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Abstract

The hippocampus is one of the most widely investigated brain regions with its mas-

sive contributions to multiple behaviours. Especially, the hippocampus is subdivided

into the dorsal and ventral parts playing distinct roles. In this review, we will focus on

the ventral hippocampus, especially the ventral CA1 (vCA1), whose role is being

actively discovered. vCA1 is well known to be associated with emotion-like behav-

iour, in both positive (reward) and negative (aversive) stimuli. How can this small

region in volume mediate such variety of responses? This question will be answered

with technologies up to date that have allowed us to study in-depth the specific neu-

ral circuit and to map the complex connectivity.
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1 | INTRODUCTION

Hippocampus is known to be the most critical brain region in learn-

ing and memory. The substantial hippocampus, which physically

takes up a large portion of the brain, was primarily subdivided into

septal and temporal poles simply to categorize domains. However,

studies revealed differentiating roles within the hippocampus

allowing for categorization according to the function – dorsal and

ventral hippocampus (vHip). Anatomical and electrophysiological

studies have demonstrated long-axis gradients, whilst gene expres-

sion studies showed that demarcated functional domains are

superimposed.1

Early studies have led to a strong belief in the critical role of the

dorsal hippocampus (dHip) in learning and memory, resulting in con-

centrated research in this region.2,3 As for the vHip, the study of this

specific region began in an attempt to better understand emotion-

related behaviour, especially those that are associated with anxiety.4–7

Especially, understanding how emotions are generated from the vCA1

can further provide information related to various diseases such as

addiction, autism and anxiety. Neuroscience began with the observa-

tion of human brain anatomy which permitted defining its structure;

thus, it was limited to defining the function. Since hippocampus is a

relatively conserved brain structure among mammals, studying hippo-

campus in animal models like rodents can indirectly provide informa-

tion about human phenotypes.

This review is focused on studies primarily performed in rodents

to define the role of vCA1 participating in different behaviours with

multiple neural projections-starting from the earliest studies of the

vHip to more in-depth studies focused on social memory, fear, anxiety

and reward-related behaviours.

2 | HIPPOCAMPUS, THE PREMISE OF
MEMORY

Before understanding the role of the hippocampus, it is necessary to

mention the most relatable H.M case – over hundreds of hippocampal

studies were originated from this patient. The subject was treated

with bilateral medial temporal lobectomy to cure epilepsy. The treat-

ment resolved epileptic symptoms, however, the subject suffered

from severe side effects that led to the inability to form new memo-

ries. This severity of H.M's memory impairment has inspired scientists

to further investigate the role of the hippocampus in learning and

memory.8 H.M's case has intrigued many scientists to work on the
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hippocampus from its anatomical structure to its function. Similar to

the study of other brain sites, research of the hippocampus was ini-

tially focused on lesion studies. However, the advancement of molec-

ular biology, chemogenetics and optogenetics has allowed the

experiment to proceed in more detail – in a cell-type and a circuit-

specific manner.

Since the beginning of the hippocampal research, the subdivision

into the dorsal and vHip was clear, whereas there has been an active

debate on the individual role and function of the two regions9

(Figure 1). Discovering the roles of each subdivision has been a critical

step for further understanding how the hippocampus affects our

memory system. The clarification of each subdivision with each spe-

cific role and its mechanism will be the first clue to provide a break-

through for various clinical treatments on mental disorders (Figure 2).

3 | THE EARLIEST STUDIES OF THE vHip

Studies on the two subdivisions have allowed for a clear and fur-

ther in-depth understanding of the hippocampus. The spatial infor-

mation is processed by the dHip with its connection to the cortical

regions, whilst the vHip is more related to emotion due to its pro-

jection towards the amygdala and hypothalamus.3,10–14 Lesion

studies have historically been a fundamental technique in neurosci-

ence to investigate the necessity of the brain region under beha-

vioural observation.

