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Abstract

Computer-aided Diagnosis (CADx) based on explainable artificial intelligence (XAI) can gain 

the trust of radiologists and effectively improve diagnosis accuracy and consultation efficiency. 

This paper proposes BI-RADS-Net-V2, a novel machine learning approach for fully automatic 

breast cancer diagnosis in ultrasound images. The BI-RADS-Net-V2 can accurately distinguish 

malignant tumors from benign ones and provides both semantic and quantitative explanations. The 

explanations are provided in terms of clinically proven morphological features used by clinicians 

for diagnosis and reporting mass findings, i.e., Breast Imaging Reporting and Data System (BI-

RADS). The experiments on 1,192 Breast Ultrasound (BUS) images indicate that the proposed 

method improves the diagnosis accuracy by taking full advantage of the medical knowledge in 

BI-RADS while providing both semantic and quantitative explanations for the decision.
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I. INTRODUCTION

The Breast cancer is the most common cancer in women and causes the second-highest 

number of deaths among all cancers [1]. Early discovery and treatment can prevent 

breast cancer from becoming severe and significantly increase the survival rate [2]. Breast 

ultrasound is a highly effective imaging method for diagnosing breast cancer. It is non-

invasive, painless, and does not involve exposure to radiation [3].
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Artificial Intelligence (AI) technology is rapidly advancing, and many people anticipate that 

Computer-Aided Diagnosis (CADx) systems will have a significant impact on diagnosing 

breast cancer using ultrasound, particularly in areas with a shortage of medical resources [4]. 

In recent years, CADx systems have demonstrated competitive or even superior performance 

compared to human physicians [5] while providing increased reproducibility [6]. However, 

the widespread acceptance of CADx systems for sonography has been limited by the lack of 

transparency and explainability in these systems [7].

For breast cancer, the consequences of diagnostic errors can be severe [8], with delayed or 

missed diagnoses potentially delaying treatment and endangering patients’ lives. Conversely, 

a misdiagnosis can result in heavy emotional and financial burdens on patients. Therefore, 

both physicians and patients require an understanding of the internal mechanism and 

decision-making process of the CADx system before accepting a diagnosis.

As the importance of transparency and explainability in CADx systems has been 

increasingly recognized, researchers have developed methods to make these systems more 

explainable [9], [10], [11]. These methods can be broadly categorized into two groups. 

The first group introduces explainable or trackable components in the model, which are 

used to make decisions [11], [12], [13]. However, these methods often involve trade-offs 

between performance and explainability. Additionally, some methods [9], [14], [15] generate 

visual explanations based on attention mechanisms, but these explanations are not always 

well-accepted by physicians [16], [17]. The second group of methods use post-hoc analysis 

to interpret existing models [18] and have no impact on the performance, but these 

explanations may be difficult for patients and clinicians to understand, and further research 

is needed to connect them to medical knowledge.

This paper presents a novel network architecture called BI-RADS-Net-V2 for identifying 

breast cancer in ultrasound images. The system consists of three key components: a core 

classifier that predicts the type of mass (benign or malignant), a multi-branched network 

that functions as a semantic explainer by predicting Breast Imaging-Reporting and Data 

System (BI-RADS) descriptors (as detailed in Section II-A), and a quantitative explainer 

that approximates the classifier’s decision by combining the BI-RADS descriptors and 

providing clear explanations. The proposed model offers several advantages. By providing 

semantic explanations based on BI-RADS, the output can be easily understood and accepted 

by physicians and radiologists, as the BI-RADS descriptors are based on morphological 

features they use daily. The multi-task learning framework allows for medical knowledge 

in BI-RADS to enhance the classifier’s generalization ability, leading to better performance 

than single-task models. Additionally, the quantitative explainer provides insights into the 

inner workings of the classifier for each sample, allowing for a clearer understanding of the 

importance of different BI-RADS descriptors in the diagnostic process.

The main contributions of this paper are as follows.

• A complete CAD system that concurrently outputs the tumor class, BI-RADS 

likelihood of malignancy, the BI-RADS descriptors, and the contributions of 

each descriptor.
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• A network architecture with a regression branch to handle the inherent noise 

in the ground-truth labels for the BI-RADS categories caused by inter-observer 

variability.

• Increased tumor classification accuracy via learning feature representations 

related to clinical descriptors; and

• The capacity to assess uncertainties in the model outputs for individual BUS 

images based on (dis)agreement in the predictions by the different model 

branches.

The remaining content of this paper is organized as follows. Section II reviews the current 

CAD for BUS images and XAI research. Section III describes our BIRADS-Net model. 

Section IV presents the experimental results on a combined dataset and analyzes the results; 

and finally, section V summarizes the paper and discusses future work.

