-

sents a challenge that will require further improvements, which are

beyond the scope of this article.

5 | CONCLUSION

Network models may contribute to a better understanding of the

neural underpinnings of social interaction, possibly providing a

more precise analytical operationalization of the concept of INS

than pairwise statistical dependencies. Based on bipartite graphs,

we have proposed a novel computational approach to capture the

dynamic interplay of brain regions that considers the multiple

dependencies across the brain regions of interacting persons. The

heavy-tailed characteristics of these interbrain networks, differing

from those of random graphs, as well as the replication of previous

findings regarding partner and task effects and the demonstrated

predictive power of interbrain network representations argue for

their validity. This framework comes with several advantages: (i) it

yields both global and nodal insights; (ii) through Bayesian model-

ing, it avoids the problems associated with multiple comparisons,

accounts for skewed distributions, and provides uncertainty esti-

mates; and (iii) it is applicable for both inference and prediction

tasks while providing interpretable insights. Thus, the proposed

framework has potentially far-reaching implications, as it enables

the exploration of the specific brain regions in a network that seed

neural synchrony between interacting persons—an approach that

could also be applied for the topological analysis of intrabrain net-

works. Above and beyond inferential inquiries, our results are the

first to demonstrate that network embeddings could provide an

informative representation of interpersonal synchrony and may

thereby stimulate further research into prediction based on graph-

structured data.
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