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Abstract

Von Hippel-Lindau (VHL) syndrome is a hereditary condition predisposing to the development of different cancer forms,
related to germline inactivation of the homonymous tumor suppressor pVHL. The best characterized function of pVHL is the
ubiquitination dependent degradation of Hypoxia Inducible Factor (HIF) via the proteasome. It is also involved in several
cellular pathways acting as a molecular hub and interacting with more than 200 different proteins. Molecular details of
pVHL plasticity remain in large part unknown. Here, we present a novel manually curated Petri Net (PN) model of the main
pVHL functional pathways. The model was built using functional information derived from the literature. It includes all major
pVHL functions and is able to credibly reproduce VHL syndrome at the molecular level. The reliability of the PN model also
allowed in silico knockout experiments, driven by previous model analysis. Interestingly, PN analysis suggests that the
variability of different VHL manifestations is correlated with the concomitant inactivation of different metabolic pathways.
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Introduction

Pathological deregulation of cellular pathways often results in a

family of complex and correlated diseases commonly termed

cancer [1]. Cancer is a multi factorial disease where different

causes contribute to its development. Several computational

methods have been developed to explore the functional pathways

involved in tumorigenesis. Some of them focus on differential gene

expression between healthy and pathologic tissues [2–3], on

protein-protein interaction network analysis [4–5] or on molecular

dynamics simulations [6]. Other methods approach the disease

through discretization of pathological components that result in

tumor [7]. All of these approaches are very powerful when the

variables related to the disease, although complex, are well known

and studied. A multi-factorial disease can be approached by means

of mathematical theory, building a theoretical model where cell

components are connected with each other. In biology, several

problems were dealt with network theory [8–9]. A network is a

group of objects strongly inter-connected with each other (e.g.

proteins and enzymes of a pathway or animals belonging to

interacting populations). Their construction and subsequent

simulation is made via mathematical analysis of the connections

between nodes found in the system and their time-dependent

behavior [10]. A biological network is generally composed of

proteins, nucleic acids and cofactors connected by biological

reactions such as protein complex formation or enzyme activity

regulation [10]. Von Hippel-Lindau syndrome (VHL) [11] is a

good study case to test the network theory applied to cancer due to

the similar medical history and pathological phenotype that

patients share. While hereditary cancers represent only a small

part of all human tumors, their investigation represents a challenge

to understand the pathway leading to tumor formation. In 2010,

Heiner et al. first approached VHL using the so-called Petri Net

(PN) simulation networks [12]. Their work, inspired by a previous

theoretical model of cellular oxygen-related pathways [13] [14],

was a preliminary investigation of the core oxygen sensing system

and its connection with VHL onset. Heiner and coworkers

proposed three different functional modules responsible for

hypoxia network control and for HIF-1a degradation [12]. In

other words, they theorized that hereditary forms of cancer, such

as different manifestations of VHL, are the result of different and

concomitantly compromised metabolic pathways.

Von Hippel-Lindau Disease
Von Hippel-Lindau protein (pVHL) is the product of the von

Hippel-Lindau gene, located in the short arm of 3rd chromosome,

and constantly transcribed in both fetal and adult tissues [15].

Mutations of pVHL are related to a pathological outcome termed

VHL syndrome, an inherited form of cancer [16]. VHL syndrome

is characterized by cysts and tumors growing in specific parts of

the organism [16–17]. It is considered a severe autosomal

dominant genetic condition with inheritance of one person in

over 35,000 [18]. The tumor injuries, which can be either benign

or malign, are usually located in the retina, adrenal glands,
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epididymis, central nervous system, kidneys and pancreas [19]. As

a genetic disorder, VHL syndrome follows Knudson’s two hit

principle. A copy of the gene is mutated in the germ line, but the

other gene copy still produces a functional protein. Complete

protein inactivation appears during life due to somatic inactivation

of the remaining functional copy [20]. On the contrary, mutations

occurring during early fetal formation result in unsuccessful

development [21]. The pVHL gene has 11,213 base pairs

including three exons [18] and the final transcript is a protein

commonly present in two isoforms: pVHL30 and pVHL19, of 213

and 160 residues respectively. Neither isoform contains a known

enzymatic domain, but rather appears to serve as a multipurpose

adapter protein engaging in multiple protein-protein interactions

[22]. pVHL structure is organized in an a- and b-domain and its

stability was demonstrated to be ensured by direct interaction with

other proteins such as Elongins B and C [23]. Both Elongin B and

C are also required for the best characterized function of pVHL,

the ubiquitination dependent degradation of Hypoxia Inducible

Factor (HIF) via the proteasome [24]. However, pVHL is

considered a multipurpose protein due to its high number of

known interactors. At the time of writing, the IntAct database [25]

presents more than 200 different interaction partners, with some of

them competing for the same Elongin binding site. Indeed, pVHL

was found in different cellular compartments and seems to be

involved in many different cellular processes such as apoptosis, cell

proliferation, survival and motility [26]. Considering the huge

number of interactors and multiple cellular localizations, many

different functions have been described or hypothesized, such as

regulation of cytoplasmic microtubules during mitosis [27] and

endothelial extracellular matrix deposition [28]. On the other

hand, considering the huge number of players involved in VHL

syndrome and the lack of reliable kinetic data, a PN based

approach may be a preferable option for an entire VHL pathway

simulation.

Petri Net for Interaction Pathways
Since their invention, by Carl Adam Petri in the early sixties,

PNs were mostly used to describe technical systems, but later the

utility in describing biological and biochemical functions has also

been demonstrated [29]. PNs were successfully used in many

studies to describe biological networks [30], such as the regulation

and etiopathology in human Duchenne Muscular Dystrophy [31]

and the hypoxia response network [12]. PNs are qualitative

mathematical models that can graphically represent many object

types, not only metabolites but also different protein states and are

useful to simulate networks where not only metabolites are

involved. Indeed, PNs can be a powerful tool to study all

concurrent interactions in a specific pathway, even if the proteins

or kinetics are not well-known. Due to the large number of

different pVHL functions involved in VHL disease progression, we

decided to extend the PN based analysis of [12] increasing the

number of considered protein-protein interactions. We generated

a novel manually curated PN model of the entire VHL regulation

system collecting data from the literature and including the

signaling pathways and glucidic metabolism. In order to build a

realistic network, literature from both biochemical experiments

and in silico predictions were used as source. It was decided to build

a PN with only confirmed pVHL interactions whose function was

also known. The resulting PN was validated using an analysis of

specific properties as suggested by previous studies using the same

method [29]. After validating the PN structure, in silico knock outs

of specific proteins were done in order to observe the different

network behaviors and the resulting biological effect.