Preliminary neuroscientific studies were less focused on the vHip,

but rather, mostly focused on the dorsal regions as considered impor-

tant for spatial learning.3,10,11 Male Long-Evans rats were tested for a

double dissociation between dHip and vHip lesions, and the only

dHip-lesioned mice showed impairment of spatial memory.11 Subse-

quent studies have shown controversial results10,15,16 as vHip N-

methyl-D-aspartate (NMDA) lesions affected the ability to rapidly

acquire a new context during the Morris water maze in male Long–

Evans rats.10

vCA1 and vCA3 are subregions in the vHip that play distinct roles

in learned approach-avoidance conflict processing.17 Both are also

well-known regions that encode spatial information. In CA3, place

cells are particularly distinct, especially along the longitudinal axis,

wherein the ventral axis has a larger spatial map than the dorsal

axis.18

Also, the vCA1 participating in spatial navigation further led to

the basic study of fear memory. Ventral hippocampus lesions disrupt

exquisite surroundings, which impacts the impairment of contextual

or spatial navigation (i.e. defence-like behaviour).12–14 Furthermore, a

decrease in the rate of habituation of exploratory responses, retarded

retention and extinction of fear conditioning were discovered in the

vHip lesioned mice.13,19

Lastly, there are many studies related to the cause of the anxio-

lytic effect. It has been reported that the selective temporal hippo-

campal lesions decrease anxiety, exhibiting an anxiolytic effect by the

failure of avoidance in the open arm task. Also, a decreased

F IGURE 1 Illustration of the hippocampal section (A) Mouse brain with the hippocampus along its longitudinal axis. (B) Coronal section of the
dHip. (C) Coronal section of the ventral hippocampus

F IGURE 2 Input and output pathways of the vCA1 (A) efferent pathway and (B) afferent pathway
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neuroendocrine stress response was observed during confinement to

a brightly lit chamber,12 which was not found in the lesion of the sep-

tal pole. As for the dHip, its lesion failed to drastically change any

defensive behavioural measure. Opposing results were obtained in

the vHip, which was conducted to fade defensive behaviour.14,20

4 | LIMITATIONS OF THE LESION STUDY

Lesion studies have provided the first idea that these subdivisions

play a different role, in an independent manner. Yet, as there cannot

be a fine line in lesion specification, studies that claimed to be con-

ducted under the same conditions showed conflicting results.6,21,22

Controversies on the distinction of the hippocampal subregions were

raised from the results of lesion studies.10,15,16 One explanation could

be that these differences were derived from the ambiguity of the

‘dorsal’ and the ‘ventral’ hippocampus.6 Bannerman et al.23 defined

the dorsal part as 50% of the whole hippocampus from the septal

pole, and the remaining half as the ventral part.7 Whilst studies from

the Moser group fixated on 20% of each pole, which was more

restricting but did not cover the lesion of the whole hippocampus.3,12

Furthermore, recently another subdivision of the hippocampus

was defined – the intermediate hippocampus.24 This is evidence that

partition of lesion is a limited method as it lacks accuracy. This impre-

cision could possibly affect other regions than the region of interest.

For more intricate hippocampal research, recent technology has

allowed for more accuracy. The hippocampus has been categorized

beyond the dorsal and ventral – the region has been further subdi-

vided within. The ventral and the dHip both are independently subdi-

vided into CA1, CA2 and CA3. This review will be mainly focusing on

the vCA1 subregion, which is actively being studied among other vHip

subdivisions.

5 | vCA1 AND THE EFFECT ON SOCIAL
MEMORY

The term ‘social memory’ was first implicated by Thor and Holloway

in 1982, by observing rodents that possess the ability to discriminate

conspecifics proving the capability of social recognition.25,26 This is

important for rodents as it gives the ability to forage, mate and create

a social hierarchy. The absence of sociability may even lead to nega-

tive emotions, as it was reported that once mice were isolated, they

showed impaired social memory27 and displayed depressive-like

behaviour.28,29 Preceding studies, which were simply focused on

observations of lesions, proved that the hippocampus plays a critical

role in sociability, but there was controversy on which specific part of

the hippocampus needs to be explored.21,22,26,30

It has been reported that the sociability of rodents can be repro-

duced in the laboratory by observing social interaction or social mem-

ory.30,31 Under this kind of setting, researchers could elaborate neural

pathways related to social behaving in rodents. Rodents show curios-

ity towards a never-before-met mouse, thus showing higher

investigating time to the “novel” mouse compared to the ‘familiar’
mouse. By artificially inhibiting and stimulating activated vCA1 neu-

