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Abstract

Background: Multi-model ensembles could overcome challenges resulting from uncertainties in models’ initial
conditions, parameterization and structural imperfections. They could also quantify in a probabilistic way
uncertainties in future climatic conditions and their impacts.

Methods: A four-malaria-model ensemble was implemented to assess the impact of long-term changes in climatic
conditions on Plasmodium falciparum malaria morbidity observed in Kericho, in the highlands of Western Kenya,
over the period 1979–2009. Input data included quality controlled temperature and rainfall records gathered at a
nearby weather station over the historical periods 1979–2009 and 1980–2009, respectively. Simulations included
models’ sensitivities to changes in sets of parameters and analysis of non-linear changes in the mean duration of
host’s infectivity to vectors due to increased resistance to anti-malarial drugs.

Results: The ensemble explained from 32 to 38% of the variance of the observed P. falciparum malaria incidence.
Obtained R2-values were above the results achieved with individual model simulation outputs. Up to 18.6% of the
variance of malaria incidence could be attributed to the +0.19 to +0.25°C per decade significant long-term linear
trend in near-surface air temperatures. On top of this 18.6%, at least 6% of the variance of malaria incidence could
be related to the increased resistance to anti-malarial drugs. Ensemble simulations also suggest that climatic
conditions have likely been less favourable to malaria transmission in Kericho in recent years.

Conclusions: Long-term changes in climatic conditions and non-linear changes in the mean duration of host’s
infectivity are synergistically driving the increasing incidence of P. falciparum malaria in the Kenyan highlands.
User-friendly, online-downloadable, open source mathematical tools, such as the one presented here, could
improve decision-making processes of local and regional health authorities.
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Background
Process-based models have played a significant role in
understanding the complexity of malaria transmission
dynamics since the discovery of the malaria transmission
pathway at the turn of the 19th century [1]. Sir Ronald
Ross, while working at the Indian Medical Service in the
1890′s, demonstrated the life cycle of malaria parasites
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in Anopheles mosquitoes, and was one among the first
to publish a series of papers using mathematical func-
tions to study malaria transmission. He developed a sim-
ple model which explained the relationship between the
number of mosquitoes and malaria incidence in human
populations, and used it to arrive at important practical
conclusions such as that, “…to counteract malaria any-
where we need not banish Anopheles there entirely…we
need only to reduce their numbers below a certain
figure.” [2] Sir Ronald Ross was also able to conclude
from his modeling efforts that control programmes that
integrated vector reduction (larvicides), drug treatment
(quinine), and personal protection (bed nets) were much
more likely to succeed than efforts that relied on just
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one intervention measure [2]. From a malaria policy per-
spective, the value of a model-based analysis of malaria
transmission dependent outcomes is in the opportunity
to systematically examine drivers surrounding these out-
comes and their relevance to the ultimate decision being
addressed.
While malaria transmission models of varying com-

plexity have been developed over the years in response
to specific needs, the basic principle of parsimony is key
to model development. This principle states that
among competing hypotheses, the one with the fewest
assumptions should be selected. Other, more compli-
cated solutions may ultimately prove correct, but—in
the absence of certainty—the fewer assumptions that
are made, the better. However, recent advances in the
theory of mosquito-borne pathogen transmission seeks
to better understand uncertainty in the traditional mal-
aria modelling framework by realistically acknowledg-
ing spatial heterogeneity of transmission in complex
epidemiological landscapes [3]. Another important ap-
proach to reducing uncertainty in model results is im-
provements in the quality and quantity of appropriate
data used to both drive and test the model outputs.
Access to quality controlled high spatial and temporal
meteorological station data has been a particular chal-
lenge in Africa where observing stations are less than
an 1/8 of the number recommended by the World
Meteorological Office [4]. After identifying the most
appropriate model(s) with least assumptions and using
the best available data, two other sources of uncer-
tainty must be taken into account. These are the start-
ing conditions used to initialize the model and the
specific parameterization of the model itself. For ex-
ample, the seasonal evolution of malaria cases as de-
scribed by a time dependant process-based model is
dependent on the initial state of the gametocyte carrier
rate at time t = 0. Since a perfect assessment of the
gametocyte carrier rate in the population is not possible
then an estimation of the most likely rate is needed to
initialize the model. Choices made in model structure are
also significant sources of model uncertainty.
The climate forecasting community has used multi-

model ensembles to overcome challenges resulting from
initial conditions and parameter and structural uncer-
tainties in model design [5]. Ensemble approaches have
been used to quantify uncertainty in future (e.g. sea-
sonal) climate and its impacts (e.g. on malaria incidence)
in a probabilistic way [6]. In this analysis disease model
outputs represent a probability distribution of disease
risk. In years and regions where the probability distribution
is broad there will be little predictability in the system.
However, where there is a sharp probability distribution,
predictability will be stronger and information may be used
by decision-makers for taking precautionary action. The
main advantage of using a probabilistic system is that users
should not be misled by overconfident erroneous forecasts
in situations where predictability is small [7]. Building on
the experiences of the climate forecasters, this paper de-
scribes recent advances in the effort to implement a
multi-malaria-model ensemble framework and to test the
validity of this approach using retrospective malaria and
climate data obtained from Kericho, in the western high-
lands of Kenya.
Kenya’s western highlands have long been at the centre