Methods

The network was designed in the Snoopy PN framework

(version 2, revision 1.13) [32], respecting the mathematical PN

formalism as described in [12–33]. PN were demonstrated to be

useful in describing discrete and concurrent processes in a simple

graphical representation [30] and have been used to describe

biomedical processes due to their capacity of representing

sequential steps in a process. PN modeling methods are actively

used to describe, simulate, analyze, and predict the behavior of

biological systems. The Snoopy PN framework provides an

extensible multi-platform framework to design, animate, and

simulate Petri nets [32]. We chose Snoopy to facilitate future

extensions of the VHL pathway presented here. Among different

available PN types a standard PN was chosen to limit the number

of variables. Both Charlie and PInA analyzers were used for PN

analysis and validation (34). Further, in silico knock out experi-

ments were used to test the biological reliability of the model.

Structural model validation was made by analysis of the T-

invariants to demonstrate whether the system was covered by T-

invariants and to confirm the biological meaning of each invariant.

The use of T- and P-invariants is given by their own properties:

they are a set (of transitions or places, respectively) that allow the

reproduction of the same state after n transformations. A P-

invariant represents a set of places where the number of tokens is

constant and independent on the firing rate. A T-invariant instead

represents a set of transitions that cyclically comes back to show

the same initial set. Biologically a P invariant can represent the

process of regulating a protein, whereas T invariants can represent

cyclical biochemical transformations such as metabolic reactions.

To this end, the computed invariants were grouped in Maximal

Common Transition Sets (MCTS) and Clusters, the former based

on occurrence of specific sets of transition inside the various T-

invariants, and the latter based on similarities between T-

invariants. Different numbers of clusters will be defined depending

on the resulting square matrix. Where MCTS create disjunctive

nets, Clusters merge together similar T-invariants. Behavioral

validation was made by selectively deleting tokens inside the

model, imitating possible biological disruptions such as disease-

causing mutations. The resulting network behavior was compared

to what is reported in the literature. Total runtime for invariants

computation were less than ten seconds on a mainstream Linux

x86 workstation. Literature sources used to build the model are

reported in Table S1. The Snoopy framework for PN construc-

tion, Charlie and PInA tools for analysis are available at the

website (URL: http://www-dssz.informatik.tu-cottbus.de/DSSZ/

Software). Finally, the model was used to simulate the network

behavior through visual inspection of both token movement and

accumulation in specific parts of the network. For a visual

explanation of token movement in a PN refer to Video S1.

Model Availability
The resulting VHL disease PN model is available in File S1.

Results

Notations and Assumptions
The PN built here focuses on pVHL interactions that were

already proven by biochemical experiments and reported in the

literature. We chose to model a realistic VHL disease pathways

based on confirmed literature data, including all known VHL

functions, VHL related signal pathway and glucidic metabolism.

All bibliographic sources used to design the model are presented in

Table S1. The final PN is composed of 323 places and 238

Petri Net Model of the VHL Tumor Suppressor
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transitions, connected by 801 arcs. Tables S1 and S2 show all

places and transitions and the related biological correspondence.

Places are mainly proteins and enzymes, while some represent

DNA or small molecular substrates such as glucose and cofactors

(e.g. ATP). Notation for both pre- and post-places and their

biological meaning are explained in Table S1. In a few cases,

places are used to represent a whole group of changes generated

by DNA transcription, (e.g. p_32 and p_33 or Et_eff1 and

Et_eff2). Transitions instead symbolize complex formation be-

tween two proteins or post-translational modifications. Output

transitions stand for degradation or movement to other parts of the

cell or organism to complete their functions (e.g. degrad_1 and

degrad_2) whereas input transitions show the generation of a

substrate or protein. In order to simplify the design of such a large

network, we decided to use macro nodes to group reactions

representing complex molecular pathways such as signaling

pathways or secondary signal cascades. The whole process is

merged into a single node with a given name to allow visual

inspection only in case of need. From the top level all transitions

can still be found in a hierarchical lower layout level. Logic nodes

were used for places participating in many reactions throughout

the network such as ATP and ADP (7 logical copies each) or NAD

and NADH (4 logical copies each). A total nesting depth of two

was chosen to model macro nodes. Special arcs were not used

while we chose to model the permanent presence of some objects

using double arcs (e.g. for elob, eloc and places standing for

enzymatic activity). In case of proteins which are actively

degraded, it was preferred to create an input transition simulating

constant production (or synthesis) and an output for consumption.

This is the case for pkcz2, Jade1, pVHL and HIF-1a. As can be

seen from Figures 1 to 3, which represent the entire model, two

major nodes can be immediately identified: pVHL and vcb, the

complex made by pVHL and the two elongins. Another relevant

part is the glucidic metabolism, modeled due to its hypoxia

induced regulation. It is represented in detail in Figure 2.