rons through optogenetics, Okuyama et al.32 proposed that the

‘engram cells’ among the Nucleus Accumbens (NAc)-projecting vCA1

pyramidal cells are the key to storing social memory. Moreover, Tone-

gawa's group showed social memory recall via optogenetically reacti-

vating the ‘engram cells’, vCA1 neurons responding to the familiar

mouse, after a certain amount of time from the first exposure. Rao's

study extends to monitoring regions of the brain and concluded that

the vHip specifically responds to the presence of conspecifics with

elevated sharp-wave ripple activities,33 indicating that the vCA1 is the

core for memory and recognition, thus, discriminating familiar and

novel mice.

Additionally, recent research has connected social memory to the

dorsal CA2 (dCA2)-vCA1-NAc circuit.32,34–37 The input of dCA2

towards the vCA1 is required for memory processing including mem-

ory encoding, consolidation and recall. Then, social memory is stored

in the vCA1.35,37,38 The experimental mice tended to show less inter-

est towards familiar mice and interacted more with the novel mouse.

Such behaviour is mediated by the Nac that receives inputs from the

vCA1.32

In parallel, another pivotal pathway is rising from the vCA1 to

medial prefrontal cortex (mPFC). Chemogenetic activation and inacti-

vation were performed chronically with continuous clozapine-N-oxide

via water delivery to observe the participation of the vCA1-mPFC cir-

cuit in social memory- in both cases, social memory was impaired. Phi-

lips et al. have further demonstrated that this vCA1-mPFC pathway

mediates hyperactivation in Mecp2-mutant mice, with overrepre-

sented vHip fibres in the mPFC. The phenotype of this Rett syndrome

mouse model was similar to autistic-like behaviour, resulting in the

loss of ability to discriminate against familiar mice.39

6 | AUTISM AND SOCIAL MEMORY

A key characteristic of autism is the deterioration of social function;

therefore, observing mice with gene mutations associated with autism

is a textbook condition for observing sociability.40–43 Affected regions

of the brain can be identified through gene knockout (KO), and this

technique has been adopted by many studies to explore the influence

of autism on the brain.27,39,41,43 Once the importance of vCA1 in

social memory was discovered, studies can precisely define which

phenotype is the result of social memory in mouse model of autism.

The first target phenotype that creates autistic conditions is X-

linked heterozygous mutations in methyl CpG binding protein

2 (MeCP2). This has been proven by human studies that show patients

suffering from autism between 6 and 18 months specifically carry

phenotypes with deteriorated cognitive and social functions.44 The

deletion of MeCP2 made differences between the MeCP2 KO and

wildtype mice evident, as basal Fos activity was higher in the vHip of

the MeCP2 KO mouse.39 The three-chamber test and unrestricted

paradigms have proven that MeCP2 KO mice are incapable of storing

social memory. Owing to the superiority in number of activated mPFC
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projecting neurons compared to that of the lateral hypothalamus

(LH) projecting-vHip neurons, Phillips et al.39 have focused on the

identification of the vHip-mFPC neurons. The long-term potentiation

was not induced and chemogenetic inhibition via hM4Di has rescued

the social deficit of MeCP2 KO mice.

Various ex vivo and in vivo recordings have shown the connec-

tion between pyramidal neurons of vCA1 to the mPFC mainly located

in layers 2/3 and 5.39,45,46 Additionally, recent studies revealed that

the vCA1 pyramidal neurons also innervate PV+ neurons in the

mPFC.47 Phillips et al.39 performed wheat germ agglutinin (or WGA)