of debate over whether or not global climate change has
played a significant role in the post 1980′s re-emergence
and increasing incidence of Plasmodium falciparum
malaria [8-18]. Attention has been given to reported out-
breaks in, for instance, the Kisii District of Nyanza Province
and the adjacent tea plantations in Kericho. Inpatient and
outpatient data from these sites suggest that malaria pat-
terns over the period 1980–2000 were characterized by in-
creased incidence, expanded geographic areas and higher
case-fatality rates [10]. Malaria-positive cases in Kericho
have, however, recently declined and returned to moderate
levels since 2005 [17], and such marked decline has been
observed across many localities in East Africa [19]. As
widely discussed in the scientific literature, changes in local
climatic conditions are not the only external factor
driving the observed changes in malaria epidemics [9].
Anti-malarial drug resistance [20-23], economy-driven,
two-way mobility from/to endemic-prone lowlands [24],
changes in mosquito populations [25], and to a lesser
extent, depletion of regional health services [26], have
also played a critical role in long-term changes in mal-
aria morbidity. All these environmental, socio-economic
and behavioural factors need to be considered together
[27-30] in order to understand the general epidemiology
of the disease and the timing and severity of P. falciparum
malaria epidemics.
Here a multi-malaria-model ensemble framework, which

comprises four well-known process-based malaria models,
is implemented to assess temporal changes in malaria mor-
bidity profiles in Kericho, in the highlands of Western
Kenya. Simulations are focused on the role that long-term
changes in climatic conditions (temperature and rainfall)
play in driving malaria incidence, but can be expanded to
the analysis of changes in non-climatic factors once related
information becomes available. The potential advantages of
a multi-model approach in helping decision-makers to bet-
ter understand the impact of exogenous drivers of malaria
risk are therefore described.

Methods
Study site
Analyses are focused on Tea Plantation 1 in Kericho district
(1,200-3,000 m above sea level), a region of economic and
political importance given its agricultural activities [23].
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Kericho provides a good scenario for modelling the timing
and severity of P. falciparum malaria outbreaks and the po-
tential impact of changes in climatic conditions on malaria
morbidity profiles. Two tea plantations in Kericho, each
consisting of 18 estates, employ in average 18,000-18,500
workers whose families comprise three to four dependents
each [24]. Assuming that the number of individuals has
been stable over the past decades [31], the total population
at risk in Plantation 1 can be assumed to reach about
27,000 individuals. Simulations presented here complement
previous experiments for the Kisii District Hospital of Kisii
municipality [29].

Data
Data included weather station records and P. falciparum
malaria positive cases. Quality controlled daily records
of maximum temperatures, minimum temperatures and
rainfall totals, gathered at Kericho meteorological station
[18], located at 33°21′E and 0°21.6′S in the Kenyan high-
lands, were processed. Temperature records are available
for the period spanning 1 January, 1979 to 31 December,
2009. Rainfall time series are available for the period
spanning 1 January, 1980 to 31 December, 2009. Monthly
malaria-positive cases from inpatient admission registers in
Tea Plantation 1 in Kericho, spanning the period January,
1970 to October, 2004, were obtained from Figures four
and six in [23], see Figure 1(A).

Process-based models
In the multi-malaria-model ensemble proposed for this
set of simulations only four mathematical tools were
considered: the models proposed by Ross-Macdonald
[32,33], Anderson and May [34], Worrall et al. [35], and
Alonso et al. [36]. These four process-based models
exemplify the ample spectrum of malaria modelling ap-
proaches: from a tool with a single dynamical, discrete
equation to a process-based model with a system of
11 coupled ordinary differential equations. The Ross-
Macdonald’s model (MAC model) is based upon a sys-
tem of two coupled ordinary differential equations,
whose dynamical variables represent the proportion of
people affected and the (implicit) counterpart in the
vector population. These proportions do not distin-
guish between infected and infectious stages. Anderson
and May extended the Ross-Macdonald’s model by
considering the proportions of exposed individuals and
exposed mosquitoes, and by including the latency of
infection in human hosts and mosquito vectors. The
herein-called AM model is thus based on a system of
four coupled ordinary differential equations with time
lags. Worral et al. developed, in turn, a single discrete-
equation, temperature- and rainfall-driven process-
based model (WCT) to predict malaria epidemics in
areas where brief seasonal transmission and occasional
epidemics do not enable acquired immunity, and to
examine the impact of indoor residual spraying on
malaria transmission intensity. The WCT tool is com-
posed of six submodels, which calculate the number of
adult female mosquitoes feeding on human hosts, the
length of the gonotrophic and sporogonic cycles, the
vector survivorship in sprayed and unsprayed popula-
tions, the sporozoite rate, and the total number of new
infections, superinfections and recoveries within the
human population. Lastly, Alonso et al. developed a
coupled mosquito-human model, herein called the
ABP model, based upon a system of 11 coupled ordinary
differential equations. In the human host component, level
variables represent the susceptible non-infected human
hosts, the infected but non-infectious individuals, the in-
fected individuals who acquire asymptomatic infection but
are nevertheless infectious and can transmit malaria para-
sites to mosquito vectors, the recovered individuals or those
human hosts who have cleared parasitaemia, and the in-
fected individuals who present symptoms and therefore re-
ceive some sort of clinical treatment. In the mosquito
population, level variables depict the number of larvae, the
larvae carrying capacity, and the total number of suscep-
tible non-infected mosquitoes, infected non-infectious mos-
quitoes, and infectious mosquitoes. A full description of all
these process-based models is presented in the Additional
file 1. Their community-based, Plasmodium parasites, hu-
man host, Anopheles mosquito population and environ-
mental parameters and exogenous variables (see Tables 1
and 2) were initially gathered from published literature.
The following three endogenous variables of the