HIF-1a Transcription Activity
The HIF-1a transcription factor stimulates proliferation of

endothelial cells to create new blood vessels during localized or

broad hypoxia. In human, it is present as three different paralogs:

HIF-1a, HIF-2a and HIF-3a. The sequence is quite conserved

between the former two, whereas the latter is slightly shorter and

seems to have completely different functions compared to the

other two [33–34]. Both HIF-1a and -2a stimulate DNA

transcription but the exact products of this activity are still poorly

understood. In our model, only HIF-1a in vivo activity was

considered. It cannot be excluded that other biological effects

depend on the second paralog. Indeed, both have a pro-

angiogenetic function and are degraded by pVHL via proline-

directed hydroxylation. HIF is a heterodimer of HIF-1a and HIF-

1b, the latter being also termed Aryl hydrocarbon Receptor

Nuclear Translocator (ARNT). We started from the transcription

activity of HIF due to its regulation is the most studied pVHL

function. Our model, as expected from literature data, shows that

HIF-1a enters the nucleus when not degraded by pVHL. It

subsequently binds HIF-1b to form the HIF heterocomplex which

interacts with DNA. Our model correctly simulates the increased

affinity of HIF towards DNA. Transcription is enhanced by some

co-factors binding both subunits of HIF and other proteins such as

p300, Creb and cjun. This takes place in a specific DNA promoter

sequence termed Hypoxia Response Element (HRE). Further-

more, during transcription some pro-angiogenic factors are

produced: Vascular Endothelial Growth Factor (VEGF), Endo-

thelin (ET) and Erythropoietin (EPO). All described pathways are

in agreement with previous observations reported in [35].

Metabolic Processes
HIF-1a transcription activity includes some proteins which are

dependent on oxygen but involved in other pathways (e.g.

oxidative metabolism) or completely independent (e.g. metallo-

proteinase MT1MMP). Further, HIF-1a stimulates production of

proteins involved in the glucidic pathway. The final product of the

metabolism is adenosine triphosphate (ATP), a molecular form of

energy, composed by adenosine, an adenine ring connected to a

ribose sugar, and three phosphate moieties. When a phosphate

moiety is hydrolyzed it releases energy, used by cells for enzymatic

reactions. The glucidic metabolism is composed of glycolysis,

Krebs cycle, glycogen formation and respiratory chain with ATP

synthesis. Glucose is absorbed in cells by enzymatic glucose

transporters (GLUT), which carry the molecule to the location

inside the cell where the metabolism takes place [36]. There are

many isoforms of these transporters: GLUT1 is present in all cells

and in particular in erythrocytic membranes, neurons and glia

[37]. GLUT2, located in both liver and pancreatic beta cells, is

characterized by low affinity for glucose, hence it requires a higher

glucose concentration to be activated [38]. Right after eating,

glucose concentration increases, thereby quickly activating them.

GLUT2 stimulates production of insulin, a hormone regulating

the plasmatic glucose concentration. Glucose plasmatic concen-

tration can also increase due to an opposite pathway, originating

from liver glycogen being decomposed into glucose and reaching

systemic circulation. GLUT3 is mostly present in neurons,

whereas GLUT4 is the insulin activated transporter located in

myocytes, adipocytes and cardiomyocytes [36–39]. In our model,

we chose to exclude GLUT3 due to its specific role in neuronal

cells. Glycolysis occurs in the cytoplasm and during this process

each glucose molecule is phosphorylated, consuming two mole-

cules of ATP, then divided into two smaller molecules. Further

modifications of these two molecules result in new ATP

production. The molecule obtained at the end of glycolysis is

pyruvate, which can be again modified through three different

pathways. It can be decarboxylated and linked to Co-enzyme A to

form acetyl-Co-enzyme A. It can then be carboxylated to obtain

oxalacetate, or transformed through lactate dehydrogenase into

lactic acid. Pyruvate can also be generated by other metabolic

pathways, like protein or fatty acid disruption and amino-acid

modifications. Acetyl-CoA and oxalacetate are the molecules used

in the following glucidic metabolism process, the Krebs cycle,

taking place in the mitochondrial matrix. The Krebs cycle starts

with acetyl-CoA and oxalacetate merging to create citric acid,

which continues undergoing modifications until oxalacetate is

formed again. During the process some co-enzymes are modified.

Decarboxylation of pyruvate to form acetyl-CoA already trans-

forms a NAD+ (Nicotinamide Adenine Dinucleotide) in NADH

(reduced form), afterwards obtaining one more of ATP, GTP,

FADH2 (Flavin Adenine Dinucleotide) and three more NADH per

pyruvate molecule entering the Krebs cycle. The redox co-

enzymes are considered electron transporters. During metabolic

reactions they reduce themselves and get electrons (and protons) to

oxidize the substrate of the enzymatic reaction. Electrons taken

during the glucose metabolism are then used in the respiratory

chain taking place in the internal mitochondrial membrane. The

respiratory chain consists in transporting electrons through

enzymes called cytochromes and others co-enzymes, characterized

by the capability to receive and donate electrons. NADH (FADH2)

is oxidized again by cytochromes going back to the form of NAD

(or FAD). Electrons gained through oxidation are used to reduce

Petri Net Model of the VHL Tumor Suppressor
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half a molecule of oxygen into water, releasing more energy. The

FADH2 and NADH redox chain establishes a chemical potential

causing the push of protons outside the internal membrane

towards the inter-membrane space, which stays between the

mitochondrial inner and outer membrane. This also causes a

higher concentration of protons outside the inner membrane. The

resulting gradient causes the tendency of protons to enter the cell.

The final step is ATP-synthetase, formed by a channel that allows

protons to enter, pushed by the gradient, allowing the enzyme to

change conformation and make its reaction. This kinetic energy is

converted into ATP. In our model, the glycolytic and Krebs cycles

were described in detail, represented at the hierarchical second

level by the coarse transition Glycolysis. The respiratory chain was

instead merged into a single node (t_97). We chose to represent

creation and consumption of ATP in order to show the effects of

lower and higher oxygen concentration on the network. On the

other hand, oxygen consumption for ATP synthesis during the

respiratory chain creates a flow of oxygen in the model. Oxygen is

not the only connection between glucidic metabolism and hypoxia.