transsynaptic labelling with immunohistochemistry to determine the

pattern of innervating vHip axons in the mPFC. In WT mice, WGA-

labelled neurons were mainly excitatory pyramidal neurons whereas

MeCP2 KO mice showed an articulated fraction of PV+ neurons

-expressing inhibitory γ-aminobutyric acid (GABAergic) interneu-

rons.39 It had been previously reported that the PV+ neurons are

required for social discrimination,27,47 but in excess, these neurons

may cause an imbalance between excitation and inhibition in the

mPFC, which can affect the social memory formation.39

Shank3, a gene known to cause neurodevelopmental and neuro-

behavioural deficits in 22q13 deletion syndrome, is another clear fea-

ture associated with autism.48 Shank3 KO in mice resulted in reduced

levels of proteins, which are believed to function as scaffolds in the

postsynaptic density of glutamatergic synapses.48,49 Moreover, it is

reported that by deleting Shank3 gene in mice resulted in higher levels

of self-grooming alongside social behaviour and novel object recogni-

tion impairment.50,51 Impairment in long-term social memory (24 h)

was observed in Shank3 KO mice, whilst the social memory was main-

tained in the short term (30 min). The connection of mPFC with the

hippocampus was observed earlier in Shank3 mice by Harony-Nicolcas

et al.52 describing that the dorsal CA1 (dCA1)-prelimbic mPFC cir-

cuitry displayed attenuated synaptic plasticity. In Shank3 KO mice,

reduced sociability has led to observed disruption of sharp-wave rip-

ples. Neurons activated during social behaviour underlying in the

vCA1 were minor in Shank3 KO mice, which resulted in an inability to

socially discriminate.53

Defining the synaptic bases related to social behaviour would

provide an insight to understand psychiatric disorders such as schizo-

phrenia or depression, as this phenotype is articulated in a mouse

model of autism.53 Among the hippocampal subregions, dysfunction

in CA1 is specific to schizophrenia, whereas dysfunction in CA2/CA3

is attributed to schizophrenia and bipolar disorder. Given that the

vCA1 has a strong projection to the mPFC and ventral subiculum

(vSUB) which are both involved in schizophrenia it is a suitable region

to study psychiatric disorder.39,54

7 | vCA1 AND THE EFFECT ON FEAR
MEMORY

Fear conditioning being simple yet compelling acts as the premise of a

behavioural paradigm allowing in-depth study of circuit mechanisms.

For a whilst, research was mainly focused on the dorsal hippocampal

CA1 as a key region of contextual fear memory.2,56,57 Early studies

based on the lesion studies demonstrated that the vHip was not

involved in contextual fear memory. Beginning with ibotenate lesion

studies in the 1990s, the role in fear memory of the vCA1 was first

mentioned.3,10–14 However, these lesion studies showed some dis-

crepancies over the functions and even were not enough to study in

circuit levels. New approaches not only allowed to discover the role

of vCA1, but also its circuit and its underlying mechanism.

To elucidate the importance of vCA1 in encoding contextual

information, various manipulations were performed both in vivo and

ex vivo. Recent studies remarkably empowered the role of vCA1 by

using miniscope calcium imaging, electrophysiology and optogenetics.

Memory retrieval was the primarily well-known role of the vCA1 dur-

ing contextual fear memory with projections towards both mPFC and

basal amygdala (BA) pathways.13,19,57–62 It has been reported that a

subset of vCA1 neurons send dual projections to mPFC and BA.57,59–

61,63 Furthermore, as vCA1 neurons are important for context acquisi-

tion, it is also important to mention its role in the memory encoding

process.62 Jimenez et al.58 recently revealed that activated vCA1 neu-

rons during fear conditioning were necessary for memory encoding,

and another subset of neurons activated during memory retrieval are

correlated to the shock-encoding neurons. However, there still are

discrepancies to defining vCA1 neurons between the shock-encoding

neurons and contextual neurons.58,62,64

As the amygdala is the core region of fear responses, vCA1 neu-

rons also project into the central amygdala (CeA), inspite of having a

weaker response.65,66 A further studies by Xu et al.67 added that the

central amygdala is required for context-dependent retrieval of cued

fear memory.