MAC model were modified to include climate covari-
ates: a, represented as a function of Te following the
regression between the inverse of the average gono-
trophic cycle and the daily ambient temperature [36];
the anopheline density in relation to man (m), repre-
sented as a linear function of μ and the monthly rain-
fall [35]; and p, represented as a function of U, which
in turn is dependent on the daily ambient temperature.
Besides the three endogenous variables modified in the
MAC model, the following two variables were changed
in the AM model: n, represented as a function of the
daily ambient temperature; and WN, represented as a
function of time. The following four endogenous vari-
ables of the WCT model include climate covariates:
the number of mosquitoes emerging each month (q),
represented as a linear function of μ and the monthly
rainfall; p, as a function of U; n, represented as a func-
tion of the daily ambient temperature; and a, repre-
sented as a function of the human blood index (h) and
U. Lastly, the following five endogenous variables of
the ABP model include climate covariates: a, repre-
sented as a function of Te; the larval mortality rate (δL),
as a function of the temperature-dependent larval
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Figure 1 Plasmodium falciparum malaria and climate in Kericho District, Kenyan highlands. (A) Historical monthly malaria positive cases
observed in Tea Plantation 1 over the period spanning January, 1970 to October, 2004. (B) and (C) Annual cycles of rainfall (grey bars in panel B),
minimum temperature (grey bars in panel C), and maximum temperature (black solid line in panel C) observed over the period 1979–2009. Error
bars depict the confidence intervals for a 0.05 significance level. The total annual rainfall amount and its confidence interval for a 95% confidence
level are presented on the top left hand side of panel B. The average minimum and maximum annual temperatures and their confidence intervals are
presented on the bottom left-hand side and bottom right-hand side of panel C. See also the P. falciparummalaria incidence (black solid line in panel B),
based on the historical monthly malaria positive cases (presented in panel A).
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mortality (δL(T)) and the rainfall-dependent increase in
mortality due to heavy rain (δL(P)); the larval develop-
ment rate (dL), as a function of the daily ambient
temperature; the average lifetime of mosquitoes, (〈λ〉),
represented as a function of the daily ambient temperature;
and the per-capita rate at which new infectious mos-
quitoes arise (γP), dependent on the daily ambient
temperature.

Set of simulations
Simulations proposed here included six series of experi-
ments, which were run using the user-friendly, online-
downloadable, open source computer software Scilab®
5.3. Codes developed for the analyses are available upon
request. Experiments were designed to: 1) compare
Scilab® 5.3 simulation outputs with analytical solutions;
2) perform simulation runs for changes in initial condi-
tions and for seasonal variations in climatic variables; 3)
simulate actual climatic conditions and assess the role of
climate long-term trends, inter-annual dependency and
seasonality in malaria incidence; 4) assess models’ sensi-
tivities to changes in sets of parameters; 5) incorporate
uncertainty in the predictability of malaria outbreaks;
and 6) analyse the potential impact of anti-malarial drug
resistance on morbidity profiles. A brief description of
each of these experiments is presented below.



Table 1 Parameters and exogenous variables – community-based, malaria parasite and human host

Component Parameter/exogenous variable Process-based model Note
%

MAC AM WCT ABP

Community-
based

Total human population at risk d d d N 1

Human natural birth B =
δH*N

Human natural
mortality rate

Assuming a given average lifetime μ1 1

Individual losses due to mortality or more generally,
population turnover

δH 1

Proportion of total population at risk covered with IRS program campaign C 1

Proportion of positive cases actually reported to health facilities λ 1

Malaria
parasite

Parasite species P. falciparum –

Sporogony/malaria parasites incubation period n n = fN/(T + l-
gN)

n = fN/(T + l*(U-υ)/
U-gN)

γP = f
(T)&

–

Number of degree-days needed to complete parasite development fN fN 1

Temperature threshold below which parasite development ceases gN gN 1

Latency of infection in mosquito vectors tm 2

Human host Reciprocal of the average duration of the “affected state” r = 1/(HD +
WN)

r = 1/[HD +
wn(t)]

–

Average time in the exposed phase 1/γ 2

Host delay for infectivity; length of the interval between infection/sporozoite
inoculation and the onset of infectivity/gametocyte maturation (HD) or latency
of infection (th)

HD th 2

External force of infection βe 2

Probability that an infectious bite results in infection b 1

Host window for immunity; duration of a host’s infectivity to vectors,
from the first to the final present of infective gametocytes

WN wn(t) 2

Loss of immunity basal rate σ0 2

Human recovery Assuming a given mean duration of infectivity r 2

C to S clearance rate ρ 1

Fraction of infections in humans that fully develops severe malaria
symptoms and then receive clinical treatment