Indeed, HIF-1a transcription activity enhances the transcription of

many GLUT isoforms (such as 1, 3 and 9) and the pyruvate

dehydrogenase kinase, which determines the pyruvate dehydro-

genase (PyrDH) inactivation and consequent Acetyl-CoA forma-

tion from pyruvate. Finally, Lactate dehydrogenase is also

produced, to ensure an alternative compound, creating energy

needed for cell survival [36–40].

pVHL-dependent Processes
Some interactors can bind pVHL in regions interacting with

Elongin C. These are HuR, Nur77, p53 and Jade1. Nur77 has a

complex function and its role in pVHL tumor suppressor activity is

still not entirely clear. Nur77 can bind pVHL, inhibiting Elongin

binding while allowing HIF-1a binding. Its transcription is

stimulated by HIF-1a itself, and pVHL-HIF-1a-Nur77 complex

formation stabilizes the transcription activity of HIF-1a by

inhibiting the pVHL-dependent degradation [41]. Another

Figure 1. Top level model. The colors of some tokens were arbitrarily chosen to give a clearer identification of the central nodes (ATP, Vcb and
oxygen) or for nodes involved in more reactions such as GSK3b. The group of nodes in the bottom left is not disconnected from the central body of
the network thanks to the presence of logic nodes for ATP synthesis (t_97).
doi:10.1371/journal.pone.0096986.g001
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Figure 2. Lower hierarchical PN levels. Pathways from the top level are grouped in macro-nodes (functional subordinated layer), in particular
glucidic metabolism and various VHL functions.
doi:10.1371/journal.pone.0096986.g002
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Figure 3. Lower hierarchical PN levels, in particular HIF-1a regulation and HIF-1a-dependent pro-angiogenic signaling. VEGF and EPO
pathways are at a lower hierarchical level than the pro_angio macro-node.
doi:10.1371/journal.pone.0096986.g003
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Nur77 function is the stimulation of proopiomelanocortin

(POMC) transcription, which is a precursor for adrenocorticotro-

pic hormone (ACTH) formation. This hormone has an important

stress response function, stimulating cortisol production and other

neurotransmitters from the adrenal glands, to enhance the

organism reaction to danger and stress stimuli e.g. increase of

gluconeogenesis and muscle mass. An excess of this hormone can

cause desensitization of its receptors for feedback down-regulation

and thus muscular weakness, tiredness, hyperglycemia and

osteoporosis [42]. p53 can bind to pVHL avoiding the degradation

of this tumor suppressor. Instead, it stimulates the apoptotic signal

cascade via the p300 co-activator, which stimulates production of

proteins enhancing the cell programmed death. If p53 cannot bind

pVHL, two more mechanisms are described in the model. One is

its modification and degradation by Mdm2 and the other is the

pVHL-independent degradation of HIF-1a. Interaction with

Mdm2 is needed in both cases [43–44]. Jade1 is a short-lived

protein whose main function is to stimulate the phosphorylation-

dependent degradation of b-catenin. This is a subunit of the

cadherin protein complex acting as an intracellular signal

transducer in the Wnt signaling pathway. It seems that b-catenin
is able to stop cell division via a contact-dependent inhibition

signal, whereas in Wnt signaling it is also involved in proliferative

transcription. When Wnt is not present, b-catenin can be

phosphorylated by Glycogen Synthetase Kinase, type 3b (GSK3b)
in complex with APC (Adenomatous Polyposis Coli) and Axin. b-
catenin can interact with Jade1 and be only successfully degraded

after this interaction [45]. Related functions are represented in the

macro node Jade1_pat. GSK3b seems to be a protein involved in

many different pathways. GSK3b is involved in Glycogen

Synthetase deactivation and can even phosphorylate pVHL and

HIF-1a. In the case of HIF-1a, it generates a pVHL-independent

degradation pathway, where phosphorylation allows ubiquitina-

tion, whereas in the case of pVHL, it inhibits pVHL stabilization

of microtubules [46].

Structural Model Analysis
Based also on previous observations of Heiner et al., [47], in

2008 Grunwald et al., demonstrated that PN can be used to

describe large and complex metabolic pathways [31]. They

postulated the following set of minimal rules that a PN should

satisfy to be considered biologically reliable: (1) the network should

be entirely connected, (2) the network should be covered by T-

invariants, and (3) each T-invariant and P-invariant should have a

biological meaning. The model described here was tested with

respect to what previously done by Grunwald and co-workers [31]

and resulted to be covered by T-invariants, connected, homoge-

neous and each place has a pre-transition and a post-transition.

Transitions without pre- or post-places were used to simulate the

system interface to the surroundings. The network is alive, in other

words, it continues to work forever, with all transitions contrib-

uting to the net behavior forever, and no dead transitions. The

MCTS and Cluster analysis were used due to the large number of

T- and P-invariants included in the model. Both methods are used

in PN theory to reduce the complexity connected with such a large

network and to reduce the errors connected with manual

investigation. From the 238 transitions present at the beginning

in the model, 393 T-invariants were computed without consider-

ing 10 trivial invariants. The latter consist in a pair of transitions

that usually represent a forward and backward reaction, such as

the active and inactive state of a protein. Trivial invariants could

be erased to reduce the dimension of the network without

disturbing the overall system when the interest is focused on the

steady state behavior [12]. T-invariants were grouped into 44

Clusters using the Tanimoto coefficient with similarity threshold of

65%, as described in [31]. Only 11 of these 44 comprised more

than one T-invariant. The three biggest Clusters are C9,

composed of 144 T-invariants, C8 of 72 and C11 of 64 T-

invariants. Separation into clusters allows easier analysis of

networks pathways represented by each T-invariant, since they

are grouped by similarity, specifically the common transitions by

which they are composed. T-invariants named in the text are

shown in Table S3, while T-invariants grouped in C8, C9, C10,

C11 are explained in Table S4 and described as follows.