Furthermore, the connection between the vHip and mPFC in fear

memory is also being actively investigated. Both PL and IL receive

input from the vHip that are uniquely involved in fear renewal rather

than the suppression of fear extinction. Maren et al.56 have several

works on this subject,56,59,60,68,69 from which they have asserted that

fear renewal is driven by vHip neurons by fostering fear expression

with PL activation and limiting fear suppression by inhibiting IL.70

Also, inhibition of the vHip-PL during memory acquisition disabled

memory recall, suggesting that the vHip updates any current spatial

information to the PL.71 In a behavioural paradigm in which mice learn

to discriminate between a safety cue and foot shock cue, vCA1 neu-

rons projecting to the prelimbic cortex showed higher population

activity when exposed to safety cues. This suggests a possible role for

this circuit in inhibiting fear expression.72 In addition, Val 66 Met, a

human variant of the brain-derived neurotrophic factor (BDNF) gene,

is known to be associated with impaired fear extinction. Giza et al.73

demonstrated that the BDNF Met prodomain reduces dendritic spines

and eliminates synapses in the hippocampus. Their study was pro-

longed to an in vivo study, where they confirmed similar morphologi-

cal changes (reduction of dendritic spine density and prelimbic

projections) were observed in the vCA1 of periadolecent mice,

coupled with impaired fear extinction. In adolescent BdnfMet/Met mice,

the similar spine and prelimbic innervation deficits were found. Also,

fibre photometry experiment has proven that vCA1 neurons
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projecting to the prelimbic encode extinction. As with relapse of fear