ξ 2

Factor that decreases the per-capita transmission rate when asymptomatic but infectious
individuals -I- can present a relapse of severe malaria symptoms if they are bitten again

η 2

I to R recovery basal rate r0 2

C to I recovery rate ν 2

& See [36]; % 1: chosen from literature and fixed constant, and 2: chosen from literature and fitted.
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Table 2 Parameters and exogenous variables Anopheles mosquito population and environment

Component Parameter/exogenous variable Process-based model Note
%

MAC AM WCT ABP

Mosquito
population

Vector natality: rainfall-to-mosquitoes constant (μ), mosquito fecundity factor (F),
and number of eggs per oviposition event (n)

μ μ μ F, n 2

Vector survivorship: daily survival probability (p) p = α^(1/U) p = α^(1/U) p = [α*(1-C)
+ α*β*C]^(1/U)

〈λ〉 = f(T)&

Probability of surviving each gonotrophic cycle in an unsprayed population
(not covered by the IRS campaign)

α α α 1

Reduction in α in the population covered by the spray programme immediately after spraying β 1

Gonotrophic cycle U = υ + (fU/(T +
l-gU))

U = υ + (fU/(T +
l-gU))

U = υ + (fU/(T + l-
gU))

Total number of degree days needed to complete development of the ovaries fu fu fu 1

Minimum temperature needed to complete development of ovaries gu gu gu 1

Length of a part of gonotrophic cycle to find a water body and a new human host υ υ υ 1

Vector feeding a = 0.091678*Te-
1.7982

a = 0.091678*Te-
1.7982

a = h/U a = 0.091678*Te-
1.7982

Human blood index (proportion of mosquitoes feeding on humans) h 1

Mortality rate Assuming a given average lifespan μ2 1

Larvae mortality caused by temperature- or rain-independent processes,
such as predation

δ0 2

Per-capita larvae death rate -inverse of the larval average life time- at tem-
peratures of 14, 16, 18, and 20°C

δL(14), δL(16), δL
(18), δL(20)

1

Death factor introduced to represent the washout effect for the larvae δR 2

Vector infectivity: probability of becoming infected per infectious meal (k), probability of
becoming infectious with malaria parasites (v)

k and v 1

Proportion of Anopheles mosquitoes with sporozoites in their salivary glands which are actually
infective

b b 1

Vector susceptibility or human host-to-mosquito probability of transmission c c 1

Environment Daily effective temperature Te = T + (1-xp)*l Te = T + (1-xp)*l Te = T + (1-xp)*ΔT

Daily ambient temperature T T T T

Temperature weighting parameter xp xp – xp 1

Difference between indoor and outdoor temperatures (l) or maximum allowed difference
between the maximum temperature adult mosquitoes can experience and outdoor
temperature (ΔT)

l l l ΔT 1

Daily/monthly rainfall P P P P and 〈P〉12& –

Larvae carrying
capacity

Conversion factor kA 2

Loss rate kE 2

& See [36]; % 1: chosen from literature and fixed constant, and 2: chosen from literature and fitted.
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The first set of experiments included comparisons of
simulation outputs with the results of the analytical
study of equilibrium points, time to reach equilibria and
time steps of the MAC and WCT models. Parameters of
these two models were fixed to representative values and
full certainty in their values was initially assumed.
The second set of simulations included models’ sensi-

tivities to changes in initial conditions and simulation
outputs for constant climatic conditions. As in the ana-
lysis of stability conditions, parameters of the four-
malaria-model ensemble were fixed to fully certain rep-
resentative values. Changes in equilibrium points and
time to reach equilibria were assessed for at least five
different initial proportions of infected or infectious in-
dividuals. Constant mean annual temperatures and total
annual rainfall amounts, as well as historical annual cy-
cles of mean temperature and rainfall were used to
characterize local epidemiological conditions. Simulated
annual cycles of malaria prevalence (once models reach
their equilibria) were then compared to the historical an-
nual cycle of P. falciparum malaria incidence.
The third set of experiments comprised simulations of

actual climatic conditions over the retrospective period
spanning January, 1979 to October, 2004, when the mal-
aria data end. Some parameters of the four-malaria-
model ensemble, which were initially set to fully certain
values, were then modified to several values within a
sensible range reported in the literature. In the MAC
model, HD, WN and m were fitted using the full retro-
spective period January, 1979 to October, 2004. In the
AM model, the following parameter values were fitted:
th, WN, m, and tm. In the WCT model, the following
parameter values were modified within their reported
range and later fitted: r and m. Lastly, in the ABP model
the following parameters were included in this analysis:
1/g, be, s0, x, h, r0, n, F, d0, dR, kA, and kE.
Simulation outputs were compared through several

statistical parameters such as the correlation coefficient
(R-value) between simulated malaria cases and actual
positive cases, the percentage of the variance of the ac-
tual malaria morbidity that is explained by simulation
outputs (R2-value), the slope of the regression of simu-
lated cases on actual cases, and the mean square and
mean absolute errors. Comparisons also included a func-
tion of likelihood that is based on the probability of
observing Io cases given the deterministic prediction I, as
discussed in [36]. Best set of parameters were those
yielding ‘comparable predictions of actual malaria posi-
tive cases’ [36]. The ‘most likely’ models were then
implemented to assess the impacts of changes in cli-
matic conditions on P. falciparum malaria transmission
dynamics in the highlands under study. The ensemble
was run with and without long-term climatic trends,
inter-annual dependency and historical seasonality, in
order to address how much of a change in the size of
epidemics could be attributed to changes in climatic
conditions.
The third set of experiments also included multi-model

