
Another consideration in dosing this TTDN is the achieved
physiological effect. Although this trial protocol used a standard
predetermined target electrical output from the pacing device for all
patients, the degree of phrenic nerve stimulation, and thereby the
potential to increase force of diaphragm contraction, also depends on
the relative stimulation threshold. This is impacted by the distance
between the selected electrode and the nerve, in addition to the
resistance posed by the tissues, both of which may vary significantly
between individuals. Comparing and standardizing dosing is
therefore difficult based on TTDN settings alone without assessment
of the effect on individual patient mechanics.

In summary, diaphragm dysfunction is a common and clinically
important problem in need of a solution. TTDN appears safe and
largely feasible and has shown a physiological signal of benefit in this
latest study. Despite this, there is further work to be done to establish
the optimal treatment dosing, timing of initiation, and target
population.We look forward to following further developments in
this field.�
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How Differential Are the Effects of Smoking Cannabis versus
Tobacco on Lung Function?

Cannabis use has increased in recent years with the decriminalization
of its production andmedicinal or recreational use. Because of the

similarity in smoke contents between cannabis and tobacco (1), there
is a nagging concern that smoking cannabis might have deleterious
effects on lung function, similar to the well-known consequences of
tobacco smoking. However, the relatively sparse literature involving
systematic examinations of the impact of cannabis use on lung
function suggests little independent effect of cannabis on FEV1 (2–9)
and an actual increase in FVC and other measures of lung volume
(7–9). These results are in contrast to the clearly detrimental effect of
tobacco on FEV1 with little or no effect on FVC in otherwise healthy
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individuals. Studies of the relationship between cannabis and small
airway function have beenmixed, one showing no effect onmultiple
measures of peripheral airways function (3) and another showing a
decrease in maximal mid-expiratory flow (forced expiratory flow
[FEF]25–75%) (2). Moreover, the few studies that have examined the
effect of cannabis on specific airway conductance (sGaw) have
uniformly demonstrated a modest decrease (3–7), implying a
detrimental effect on central airways of uncertain clinical
significance, but consistent with histologic evidence of pathology
similar to that found in tobacco smokers in bronchial biopsies (10).
The few reported longitudinal studies of the effect of cannabis on
lung function have yielded mixed results, some not showing any
impact on lung function decline (7, 11) and others suggesting an
acceleration in the trajectory of FEV1 decline compared with control
nonusers over periods of several to 20 years (12, 13), although the
latter effects were mainly confined to those with heavy lifetime use
of cannabis (20 or more joint-years, i.e., number of joints/day times
number of years cannabis was regularly smoked). It is also
noteworthy that most published studies to date have mainly
included young adults despite recognition that the deleterious effects
of tobacco on lung function may not become detectable until later in
life. In view of the latter issue and the mixed results in the literature,
the study of the effects of cannabis on lung function in mid–adult
life reported by Hancox and colleagues in this issue of the Journal
(pp. 1179–1185) is of particular interest (14).

Hancox and colleagues report the results of an extensive battery
of lung function measurements at age 45 years in the Dunedin
(New Zealand) cohort they have followed since birth with a principal
focus on the relationship between self-reported cannabis use
(adjusted for concomitant tobacco use) and pulmonary function. The
importance of this cohort study is accentuated by the fact that most
studies of the impact of cannabis use on lung health have been largely
limited to younger users. Among 45-year-old participants in the
current study, findings in association with cannabis use, adjusted for
sex, height, weight, and tobacco use in pack-years, are largely similar
to those reported previously in the same birth cohort at age 32: higher
FVC (or trend thereto), normal FEV1 but lower FEV1/FVC
(attributable to the trend toward an increased FVC), higher TLC,
FRC, residual volume and VA, and lower sGaw (7).

A major exception was a significantly lower FEF25–75 at age
45 (n=881) that was not reported in the same cohort at age
32 (n=919). This finding accords with the significantly reduced
maximal expiratory flow rates at 50% and 75% of forced expired
volume reported in association with cannabis in an earlier
population-based study (2) but conflicts with the findings of no
significant effect of cannabis use on several measures of peripheral
airways function in a convenience sample of heavy habitual smokers
(3). However, because participants in these latter studies were mainly
younger adults, the effect of cannabis smoking on lung function in
older individuals could not be adequately assessed.