memory, vCA1 neurons projecting to the CeA is known to mediate

this process as inhibiting this pathway abolishes fear renewal

response.67 vCA1 neurons projecting to the infralimbic cortex was

shown to recruit PV+ interneurons thereby applying feed-forward

inhibition to mediate fear relapse.74

8 | VCA1 AND THE EFFECT ON ANXIETY

A strong connectivity between the mPFC and vCA1 has been

reported in many previous studies, yet it was unknown whether

vCA1-mPFC neurons are related to anxiety.39,57,59–61,63,72,75 Neurons

residing in the mPFC are able to differentiate safe and aversive loca-

tions during elevated plus maze (EPM).75 Also, the high correlation

between theta-frequency activity of the mPFC and vCA1 in an anxio-

genic environment strengthens the importance of this circuit.75,76

Anxiety-related behaviour can be examined by inhibiting vCA1-mPFC

circuit by hyperpolarising ion pumps, known as Archaerhodopsin

(ArchT). Moreover, observation of live cell recording of vCA1 neurons

projecting to various regions shows inputs towards the mPFC exhibit

higher neuronal activity than other brain regions during EPM.77

However, a different claim also exists – the work by Kheirbek's

lab proposed a conflicting result concluding that showed a different

result, that the activation of vCA1 axon terminals projected to the LH

increases anxiety-like state.78 Both electrophysiology and miniature

miniscope recordings have revealed that the vCA1 neurons were

selectively activated in the open-arm session during the EPM, in

which the neurons exhibited a significantly higher rate of Ca2+, and

especially neurons projecting from the LH are responsible for inducing

anxiety-like behaviour and avoidance.78 The authors suggest that this

inconsistency was found in line with the theory of LeDoux, who pro-

claimed that thalamic ‘low’ and cortical ‘high’ roads are both critical

to auditory fear processing. 79

Accordingly, a similar paradigm was performed in the vCA1-NAc,

vCA1-lateral septum (LS) circuit demonstrating that the input of the

vCA1 towards NAc and LS also impacts anxiogenic behaviour.80,81

Glangetas et al.82 added that this anxiolytic behaviour is driven by

NMDA receptors dependent long-term potentiation of vCA1/vSUB to

BNST (bed nucleus of the stria terminalis) pathway. This was proven

as the inhibition with NMDA receptors antagonist in BNST blocked

(disrupted) anxiolytic effect mediated by high frequency stimulation

of vSUB and vCA1.82

The last downstream target is the ventromedial hypothalamus

(VMH), and the social interaction was observed to see the influence

on aggressive behaviour. Unlike the previously reviewed studies, this

report focuses on maximized aggressive behaviour manipulated by

post-weaning social isolation, which is followed by foot shock-induced

stress then exposure to a stranger mouse. This setting increased

attacking behaviour which was the mainly observed response. By sup-

pressing the activity of vCA1-VMH neurons with hM4Di the attacking

behaviour was decreased, contrary to when the activated attacking

behaviour was restored. These findings show connectivity between

attacking behaviour and vCA1-VMH. Open field test (OFT) testing

was also conducted by artificially activating VMH-vCA1 projecting

neurons resulting in anxiogenic behaviour in rats depict by the pre-

ferred periphery positioning compared to centred positioning.84

Projections from the posterior BLA are well-known for the affer-

ent pathway involved in anxiogenic behaviour.78,84–88 Pi et al.86 have

subdivided BLA in anterior–posterior, and vCA1 with deep layer (cal-

bindin1-negative), and superficial layer (calbindin1-positive). These

subregions are specifically connected to the corresponding subregion:

anterior BLA (aBLA) innervating deep layer whereas posterior BLA

(pBLA) is innervated in the outer layer of vCA1. Photostimulation of

the pBLA-vCA1 has led the mice to exhibit anxiolytic behaviour,

whilst aBLA-vCA1 mediated anxiety-like behaviour.86 Anxiety can

also cause such symptoms when a subject experiences unpredictable

chronic mild stress.85,87 Decreased phosphorylation of GluA1 affect-

ing AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid

receptor) function due to chronic stress can weaken the connectivity

of pBLA-vCA1, inducing depressive-like state and anxiety.85

Chronic restraint stress (CRS), which mediates social avoidance

and anxiety-like behaviours also has an effect on the increase in ace-

tylcholine muscarinic receptor (mAChR) in vHip. This social avoidance

behaviour was further rescued by mAChRs antagonist, by suppressing

excitatory synaptic transmission.89 Furthermore, unlike male subjects,

anxiety behaviour was unnoticed in females. Fos immunohistochemis-

try shows stronger enrolment of vHip in innate anxiety in male mice.90

This anxiety-like behaviour was shown to be specifically associated

with the activation of vCA1 among other subregions in the vHip.17

9 | REWARD-RELATED BEHAVIOUR, A
GUIDE TOWARDS ADDICTION

Motivational behaviour can lead to two opposing consequences –

either extremely strong (addiction) or practically absent (depres-

sion). This is due to how the subject inputs the surrounding envi-

ronment and interprets them. The subjects' interpretation of

surrounding input is then behaviourally shown as the subjects'

deportment. Studying motivational behaviour can be replicated in

two ways; either exhibiting approached seeking behaviour or oppo-

sitely avoiding punishment.

Between the two different motivational behaviours, an avoidance

mediated paradigm requires only simple and straightforward tasks,

whilst rewarding rodents take a lot longer for training due to complex

behavioural tasks. Seeking behaviour is the most common behaviour

of rodents to translate their motivation – thus, most of the experi-

mental animals undergo food or water deprivation before the experi-

ment. Nucleus accumbens (NAc) has always been the core region

mediating social behaviour, commonly known to generate goal-

directed behaviour.91–93 In reward-related behaviour, the NAc is the

most observed region of the brain as it is considered as the neural

interface between motivation and action with its dynamic dopaminer-

gic effect.92,94 Especially, the connectivity between ventral tegmental

areas, another source of dopamine, is well studied.95,96
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Recent studies have yielded strong evidence that the role of

the hippocampus is important, as much as NAc, which is necessary

and sufficient to modulate seeking behaviour during reward.97,98

The subregions of the hippocampus are known to encode differ-

ently during reward; dCA1 is more likely to encode reward proxim-

ity, whilst vCA1 neurons are more likely to predict reward.99 To

understand the connectivity of the vCA1 to the NAc, Zhou

et al.100,101 investigated the labelling of engram cells in each region

during cocaine-conditioned place preference (CPP). Their chemoge-

netic inactivation data revealed that the non-cocaine control

engram cells in the vCA1 affect the retrieval of cocaine CPP mem-

ory, suggesting that the vCA1 engram cells are involved in only

contextual information for a specific reward memory. Activation of

the NAc core was sufficient for CPP, whilst vCA1 neurons were

silenced, suggesting that the NAc core engram cells projecting from

the vCA1 are important for memory recall.100,101 Moreover, by

using D1-cre driver line, Zhou et al.100,101 reported that the main

cell type of vCA1 to NAc core engram cells were D1 cells, rather

than D2 cells.