simulations to the end of the Kericho temperature and
rainfall data (i e, retrospective period spanning January,
1979 to December, 2009), in order to understand whether
or not climatic conditions have been less favourable to mal-
aria transmission in recent years. A full certainty in the
‘most likely’ set of parameters was also assumed in these
simulation runs.
The fourth set of simulations included models’ sensitiv-

ities to changes in sets of parameters. In order to assess the
impacts of changes in exogenous variables on simulation
outputs of the proposed process-based models, the follow-
ing discrete gradient was used to measure the models’ re-
sponse to slight variations in the values of their best set of
parameters, x = ( x1, x2,⋯, xi, xi+ 1,⋯, xn):

Si ¼
F x1;x2;⋯;xiþΔ xi;xiþ1;⋯;xnð Þ−F x1;x2;⋯;xi;xiþ1;⋯;xnð Þ

F x1;x2;⋯;xi;xiþ1;⋯;xnð Þ
Δxi
xi

;

where F ( x1, x2,⋯, xi, xi + 1,⋯, xn) denotes the simula-
tion outputs function for all the parameters. Also, the
Sobol Index was used to assess the sensitivity of a given
model to slight changes in its set of parameters. For the
WCT model, for instance, m, the proportion of mosqui-
toes feeding on humans (h), l, a, k, v, u, r, fu, gu, fN, gN,
and the proportion of humans that are infectious (x)
were all included in the analysis of WCT sensitivity.
The fifth set of simulations explored the role of uncer-

tainty in the predictability of malaria outbreaks. Numer-
ical simulations generated distributions of monthly cases
or P. falciparum malaria prevalence by taking into ac-
count uncertainty in parameter values (i e, introducing
parameter ranges in simulation runs). Twenty-five, 50
and 95% percentiles of the distributions of simulated
primary cases or malaria prevalence were plotted for
each month and compared to actual positive cases or P.
falciparum malaria incidence. Simulations also included
time lags of zero, one and two months.
The sixth and last set of simulations focused on the

analysis of non-linear changes in the mean duration of
host’s infectivity to vectors, from the first to the final
present of infective gametocytes, due to increased resist-
ance to anti-malarial drugs [20,37] and the influence of
higher transmission on its spread [38]. Although chloro-
quine resistance was first reported in Kenya in the late
1970s [39], only by 1996 were clear signs of increased
resistance reported in Kericho [20]. The recovery rate
was thus set to reflect high sensitivity of malaria parasites
to chloroquine in the mid-1980s, and low to moderate
sensitivity by the mid- to late-1990s. The proposed non-
linear fashion allows representing that approximately half
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of clinical infections did not clear thoroughly by the end of
the available historical period [20]. A single simulation run
was compared with the 25, 50 and 95% percentiles of the
distributions of monthly P. falciparum malaria prevalence
suggested by the multi-malaria-model ensemble for time
lags with the highest R2-values.
Analysis of climate data
Annual cycles of observed rainfall and minimum and
maximum temperatures were calculated and compared
with the annual cycle of P. falciparum malaria inci-
dence. Annual values of several climatic variables were
then computed. Climate variables included the diurnal
temperature range, which has been suggested to be
important in the analysis of malaria transmission dynamics
[14]. Total December-January-February, March-April-May,
June-July-August, and September-October-November rain-
fall amounts, dry days and maximum dry spells were also
processed to support the analyses. A total number of 24
climatic variables were analysed: 12 for rainfall, four for
minimum temperature, four for maximum temperature,
and four for the diurnal temperature range.
Long-term linear trends in observed and simulated an-

nual time series were identified using simple regression
analysis, and trend magnitudes were calculated by the
method of least squares. Upper and lower confidence
limits were also computed for the simple linear regres-
sion models. Confirmatory analyses were implemented
to assess the statistical significance of the observed
trends. Four hypothesis tests: the Student’s t-test, the
Hotelling-Pabst test, the non-parametric Mann-Kendall
test [40], and the aligned rank Sen’s t-test [41], were all
used to assess the null hypothesis of statistically signifi-
cant (at a α = 0.05) linear trends in annual time series.
Serially independent yearly time series were assumed
when implementing the non-parametric Mann-Kendall
test. A historical time series was considered to have a
statistically significant trend at a α = 0.05 significance
level when at least three of the implemented hypothesis
tests accepted the null hypothesis of a trend in the
mean.
Wavelet analysis [42,43] was conducted to assess the