Cluster C8
Cluster C8 groups all transitions included in HIF-1a pathways,

including transcription, signaling cascades, degradation via pVHL,

p53 and GSK3b, and eventually the Krebs cycle. For the EPO

signaling pathway, two transitions (t_35 and t_36) are not included

which cause Jak activation and consequent Stat5 activation to

stimulate DNA transcription. Matrix stability regulation is also

part of the cluster due to the destabilization induced by HIF-1a
transcription of metallo-proteinase (MMP), transitions from t_134

to t_140. The largest T-invariant in C8 is Inv_280 (93 transitions)

while the smallest is Inv_377 (81 transitions). The differences

between T-invariants show the possibility of alternative pathways

inside the model. For example, the VEGF dependent signal

cascade can proceed in three different ways: t_13, t_14 and t_15,

which lead to the pathways being merged in the coarse nodes

Vegf_path3, Vegf_path2 and Vegf_path1, respectively. The

occurrence rate in C8 is 24 transitions for each path. The

Endothelin, VEGF and Erythropoietin pathways are not in

conflict and occurring together. Disaggregation of the matrix via

MMPs is present in 18 T-invariants, whereas inhibition of these

proteins, i.e. matrix stabilization, is present in the remaining 54

transitions. Regarding the Krebs cycle, 47 T-invariants have t_91,

of which only 24 reach t_92 and t_93, representing the last three

steps of the cycle: succinate to fumarate, fumarate to malate, and

malate to oxalacetate. All the malate being produced is used to

regenerate oxalacetate. Degradation of HIF-1a occurs in any T-

invariant of the cluster. The pVHL-dependent degradation of

HIF-1a is always present (transitions t_116 to t_119). In 19 T-

invariants degradation takes place via p53 (t_191 to t_193) or,

alternatively, via phosphorylation by GSK3b in another 17 T-

invariants. Two of the three pathways can be present in the same

T-invariant, as in Inv_227, where degradation via pVHL and

degradation via p53 are both present. This was considered as the

HIF-1a dependence on the lack of degradation by these proteins.

All three degradation pathways never appear in the same T-

invariant. The p53 and GSK3b paths are never present together

but each of them is accompanied by pVHL-dependent proteaso-

mal degradation. Inv_377 lacks the EPO signaling pathway but is

the only one in this cluster to have t_34, t_33 and t_37. These

invariants have all input and output transitions. For example,

t_202 the second input for pVHL, is present in only 18 invariants.

Other inputs are t_98, always present, leading to formation of

HIF-1a and pVHL, t_192, producing p53 and t_216, representing

other pyruvate generating metabolic pathways. The latter is also

present in each invariant allowing formation of the pyruvate

needed for Krebs cycle progression.

Cluster C9
Cluster C9 is the largest cluster in our model and includes 144

T-invariants. It is characterized by complete EPO pathway

abrogation which goes through formation of the Shc-Grb-Sos

complex and the consequent mapk-dependent phosphorylation

cascade. Transition t_127, representing EPO effects on oxygen
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production, is absent. In its place, t_35 and t_36 are considered,

which are present in 72 T-invariants. In cluster C9, the largest T-

invariants are Inv_278 and Inv_279 (74 transitions) while the

shortest ones are Inv_101, Inv_105, Inv_144 and Inv_148 with 65

transitions each.

Cluster C10
Cluster C10, composed of 52 T-invariants, is characterized by

the presence of glycolysis between many transitions grouped in the

cluster. This is also the cluster containing the most populated T-

invariant of all computed 393 non-trivial T-invariants. This is

Inv_245, including 101 transitions and covering almost half of the

whole model. Cluster C10 also includes Inv_125, the shortest

invariant of this model, composed by 85 transitions due to lack of

the Krebs cycle. Another difference with the other three major

clusters is that here both EPO paths are present, specifically, the

Jak pathway belongs to 4 T-invariants and Shc-Grb-Sos is

observed throughout the cluster. Vegf_path1 seems to be more

common in this cluster, being present in 36 T-invariants, whereas

the other two are present 12 times each. This time they are present

even in the same invariant, as for Inv_60, Inv_129, Inv_172 and

Inv_215, with both t_13 and t_15, and Inv_142, Inv_185 and

Inv_228 with t_14 and t_15 and all subsequent signaling

appearing at the same time. Despite glycolysis being present in

all cluster invariants, the Krebs cycle appears only in 11 cases.

p53-dependent degradation of HIF-1a occurs in 11 cases while the

phosphorylation-dependent one appears in 13. An input transition

has been added with respect to the other major clusters so far

analyzed (i.e. t_69_eating) without which glycolysis could never

take place.

Cluster C11
Cluster C11 is composed of 64 T-invariants. Only part of the

EPO pathway is described here, with the major difference that the

Krebs cycle is completely abrogated while Prolyl Hydroxylase type

2 (PHD2) regulation by oxalacetate is included. HIF-1a interac-

tion with Nur77 and transcription of VEGF by Sp1 are also

present. t_80 (transformation of pyruvate in oxalacetate) is not

present in the first 42 cluster T-invariants. Nur77 interaction with

HIF-1a is present only in 8 T-invariants, specifically Inv_87 to

Inv_94. Sp1 transcription activity is appearing in twice the

amount, including the same 8 invariants just mentioned. VEGF

transcription via Sp1 activity is aPKCf2 phosphorylation depen-

dent, which does however not appear in the cluster. When VEGF

is synthesized, it is subsequently stabilized by Hur, followed by

t_178 and Hur is recreated to allow other functions. Indeed, it is

one of the few places without input transition but with a token that

goes forward and backward again. Compared to the other clusters,

C11 also shows one less transition in the coarse PHD regulation

node, specifically t_81, which shows the transformation of

pyruvate by pyrDH into acetyl-Coenzyme A, needed for the

Krebs cycle. The four clusters C-8 to C12 are very similar to each

other, as can be seen from the distance tree in Figure 4. They all

contain the HIF-1a transcription activity and signaling pathways

caused by EPO, VEGF and the HIF-1a degradation options.

They include the effects of other transcription activity products,

like metallo-proteinase and pyruvate dehydrogenase kinase, which

regulate the activation state of PyrDH. All include part of the

glucidic metabolism but not Glycogen formation itself. Other five

clusters from C12 to C16 have a smaller number of T-invariants

and fewer transitions present in each invariant. They do not

include transcription activity but are only formed by the VEGF

and glycolytic pathways. The information contents of these clusters

turned out to be uninformative and their analysis was not

included. The same applies to clusters composed by 1–3 T-

invariants. Finally, some transitions are not present in the clusters

and not listed in the T-invariants because trivial invariants were

excluded from cluster analysis. These transitions are shown in

Table 1 with their respective biological meaning.