Due to the diverse connectivity of vCA1, not only the NAc but

other regions are also connected to the vCA1. A symbolic region is a

lateral septum and this region plays an essential role in feeding behav-

iour. The LS connection to the vHip (mainly targeted ventral CA3

[vCA3] and dentate gyrus) was previously discovered and showed that

optogenetic activation of the vHip-LS reduces food intake.103 As for

the vCA1, during the goal-directed food-seeking lever-press behav-

iour task, vCA1-LS neurons exhibited a higher rate of calcium activity,

especially during the food intake.81 Reward omission reduced the

activity of LS-projecting vCA1 neurons, suggesting that vCA1-LS neu-

rons are specific to the food reward.103

Interestingly, another study by Yoshida et al.104 demonstrated

that decreased calcium activity of vCA1 pyramidal neurons promotes

the sustainment of goal-directed lever pressing. Here, goal-directed

behaviours not only include the obtention of a reward but also the

avoidance of punishment, wherein such behaviour was enhanced

when vCA1 neuron activity decreases due to suppressed aversive

emotional states as mediated by serotonergic neurons from the

median raphe region.104

Motivated behaviour can be observed simply by providing direct

‘reward’ to the subject, but it can also be observed indirectly by

inducing ‘hopefulness (HF)’ or ‘helplessness (HL)’-modulated behav-

iour. The two notions were respectively introduced to the subject by

anticipated avoidance training and foot shocks. HF animals appeared

to carry potentiation of spatial learning with strengthened posterior

BLA-vCA1 connectivity since this connection was faded in HL mice

accompanied with memory deficit. Optogenetic modulation has

allowed to artificially potentiate pBLA-vCA1 connections in the HL

mice, and this was sufficient to mimic the phenotype of HF mice.105

Another very interesting study was recently carried out by Lin's group

showing that the inputs to dCA3 from vCA1 are crucial in spatial

memory.106 This was proven as silencing of vCA1-dCA3 circuit

impaired spatial learning and memory during the object location mem-

ory test and the object recognition memory test.106

10 | COMPLEX CONNECTIVITY

Various studies have been conducted to show the diversity of vCA1

neurons; studies focusing on behavioural, circuit specificity, cell type

and its relying molecular mechanisms.64,78,79,82 Recent techniques

have allowed accurate investigation of neural projections in a cell-,

circuit- and time-specific manner. A subset of vCA1 neurons can be

activated in multiple behavioural tasks, and several projections play

multiple roles.

In recent years, active interest of interneurons has risen support-

ing the idea that these neurons are as critical as excitatory neurons.

Furthermore, through mapping technology, we are now able to visual-

ise the connectivity of vCA1 neurons into different regions. The ques-

tion of whether the vCA1 neurons are necessary or sufficient to

trigger such phenotype will be the next confronted question. Similar

to the importance of pyramidal neurons in social memory, among

interneurons, PV+ neurons residing in the vCA1 region have been the

focus of research as a key cell type that mediates social mem-

ory.27,32,35 It has been reported that hippocampal GABAergic inter-

neurons exhibit greater cellular diversity compared to pyramidal

neurons. This firing action potential of the theta cycle, which are inter-

acted with glutamatergic inputs that are necessary for synaptic tem-

poral dynamics and network oscillations.106,107 Moreover, among

different types of interneurons, PV+ neurons have been shown to

control the activity of their target cells.107,108

Pyramidal neurons and PV+ neurons both play an important role

in social memory retrieval and recognition of conspecifics, yet it is still

unclear whether and how these neurons are interrelated. Along with

the importance of PV+ neurons in social memory, the plasticity of

PV+ neurons critically mediates long-term consolidation of spatial

memory. It is partially influenced by D1/5 dopamine receptor signals,

which causes DARPP-32 and ERK phosphorylation in the PV+ inter-

neurons.110 Studies that define cell types remain lacking, hence,

molecular approaches will be an upcoming challenge.