dominant periodic signals in observed monthly time series
of minimum temperature, maximum temperature and total
rainfall. Monthly one-dimensional series were decomposed
into two-dimensional time-frequency space using wavelet
plots. Seasonality, interannual variability associated with the
El Niño-Southern Oscillation (ENSO), and longer interde-
cadal fluctuations were studied in global wavelet plots.
Long-term linear trends and dominant periodic signals
were then removed from historical time series to compare,
in anomalies plots, actual malaria morbidity profiles with
simulated malaria incidence.
Results
Climate and malaria
Rainfall amounts observed in Kericho over the period
1979–2009 exhibit a seasonal cycle that fits the long rains
and short rains climatology expected for Western Kenya,
see Figure 1(B). The highest peak commonly occurs during
the months of April and May, whose monthly values reach
about 250–260 mm. A dry season usually takes place dur-
ing the quarter December-January-February with rainfall
amounts ranging from 90 to 115 mm/month. Minimum
temperatures exhibit a bimodal annual cycle with peaks of
11.6°C and 11.1°C occurring during the months of April
and November, respectively, and historical low values of
about 10.6°C usually taking place in September, see Figure 1
(C). Maximum temperatures show an annual cycle with a
peak in February of about 26.2°C and a minimum value of
22°C in July, see Figure 1(C). Mean temperatures exhibit, in
turn, a seasonal distribution with a peak in the months of
February and March of about 18.5°C and a minimum value
in July of 16.7°C. The dominant periodic signals in the
historical monthly time series of rainfall are six months,
12 months and 32 to 64 months; the remaining signals are
beyond the cone of influence in the global wavelet power
spectra. The dominant signals in the historical monthly
time series of minimum and maximum temperatures are
six months, 12 months, 40 to 48 months, and 64 to
96 months; the latter, however, is also beyond the cone of
influence. The dominant interannual variability could
therefore be represented by a 3.4-year period sinusoid.
Plasmodium falciparum malaria incidence observed in

Tea Plantation 1 exhibits, in turn, a bimodal annual cycle
with peaks in the months of February and June-July of
about 3.8 and 5.3-5.0 positive cases per 1,000 inhabitants,
see Figure 1(B). Minimum malaria incidence is commonly
observed during the months of October-November-
December with values reaching 2.0 positive cases per
1,000 inhabitants. The June-July peak in malaria inci-
dence follows the maximum monthly rainfall with a
two-month time delay. It also shows to follow the peak
in mean temperatures with a four-month timelag.
Additional file 2 presents the historical values of the

set of observed climatic variables under study and the
long-term trends in their annual time series. The histor-
ical annual rainfall (R1) reaches 1,986 mm/year with a
95% confidence interval of ±94.2 mm. Only the total
number of dry days per year (R2) exhibited a statisti-
cally significant (at α = 0.05) long-term linear trend of
about +7.4 days per decade. Historical annual average mini-
mum (ATmin) and maximum (ATmax) temperatures reach
11.0 ± 0.1°C (95%) and 24.1 ± 0.1°C (95%), respectively.
Minimum temperatures on the warmest days (MTmin),
annual minimum temperatures (ATmin) and day-to-day
standard deviation of minimum temperatures (SDTmin)
showed increasing trends of +0.4, +0.2 and +0.1°C per
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decade, respectively. Maximum temperatures on the
warmest days (MTmax), annual maximum tempera-
tures (ATmax) and maximum temperatures on the coldest
days (mTmax2) exhibited increasing trends of +0.2, +0.3
and +0.2°C per decade, respectively. The rest of the annual
historical time series did not show statistically significant
trends at a = 0.05. Mean annual temperatures thus likely in-
creased at a rate of +0.25°C per decade over the period
1979–2009. This rate of change is consistent with trends re-
ported by previous studies [18].

Simulation outputs
Additional file 3 depicts the MAC, AM, WCT, and ABP
simulation outputs for the historical annual cycles of
mean temperature and rainfall. For the set of parameters
defined in the analysis of base scenarios, models over-
estimate the historical P. falciparum malaria incidence
in 0.7 to 4.0 positive cases per 1,000 inhabitants. They
also exhibit, on average, a unimodal annual cycle with a
peak in the months of May and June, compared to the
observed bimodal seasonal distribution of malaria inci-
dence. Moreover, process-based models show different
abilities to fit the baseline seasonality that are likely to
come from the way they describe different aspects of the
P. falciparum malaria transmission cycle. The MAC,
AM and WCT models are driven by the combined ef-
fects of mean temperature and rainfall, whereas the ABP
model is influenced by the dynamics of the force of in-
fection and its two main components (the local trans-
mission and the external force of infection), as well as by
the fluctuations of the larvae carrying capacity, which in
turn are controlled by rainfall. Additional file 3 also dis-
plays the WCT results for various mean durations of
infectivity. Changes in the infectivity from 40 to 95 days
(equivalent to changes in the human host recovery prob-
ability from 0.7500 to 0.3158 month−1) increase simu-
lated P. falciparum malaria prevalence from 2.3 to 5.2
positive cases per 1,000 inhabitants in the months of
September and October, and from 5.7 to 13.3 positive
cases in March; i e, changes in the mean duration of
infectivity have a strong impact on malaria prevalence
particularly after the February and March peak of mean
temperatures.
For full certainty in its best set of parameters and for