MCTS Analysis
Another way to group invariants is by the amount of single

transitions present in them. Maximal common transition set

(MCTS) analysis provides a PN decomposition into non-overlap-

ping subnets, sharing parts of the same T-invariants [29]. In a

biochemical network, MCTS could be interpreted as enzyme

subsets operating together under steady state conditions, comput-

ed based on the support of a T-invariant. MCTS computation

does not consider stoichiometric relations, describing exclusively

sets of reactions present in a maximal number of T-invariants

resulting shared by different signaling pathways [48]. A total of 40

non-trivial MCTS were identified, with results and related

biological means shown in Table 2. Some transitions do not

belong to a non-trivial MCTS, because their occurrence has no

similarity with other transitions and they create separate MCTS

(specifically: t_69, t_82, t_91, t_94, t_98, t_114, t_116, t_120,

t_121, t_122, t_179, t_202, t_209, t_212, t_216, t_225 and t_229).

MCTS define transitions that always take place together, but are

not necessarily connected, thus representing disjunct building

Table 1. List of Trivial T-invariants excluded from calculation with their associated biological meaning.

Trivial T-Invariants ID transitions Biological Meaning

TInv_1 t_99, t_100 Glycongen Synthase regulation

TInv_2 t_101, t_102 Pkb regulation

TInv_3 t_103, t_132 GSK3b active-inactive state

TInv_4 t_174, t_222 Par6 inactivation via aPKCf2

TInv_5 t_177, t_208 VHL binding to Sp1

TInv_6 t_167, t_199 Sp1 phosphorylation and dephosphorylation

TInv_7 t_0, t_2 Hif transport in and out of nucleus

TInv_8 t_0, t_234 Hif inhibition via FIH

TInv_9 t_181, t_207 Hur inhibition via VHL

TInv_10 t_231, t_232 IGFR mRNA production and destruction

doi:10.1371/journal.pone.0096986.t001
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blocks constituting the network. Considering both analyses, a table

was automatically built in PInA [29] showing a correlation

between clusters and MCTS. Transitions (t) or MCTS (M) are

compared to evaluate how many T-invariants clusters cover the

selected M or t (if the transition is not already part of the MCTS,

as listed above). The more covered a transition or set is, the more

central it could be considered for the network behavior. Recently,

a network coarsening method based on abstract dependent

transition sets (ADT) was presented [49]. It is formulated without

the requirement of pre-computation of the T-invariants and is a

tool commonly used for the decomposition of large biochemical

networks into smaller subnets. Due to the manually designed

nature of our model, we preferred to maintain a logic hierarchy

based on metabolic pathways in order to maintain the network

centered on pVHL and its interaction. The MCTS calculation

results shows that the most covered set by cluster T-invariants is

M20 with 358 T-invariants covering all transitions in the set,

indicating that this MCTS corresponds to more T-invariants than

the others. All transition sets are an important link to the others, as

tokens pass through these transitions more often. A transition not

present in any set but most covered by T-invariants is t_98, which

is also the most frequently occurring transition, see Figure 5. The

10 most occurring transitions are listed in the Table 3.

P-invariant Analysis
Although the network is not covered by P-invariants, it has 130

P-invariants. 47 of these are trivial P-invariants, comprising a

single place, connected with double arcs to imitate an activator arc

function. Another object represented with double arcs is the

enzymatic activity catalyzing a reaction and immediately going

back to the steady state. P-invariants show places or sets of places

where token numbers always remain equal and do not move

outside the subnetwork induced by the P-invariant in the initial

marking. In other words, they do not grow nor diminish. The

remaining P-invariants are mostly located in signal transduction

pathways, such as situations in which a protein is sequestered from

its function and then goes back after a second reactivation

mechanism. This scenario is present in p_41, p_42 and p_45

located in invariant P_58. It is important to notice that ATP and

ADP, as well as NAD and NADH, are modeled as P-invariants.

P_90, P_91 and t_97 are able to transform ATP and ADP. More

in general, all energy consuming transitions are considered to be

backward transitions of invariants. Invariants not related to signal

transduction are places located in the Hur system, where Hur is

removed from its function by pVHL. This is a good approxima-

tion for sequential modifications that momentarily activate

proteins. Afterwards, Hur can go back and stabilize VEGF to

increase its transcription activity.

In Silico Knock Out Experiments
The previously described clustering and MCTS analysis for T-

invariants allowed us to identify the most common transitions and

to understand which transitions can be depleted in our knock out

experiments in order to get the most important biological effect.

The knock out experiments were performed erasing selected

transitions or tokens and observing which transitions or MCTS

become inactivated. Considering our results and the literature, we

decided to knock out the following pathway elements: (i) pVHL, (ii)

HIF1a alone and with Sp1, (iii) t_98, (iv) PHD2, (v) MCTS1, (vi)

t_97 and (vii) GSK3b. In the following, we describe the effect of

each knock out scenario on our model.

(i) pVHL knock out. Degradation of HIF-1a is not

completely depleted due to presence of both p53- and GSK3b-
dependent alternative degradation pathways. All other processes

usually inhibited by pVHL take place in an uncontrolled way,

including creation of VEGF via Sp1 transcription activity and

increased matrix regulation due to lack of fibronectin crosslinking.

Hur resulted constantly activated and nur77 can stimulate

synthesis of Proopiomelanocortin, precursor for the Adrenocorti-

cotropic hormone. Card9 increases release of tumor necrosis

factor, and NF-kB when not inhibited by pVHL. Instead, Jade1 is

unable to survive long enough to inhibit b2catenin, generating a

proliferation signal with Wnt. Lactic acid is also not produced due

to LDH enzyme production being HIF-1a transcription activity

dependent.

(ii) HIF-1a knock out. VEGF is still created thanks to Sp1,

thus oxygen is still generated even if in lower proportion. If HIF-

1a and Sp1 are both knocked out at the same time, oxygen is

quickly consumed and the metabolism is soon unable to proceed.

Lactic acid is not produced due to LDH enzyme production being

HIF-1a transcription activity dependent. Glycolysis and glycogen

are produced normally and the metabolism is not inhibited by

PyrDH negative regulation and lactic acid formation. Since pVHL

is present, other tumor suppressor activities are enabled, except for

proteasomal degradation of HIF-1a due to the substrate being

non-existent.