The finding of a significantly reduced FEF25–75 in independent
association with cannabis in the present study (14) suggests that the
differential effects between tobacco and cannabis smokingmight be
confinedmainly to the disparate effects on FVC, whichmight be
attributable not to any intrinsic effect of cannabis smoke but rather to
the unique smoking topography characteristic of cannabis smokers,
who usually take deeper inhalations with a much longer breath-
holding time and larger inspiratory volume compared with the typical
profile of tobacco smoking (15). The characteristic smoking profile of

cannabis smokers appears to be analogous to the deep inhalations and
long breath-holds of competitive swimmers, who have been shown to
have higher than normal lung volumes (16). In addition to the effect
on FEF25–75, another similarity between the effects of cannabis and
those of tobacco on lung function is the qualitatively similar effects on
sGaw, as shown in the current and previous studies (3, 6, 7).

An important finding in the current study is a significantly lower
transfer capacity of the lung for the uptake of carbon monoxide
(TLCO) and TLCO/VA in cannabis smokers among current or
ex-tobacco smokers with adjustment for tobacco pack-years.
Nevertheless, the TLCO was not reduced in approximately half of the
cohort who never smoked tobacco, possibly implying an additive
effect of cannabis and tobacco on this outcome. However, if cannabis
were indeed associated with a reduced DLCO in mid–adult life, it
would be another example of a qualitative similarity to a tobacco
effect. A reduced DLCO could imply a possible relationship to early
emphysema, although no independent relationship of self-reported
cannabis use to macroscopic emphysema on thoracic computed
tomographyscans has been found (6, 17). On the other hand, several
case series have reported an association of cannabis with bullous lung
disease (18). Clearly, further studies are needed to confirm the
relationship between cannabis and diffusion impairment and
examine its clinical implications.

It is further noteworthy that cannabis smokers in the current
study were mostly light smokers (fewer than 5 joint-years), consistent
with the general observation that cannabis is usually smoked in a
much lower quantity compared with tobacco. Because a significant
impact of cannabis on FEV1 has been found previously, mostly in
heavy smokers of 20 or more joint-years (9, 12, 13), future studies
should include larger numbers of heavy cannabis smokers with lung
function assessed at later stages of life.�
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Mesenchymal Stromal Cell Extracellular Vesicles: A New Approach
for Preventing Bronchopulmonary Dysplasia?

Bronchopulmonary dysplasia (BPD) is the most common
complication of prematurity, affecting about one-third of infants born
less than 1.5 kg and less than 29 weeks gestational age (1). BPD is
characterized by abnormal bronchial and bronchiolar mucosal
metaplasia and hyperplasia, decreased number of alveoli, and
abnormal vascular organization, leading to a chronic disease that
affects the lung parenchyma, pulmonary circulation, and brain
development.

Lung formation begins between weeks 3 and 6 of gestation, but
the maturation of peripheral lung saccules into mature alveoli does
not occur until the last trimester (28–40 wk). Thus, preterm infants
are often forced to breathe at a time before alveolar differentiation
and vascularization are complete. Lacking sufficient respiratory
capacity, many premature infants are subjected to recurrent lung
injury from the high concentrations of supplemental oxygen and
mechanical ventilation that are needed to keep them alive. Although
most infants with BDP survive, the majority are left with a chronic
lung disease characterized by decreased alveolarization, cystic
emphysema, fibrosis, and pulmonary vascular remodeling (2).
Pulmonary hypertension develops in nearly 60% of severe BPD

infants by Day 7, and its presence beyond 3months is associated with
mortality rates of 40–50% (3). Neurocognitive development is also
impaired in BPD, likely due to prematurity, hypoxia, and systemic
inflammation, leading to a greater frequency of cerebral palsy,
intellectual disability, and reduced intelligence quotient scores
in very-low birth weight infants who develop BPD than in those who
do not (4).

Inflammation induced by pneumonia, systemic nosocomial
infection, and barotrauma plays a major pathogenic role.
Concentrations of neutrophils and macrophages that produce
proteases, reactive oxygen species, and inflammatory cytokines,
including IL-1b, IL-6, and IL-8, are elevated in tracheal aspirates of
BPD infants (5). Interestingly, infants with respiratory distress
syndrome who progress to BPD exhibit persistently elevated
concentrations of inflammatory cells and cytokines, whereas those
who do not develop BPD show a marked decrease within the first 1–2
weeks (5).

Despite major advances in perinatal care, no specific therapies
for BPD have been found to be effective, and treatment is directed at
minimizing further lung damage and supporting normal lung
development. Advancing treatment of BPD will require therapies that
combat both the arrested development and persistent inflammation
that occurs. One such approach has been the use of mesenchymal
stem cells (MSCs). These pluripotent cells typically transform into
osteoblasts, adipocytes, and chondroblasts in vitro. However, their
limited ability to differentiate into nonmesodermal cells in vivo
challenges their identity as true stem cells; thus, the more current
term is mesenchymal stromal cells. MSCs have been shown to
differentiate into surfactant-producing epithelial cells both in vitro
and after injection into live animals (6). In addition to their
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