the actual climatic conditions observed over the full
retrospective period 1979–2009, the four-malaria-model
ensemble explains approximately 33% of the variance of
monthly P. falciparum malaria incidence in Kericho,
with a mean square error of about 1E-05. Individual
simulation outputs explain from 20 to 30% of the variance,
and thus are below the R2-value obtained by the four-
malaria-model ensemble. For +0.15, +0.25 and +0.35°C
per decade detrended time series, the total variance
explained decreases from 33 to 24.3%, 14.4 and 4.0%,
respectively. The mean square error remains constant.
When the +0.25°C/decade long-term trend and the 3.4-year
cycle are removed from the climatic time series, individual
MAC, AM, WCT, and ABP simulation outputs show differ-
ent results. R2-values of the MAC and AM models suggest
that almost all the correlation between simulated malaria
prevalence and actual malaria incidence is explained by the
long-term trend and the interannual dependency. ABP and
WCT simulation outputs indicate that the seasonal cycle
explains most of the variance of the observed P. falciparum
malaria incidence. Lastly, for the actual climatic conditions
observed over the period 2005–2009, ensemble simulation
outputs suggest that P. falciparum malaria prevalence re-
duced from 13.8 positive cases per 1,000 inhabitants to al-
most 5.1 primary cases over the last five years of the
retrospective period. Simulation runs thus suggest that cli-
matic conditions have likely been less favourable to malaria
transmission in the area under study in recent years.
Additional file 4 shows the 25, 50 and 95% percentiles

of the distributions of monthly P. falciparummalaria preva-
lence simulated by the MAC, AM, WCT, and ABP models,
for actual climatic conditions, and for one-, one-, two-, and
zero-month time lags, respectively. These lags exhibited the
highest correlation coefficients between observed malaria
incidence and simulated prevalence. Simulation outputs for
uncertainty in parameter values included, respectively, 90,
142, 131, and 131 runs of these models (a grand total of
494 set of parameters were simulated). R2-values of the 50%
percentiles reached 30.9, 31.6, 20.7, and 22.2%, respectively,
as presented in the scatter plots in Figure 2. The high-
est R2-values of the MAC and AM 50% percentiles
(35.7 and 32.7%, respectively) were obtained in the
quarter December-January-February (DJF), suggesting
that these models can capture the February peak in the
historical bimodal annual cycle of P. falciparum mal-
aria. The highest R2-values of the WCT and ABP
models (26.9 and 46.3%, respectively) were obtained in
the trimesters March-April-May (MAM) and September-
October-November, indicating that these models most
likely represent the periods of minimum malaria incidence.
Lastly, Figure 3 shows the 25, 50 and 95% percentiles

of the distributions of monthly P. falciparum malaria
prevalence simulated by the four-malaria-model ensem-
ble. 31.8% of the variance of P. falciparum malaria inci-
dence is explained by the ensemble median. However, if
individual simulation outputs are merged at a monthly
timescale, the ensemble median explains 36.7% of the
variance of the observed P. falciparum malaria. Also, en-
semble simulation runs showed their highest R2-values
of 32.5 and 31.2% in the quarters DJF and MAM, re-
spectively. Figure 3 also depicts the monthly P. falcip-
arum malaria prevalence suggested by the ensemble for
non-linear changes in the mean duration of host’s infect-
ivity to vectors. In this case, 37.7% of the variance of
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Figure 2 Malaria-model ensemble simulation outputs. Monthly P. falciparum malaria incidence observed in Kericho over the period spanning
January, 1979 to October, 2004 (x-axes) versus the 50% percentile of the distributions of monthly P. falciparum malaria prevalence (y-axes)
simulated by the MAC (upper left panel), AM (upper right), WCT (lower left), and ABP (lower right) models, for the actual climatic conditions,
for the period spanning January, 1979 to December, 2009, and for 1-, 1-, 2-, and 0-month time lags, respectively. Red and blue solid lines
represent the adjusted linear trends (see R2-values on each panel) for each model and for the four-malaria-model ensemble (MME), respectively. Dashed
black line in the upper-right panel depicts the adjusted linear trend for the MME when non-linear changes in the mean duration of host’s infectivity to
vectors are considered.
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malaria incidence is explained by simulation outputs.
Moreover, Figure 3 shows the spread of individual model
outputs for two specific malaria outbreaks. Frequency his-
tograms and continuous probability distributions show dif-
ferent predictability levels in individual simulation outputs.

Discussion
This paper described the results of the implementation
of a multi-malaria-model ensemble framework to as-
sess temporal changes in malaria morbidity profiles in
Kericho, in the highlands of Western Kenya. Since
the ensemble framework merges process-based models
that are highly sensitive to changes in the duration of
the sporogonic cycle, the gonotrophic cycle, and the
survival probability of the mosquito vector, which are
strongly affected by ambient temperatures, the tool
mostly allows the assessment of the impacts of changes
in climatic conditions on malaria morbidity profiles.
In the foreseeable future the multi-model ensemble
can be, however, easily expanded to assess the role of
changes in non-climatic factors.
Malaria, as many vector-borne diseases, is highly sen-

sitive to even small variations in ambient temperatures.
Previous studies [10,12,18,30,44-47] suggest that changes
in climatic conditions cannot be ruled out as potential
drivers of the observed increases in P. falciparum mal-
aria in the highlands of Western Kenya. Ensemble simu-
lation runs presented here suggest that from 8.7 to
18.6% of the variance of P. falciparum malaria incidence
observed in the site under study over the period 1979–2004
could be attributed to the +0.19 to +0.25°C per decade sta-
tistically significant long-term linear trend in near-surface
air temperatures that took place over the period 1950–
2009. Ensemble simulation outputs also suggest that cli-
matic conditions have likely been less favourable to malaria
transmission in Kericho in recent years.
Even though the four-malaria-model ensemble over-

estimates the historical P. falciparum malaria inci-
dence when the annual cycles of mean temperature
and rainfall are assumed in base scenario experiments,
simulation outputs for actual climatic conditions (as-
suming certainty and uncertainty in parameter values)
observed over the selected retrospective period do not
fully capture the magnitude of the peaks in malaria in-
cidence. Simulation runs indicate that on top of the
aforementioned 8.7 to 18.6% increase in the variance