(iii) HIF-1a and pVHL double knock out. This generates a

situation where the metabolism is normal but oxygen regeneration

is less productive, with only Sp1 acting for transcription. Due to

absence of pVHL, all proliferation-stimulating processes are

active, causing an unbalanced consumption of resources. Our

model shows that this condition is compatible with cell growth and

multiplication, but new blood vessel generation is consistently

slower and glucidic metabolism appears principally based on the

glycolysis reaction. Similar activity reduction applies to both tight

junction and cellular external matrix (ECM) pathway regulation. It

cannot be excluded that some observed effects could be mitigated

by both HIF-2a and HIF-3a activity in vivo.

Figure 4. PinA Distance Matrix clustering, using Tanimoto coefficient and 65% threshold of. The numbers indicates clusters. In C8,
C9, C10, C11 are highlighted a red square.
doi:10.1371/journal.pone.0096986.g004
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(iv) PHD2 knock out. The protein is involved in pVHL

mediated and oxygen dependent degradation of HIF-1a. Further,
PHD2 is involved in hydroxylation of the RNA polymerase II

subunit Rpb1 to allow its translocation to less chromatin-

concentrated areas of the nucleus. When it is knocked out, HIF-

1a degradation can continue via alternative pathways as seen in

the pVHL knock out experiment and there is more RNA

polymerase II activity, even if rpb7 can still be inactivated by

pVHL.

(v) MCTS1 knock out. MCTS1 groups some reactions

involved in the HIF-1a p53-dependent degradation pathway

(Table 2). To perform this knock out, we erased the necessary

token in mdm2, making the precondition insufficient to enable the

MCTS transitions. p53 is not degraded and can continue its

proapoptotic signal. On the other hand, a HIF-1a degradation

Table 2. List of MCTS and transitions from PInA.

MCTS ID Transitions

MCTS 1 (M1) t_0, t_190, t_191, t_192;

MCTS 2 (M2) t_1, t_3, t_4, t_5, t_6, t_7, t_8, t_9, t_10, t_11, t_12, t_32, t_51, t_52, t_53, t_54, t_55, t_56, t_57, t_58, t_59, t_60, t_61, t_62, t_63, t_64,
t_65, t_66, t_67, t_79, t_83, t_123, t_129, t_138, t_215;

MCTS 3 (M3) t_2, t_99, t_100, t_101, t_102, t_103, t_132, t_167, t_174, t_181, t_199,_177, t_207, t_208, t_222, t_232, t_234;

MCTS 4 (M4) t_13, t_16, t_17, t_18, t_19, t_20, t_124, t_128;

MCTS 5 (M5) t_14, t_21, t_23, t_24, t_25, t_26, t_27, t_31, t_126;

MCTS 6 (M6) t_15, t_22, t_28, t_29, t_30, t_125, t_142;

MCTS 7 (M7) t_33, t_34;

MCTS 8 (M8) t_35, t_36;

MCTS 9 (M9) t_37, t_130;

MCTS 10 (M10) t_38, t_39, t_40, t_41, t_42, t_43, t_44, t_45, t_46, t_47, t_48, t_49, t_50, t_127;

MCTS 11 (M11) t_68, t_70, t_71, t_72, t_73, t_74, t_75, t_76, t_77, t_78, t_237;

MCTS 12 (M12) t_80, t_111, t_112;

MCTS 13 (M13) t_81, t_84, t_85, t_86, t_87, t_88, t_89, t_90, t_131;

MCTS 14 (M14) t_92, t_93;

MCTS 15 (M15) t_95, t_104, t_141;

MCTS 16 (M16) t_96, t_105, t_218;

MCTS 17 (M17) t_97, t_224;

MCTS 18 (M18) t_106, t_107, t_108;

MCTS 19 (M19) t_109, t_110, t_133;

MCTS 20 (M20) t_113, t_115, t_117, t_118, t_119;

MCTS 21 (M21) t_134, t_135, t_136, t_137;

MCTS 22 (M22) t_139, t_140, t_217;

MCTS 23 (M23) t_143, t_227, t_228;

MCTS 24 (M24) t_144, t_145, t_146;

MCTS 25 (M25) t_147, t_148, t_149;

MCTS 26 (M26) t_150, t_151, t_219;

MCTS 27 (M27) t_152, t_153, t_154, t_220;

MCTS 28 (M28) t_155, t_156, t_157, t_158, t_159, t_160, t_221, t_226;

MCTS 29 (M29) t_161, t_163, t_164, t_166, t_213;

MCTS 30 (M30) t_162, t_165, t_214;

MCTS 31 (M31) t_168, t_169, t_201, t_236;

MCTS 32 (M32) t_170, t_171, t_172, t_173, t_223;

MCTS 33 (M33) t_175, t_176, t_180, t_230;

MCTS 34 (M34) t_178, t_203;

MCTS 35 (M35) t_182, t_183, t_231, t_233;

MCTS 36 (M36) t_184, t_185, t_186, t_187, t_188, t_189, t_198;

MCTS 37 (M37) t_193, t_194;

MCTS 38 (M38) t_195, t_196, t_197, t_200;

MCTS 39 (M39) t_204, t_205, t_206, t_235;

MCTS 40 (M40) t_210, t_211;

doi:10.1371/journal.pone.0096986.t002
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mechanism is also knocked out resulting in an increased HIF-1a
transcription activity.

(vi) t_97 knock out. This is the ATPase transition, allowing

the model to imitate oxygen consumption for ATP synthesis. If this

transition is inactive, oxygen accumulates infinitely and ATP is not

regenerated after few simulation steps. At the beginning, ATP is

formed during the first step of glycolysis but afterwards it is

consumed again. At some point, these reactions do not have any

ATP available to allow the system to re-balance the consumed

ATP. After few simulation steps, oxygen reaches a high level due

to slower consumption in the PHD2 regulation process. Biolog-

ically, this means that the metabolism stops and the cell is not able

to create energy to survive. There is no accumulation other than

glucose in the model. A few oxygen creation processes are blocked

as well due to absence of ATP, e.g. t_15, t_41 and t_57.