In addition to the studies that were previously mentioned above,

mapping axonal projections enabled visualizing neural projections

deriving from the vCA1. It has been studied that vCA1 are connected

to various distinct brain regions – projecting to the NAc, mPFC, LS,

LH, BNST, VMH and amygdala. These findings were first performed

by observing neural alterations in a specific behaviour task and adding

to this recently, reconstruction and mapping of long-range projections

consolidated the information regarding the heterogeneity of vCA1

neurons. The manoeuvre of juxtacellular labelling permitted tagging

single neurons with neurobiotin. By determining soma location and

dendritic arborization, the author identified three major distinct routes

of vCA1 pyramidal neurons.110 To analyse how various types of infor-

mation are controlled in these diverse pathways, Ciocchi et al. manip-

ulated tetrode recordings and antidromic spiking analysis with an

optic stimulus in vCA1, whilst performing different behavioural tasks

– spatial memory, reward and anxiety.77 vCA1 neurons seemed to be

selective to each task with its selective pathways, but triple projecting

neurons which are responsive to the overall task were exigent exhibit-

ing a high firing pattern. More recently, the assessment of high-
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throughput sequencing of genetically barcoded neurons (MAPseq)

enabled axonal tracing of thousands of vCA1 neurons. Distinct path-

ways selectively receiving the vCA1 inputs and outputs were identi-

fied via molecular profiling in support with the viral tracing of vCA1.63

The transcriptional profiles of vCA1 and dCA1 are distinct from

each other.112 Although most of the inputs of the former come from

the intrahippocampal regions, which are stronger along the rostral-

caudal axis and are distinct from those of dCA1, both have regions

that still receive similar inputs from the amygdala nuclei and olfactory

areas.113

To understand the heterogeneity of vCA1, researchers focused

on tracing vCA1 neurons in distinct pathways over time and achieved

to define multi-projecting neurons. Nonetheless, several neural pro-

jections participate in multiple behavioural features, such as the

vCA1-mPFC pathway engaged in the social memory and fear memory.

In addition, between vCA1 and BLA, the projection is not unilateral

but rather bidirectional. Understanding how neurons interplay within

the same pathway whilst the subject is exposed to different behav-

iours seems to be prominent in the future.

11 | CONCLUSION

The hippocampal complex is one of the most important fields of neu-

roscience. Hippocampal research has been mostly centred on the dor-

sal region, thus, only recently ventral region studies focusing on the

role of the vCA1 as a pre-region has become a topic of interest. The

recent study driven by Tao et al.113 has proposed that unlike the

dCA1, vCA1 receives inputs from the subregions of olfactory areas

and amygdala nuclei. Even though several afferent regions are known,

studies focusing on the inputs towards the vCA1 with its specific role

would be prominent.

Also, unlike the dHip, subregions other than the vCA1 in the vHip

require further investigation. vCA3 and the vSUB are progressively

being investigated, but there are still many questions to be answered.

Recent papers still use the term ‘vHip’ rather than specifying the sub-

region.88,114 It has been suggested that the inner layer and the outer

layer within the vCA1 play different roles. The rise of the technology

will provide an insight of heterogeneity in the vHip.

The connections of vCA1 are complex, most of the neurons are

projected towards two distinct regions, and some neurons exhibit

even triple connectivity. It has been proved that vCA1-BA and

vCA1-mPFC have individual projections during fear-related memory,

whilst some mPFC-projecting vCA1 neurons were indirectly project-

ing to the BA.62 The interpretation of these overall task-activated cells

would be the next challenge.

To enclose, the hippocampus has remained largely unfamiliar to

neuroscientists, and through the exploration of its role in memory and

spatial processing and navigation, we can understand how memory is

formed and stored. Rodents were used in this study as they have

genetic similarities with humans. Human episodic memories have

been proven to be analogous to those of rodents and both also have

similar heterogeneity functions along the anteroposterior axis.73,115

However, there are still discrepancies in the frequency of theta

between the two species116; hence, it is necessary to perform further

investigation to graft our findings to human behaviour.
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