Figure 3 Uncertainty in multi-malaria-model ensemble simulation outputs. (Upper panel) Monthly Plasmodium falciparum malaria incidence
observed in Kericho for the period spanning January, 1979 to October, 2004 (grey solid bars), along with the 25, 50 and 95% percentiles of the
distributions of monthly P. falciparum malaria prevalence suggested by the multi-model ensemble for the actual climatic conditions and for the
period spanning January, 1979 to December, 2009. Simulations of the MAC, AM, WCT, and ABP models include 1-, 1-, 2-, and 0-month time lags,
respectively. See also the monthly P. falciparum malaria prevalence theoretically suggested by the four-malaria-model ensemble for non-linear
changes in the mean duration of host’s infectivity to vectors (blue solid line). (Lower panels) Spread of individual model outputs for two specific
malaria outbreaks: February, 1998 (maximum observed malaria incidence, middle panel) and February, 2004 (lower panel). Frequency histograms –
frequency of MAC, AM, WCT, and ABP simulation outputs (see y-axes) in each malaria incidence interval class (see x-axes)– are depicted by colored
bars. Colored lines represent the continuous probability distributions of MAC, AM, WCT, and ABP simulation outputs for each month. Vertical dashed
lines depict the actual P. falciparum malaria incidences in each month. Vertical arrows show the theoretical P. falciparummalaria prevalence suggested by
the four-malaria-model ensemble for non-linear changes in the mean duration of host’s infectivity to vectors.
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of P. falciparum malaria incidence that could be attrib-
uted to the long-term trend in ambient temperatures,
at least 6% of such variability or over ten positive cases
per 1,000 inhabitants during recent peaks in the inci-
dence could be related to the increased resistance to
anti-malarial drugs. Hence, long-term changes in cli-
matic conditions and non-linear changes in the mean
duration of host’s infectivity could be synergistically
driving the increasing incidence of P. falciparum mal-
aria in the highlands of Western Kenya.
Which models should be considered in the multi-

malaria-model ensemble? Intuitively, those models that
better represent the most relevant aspects of the P. fal-
ciparum malaria transmission cycle, and that exhibit
high accuracy and predictive power should be picked.
From an operational point of view, it should be pre-
ferred to include those models that show a high skill
level using a short list of parameters and exogenous
variables, which can be easily measured in the field or
under controlled laboratory conditions. In addition, models
that are consistent with other related tools, that are not
complicated, and that in the general sense are useful for
routine activities of health services should be chosen. How
should the results of the best malaria transmission models
be combined? Simulation runs in this set of experiments
were combined using equally weighted models. In theory,
models with higher reliability and consistency should weigh
more than those with lower skill level [48]. Future work
will therefore address the need to consider R2-values
between simulated malaria cases and actual positive
cases, mean square errors, a function of likelihood, or
the ‘bias’ and ‘convergence’ criteria [49] for deriving dif-
ferential model weighting.
There are various limitations in the use of a malaria

process-based multi-model ensemble. Models usually
describe different aspects of the transmission cycle of P.
falciparum malaria. As a consequence, some process-
based models are driven by ambient temperature while
others are strongly influenced by rainfall. Hence, there is
a need to initially judge, subjectively and based on pure
expertise, which model is suitable for a specific applica-
tion. Also, simulation experiments cannot span the full
range of possible combinations of parameter values and
initial conditions due to time and computational cap-
acity constraints. That is why the fine-tuning process of
model parameters involves purely subjective judgment,
making it hard to guarantee the proper identification of
the ‘optimum location’ in the parameter space [48].

Conclusions
Malaria control specialists need simple, open source tools
such as the ones discussed here to make better decisions
regarding malaria control investments, particularly now
that the impact of current and future climate is increasingly
considered important in the development of malaria con-
trol and evaluation strategies. Instead of using individual
process-based models in isolation, however, authorities may
gain more useful insights by developing ‘ensembles’ of dif-
ferent models, where biases in one tool may be compen-
sated by biases in other models. The approach presented
here is to use different sets of parameter values for each
model and for all the proposed process-based models, and
present combined simulation outputs as probability distri-
butions. These experiments are robust in the sense that
each process-based model has been subjected to several
control simulations, including base scenarios and stability
conditions, as well as multiple sets of runs for different
choices of parameter values. As mentioned above, results
suggest that the mean and the median of the malaria-
model ensemble outputs outperformed individual model
simulation runs. Results also incorporated the level of un-
certainty associated with modelling outputs.
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