(vii) GSK3b knock out. This enzyme is involved in negative

glycogen synthetase (GS) regulation and is inactivated when

phosphorylated. When GSK3b is knocked out, glycogen is

continuously produced due to the enzyme remaining in an active

state. In a real organism there are alternative forms of GSK3b
which can inactivate GS, hence the effect will be less sharp.

GSK3b is also involved in the degradation of HIF-1a, causing its

phosphorylation and following ubiquitination. It is also involved in

the degradation of b-catenin, where it is responsible for primary

phosphorylation. If knocked out, even if Jade1 can be stabilized by

pVHL, the effect will be similar to a knock out of Jade1, where b-
catenin is free to continue proliferation stimulating transcription

activity.

Discussion

We started from a core model of hypoxia response [12] and

extended the original network with functional data derived from

the literature in order to represent a complete description of the

pVHL interaction pathway according to current knowledge. VHL

syndrome is characterized by the formation of tumors and cysts

affecting different organism districts and tissues. Indeed, pVHL is

a tumor suppressor whose functions are connected to inhibition of

proliferation and survival, growth and stability of extracellular

matrix and microtubules, as well as cell polarity and migration.

The IntAct database reports more than 200 suspected pVHL

interactors and for most of them interaction and function details

remain largely unknown. We chose to model the pVHL

interactions in a credible cellular context with many protein

activities occurring at the same time. The main idea was to create

a novel manually curated PN description of the entire VHL

disease pathway, including glucidic metabolism and signaling

pathways. The model was designed as a standard PN and is

composed of 238 transitions and 323 places, connected by 801

edges. A biologically realistic PN model needs to be covered by T-

invariants, meaning each transition in the model has to be

included in a T-invariant, and each invariant needs to have a

biological meaning [31–47]. We used the T-invariant analysis to

validate the reliability of the model. We computed a total of 393

T-invariants, plus 10 trivial invariants, which were excluded from

analysis. These were grouped into 44 Clusters and, through use of

T-invariants, transitions were grouped into 40 MCTS. The model

Table 3. Ranking of the 10 most occurring transitions with biological meaning and percentage of occurrence.

Rank Transitions Biological meaning Occurrence %

1 t_98 Input transition for Hif and VHL 95.165

2 t_116 Interaction of VHL with Elongin B and C 94.148

3 t_113 Activation by oxygen of ARD 94.094

4 t_115 Acetylation and hydroxilation of Hif 94.094

5 t_117 Interaction of complex Vcb with Cu2 94.094

6 t_118 Interaction of complex Vcb with modified Hif 94.094

7 t_119 Degradation VHL dependent of Hif 94.094

8 t_97 ATP formation 89.059

9 t_224 Water Output transition 89.059

10 t_82 Pyruvate Dehydrogenase inactivation 88.041

doi:10.1371/journal.pone.0096986.t003

Figure 5. Transitions occurrence T-invariants. Transitions are ordered by name and t_98 is highlighted in red.
doi:10.1371/journal.pone.0096986.g005
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obtained is connected, covered by T-invariants with each invariant

holding a biological meaning. MCTS analysis was used to identify

the most frequent crucial transitions occurring in the model. This

specific subset was further used to plan in silico knock out

experiments and for the model validation and analysis of expected

biological behavior. The model was then used to perform in silico

knock out experiments inactivating specific transitions during

qualitative network analysis. Our results showed that the model is

able to represent important transitions reflecting real biological

outcomes, i.e. transitions involving species such as oxygen or ATP

are correctly inactivated under certain circumstances as expected

from the bibliographic data. Biological energy-related reactions

(e.g. ATP production from ADP) were modeled as P-invariants.

Although the network is intentionally not covered by P-invariants,

P-invariant analysis was used to verify all modeled energy

consuming transitions. Both the ATP and NADH balances

appeared constant during the simulation, with irrelevant P-

invariants located in the Hur system. This approximation was

used to verify the Hur-dependent regulation of VEGF, with results

in accordance with [50]. The specific pVHL knock out suggests

that this protein alone is not sufficient for complete HIF-1a
inactivation. Indeed, other concurrent HIF-1a degradation

pathways promote a sort of cell cycle regulation backup. On the

contrary, simple deletion of pVHL turned out to be sufficient to

increase all its other inhibitory functions, showing similar effects to

pathological VHL symptoms. Indeed, ECM destabilization

increases cell migration to other areas, promoting metastasis

outbreak in case of tumor cells. Further, pVHL-dependent

inhibition of tight junction formation by aPKCfII participates in
an easier cellular detachment. The interactions of Nur77 could be

considered a good example for pathological effects. It is a

stimulator of Proopiomelanocortin production, a precursor for

the Adrenocorticotropic hormone. If excessively released, it

promotes an overproduction of adrenergic neurotransmitters by

adrenal glands. Coming at clinical condition known as Cushing

syndrome. On the very long term, Nur77 deregulation is known to

cause tumors of the pituitary and adrenal glands [51], [52]. This

happens in pheochromocytoma, which is one of the main VHL

disease manifestations. We speculate that continuous VEGF

transcription, even in situations where HIF-1a (but not Sp1) is

knocked out, could be the explanation for clinical studies where

VEGF-targeting drugs have turned out to be effective in kidney

cancer treatment as reported in [53]. Although we used only

confirmed data from the literature, Nur77 may be involved in

other regulation systems which were not considered in our model.

The transitions for pVHL fibronectin stabilization show a

behaviour which is coherent with biochemical experiments,

illustrating a complete abrogation of ECM stabilization and an

increased matrix metallo-proteinase action. Although the results

are encouraging, the presented model will need further improve-

ments since standard PNs do neither allow a complete transition

control nor enzymatic activity modulation. Nevertheless, thanks to

its manual curation our model can be used to plan new in vitro and

in vivo experiments. The results are convincing enough to suggest

our model as a comprehensive pathway model to simulate the

main pVHL functions.
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