II. RELATED WORK

A. BI-RADS

BI-RADS is a risk assessment system that standardizes the assessment, reporting, and 

training for breast imaging diagnosis. Published and trademarked by the American College 

of Radiology, BI-RADS has played an essential role in breast cancer diagnosis and 

reporting worldwide. The system applies to ultrasound, mammography, and MRI. BI-RADS 

summarizes a mass finding for breast ultrasound by one of the seven assessment categories 

(see Table 1). Except for categories 0 (incomplete) and 6 (biopsy-proven malignancy), 

the other categories correspond to the different odds of malignancy. Category 1 (no mass 

detected), 2 (benign), and 3 (risk malignancy 0-2%) indicate a meager chance of cancer, 

and category 5 indicates an extremely high risk of cancer. Category 4 is divided into three 

subcategories. Category 4a indicates mass finding with low risk from 2% to 10%, and 

category 4b indicates intermediate risk, 10% to 50%. Category 4c indicates moderate risk 

(50% to 95%) of malignancy. Clinically, follow-up is usually recommended for categories 3 

and 4a, while categories 4c and 5 usually require biopsy examination.

BI-RADS standardizes diagnosis through pre-defined representative descriptors. The pre-

defined breast sonographic image lexicon includes six morphologic features of solid mass 

findings: shape, orientation, margin, boundary, internal echo pattern, and posterior acoustic 

features. According to the BI-RADS lexicon, the shape of a mass could be oval, round, or 

irregular; the orientation could be parallel or not parallel to the skin; the margin features 

of a mass include circumscribed, microlobulated, indistinct, angular, and spiculated; the 

echo pattern inside the mass could be anechoic, hyperechoic, isoechoic, hypoechoic, and 

complex; the boundary features include abrupt interface and echogenic halo; the posterior 

acoustic features include shadowing, combined, enhancement, and no posterior acoustic 

features. The BI-RADS lexicon covers the most critical breast ultrasound image features 

for diagnosis. Some of these features could effectively identify benign mass from malignant 

mass and are accepted by doctors worldwide.
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There are apparent advantages in building a diagnosis system based on a proven 

and effective knowledge system. Doctors and radiologists use BI-RADS daily for 

diagnosis. Automated diagnostic systems based on BI-RADS are more similar to the 

diagnostic thinking of physicians, and end-users can easily understand the BI-RADS-based 

explanations given by the system.

The descriptors in the BI-RADS lexicon are highly discriminative, and the medical 

knowledge in them can effectively improve the accuracy and generalization ability of the 

system. Based on the above reasons, we introduce BI-RADS into the CAD system and 

explain the system decisions based on BI-RADS.

B. EXPLAINABLE ARTIFICIAL INTELLIGENCE

As modern machine learning techniques achieve extraordinary success in a growing number 

of fields, the short-comings of machine learning algorithms, especially deep network 

models, in terms of lack of transparency and interpretability, are increasingly drawing the 

attention of researchers [19], [20]. XAI is becoming a popular research area in recent 

years. Došilović et al. [21] categorize the approaches to transparency and explainability 

into integrated and post-hoc methods. The former uses transparent, human-understandable 

information to construct models that can effectively explain the decision-making process. 

However, the usage of these models is associated with a trade-off between transparency 

and performance [22], [23]. The post-hoc methods extract information from existing models 

without impacting performance. Due to sample space and methodological limitations, there 

is a risk that these methods may not fully reflect the characteristics of the model and may 

produce misleading interpretations.

The requirements for interpretability vary by application type. Samek et al. [24] divided the 

interpretation methods into explaining learned representations [10], [25], [26], [27], [28], 

[29], explaining individual predictions [30], [31], [32], [33], explaining model behavior 

[34], and explaining with representative examples [18], [35]. The widespread use of neural 

network models has contributed significantly to developing the first class of methods. 

However, due to the complexity of modern machine learning methods, the effective 

explanation is still an open problem.

C. EXPLAINABLE ARTIFICIAL INTELLIGENCE IN HEALTHCARE

High-stakes applications such as medical image diagnosis require more explainability than 

general applications. The majority of the current work on XAI in medical image diagnosis 

employed model saliency to outline important regions in images that contributed the most to 

the model prediction [36], [37]. Accordingly, the attention mechanism in the neural network 

model is also used to label organs and tissues to be focused on from medical images [38]. 

Explainable models based on saliency or attention have a certain degree of explanatory 

power. However, there are still some limitations to the clinical meaning of these explanations 

and their acceptance [16], [17], [39].

Based on the Thyroid Imaging Reporting and Data System (TI-RADS), Zhang et al. 

[12] leveraged clinical features for XAI of thyroid nodules diagnosis. Another trend is 

concurrently processing medical images and creating textual reports similar to clinicians’ 
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reports when interpreting medical images [40], [41]. Interpretable computer-aided diagnostic 

systems have great potential for application, while at the same time, interpretability issues 

in medical images present new challenges for the research community. These challenges 

are due to the tremendous diagnostic risks and include long-standing difficulties in the field 

of medical image processing, such as small sample size, low contrast, variety of image 

acquisition devices, and non-uniform image formats, among others.

The explainable ML algorithm for breast cancer CADx has been explored by researchers. 

Shen et al. [42] developed an interpretable ML classifier capable of producing pixel-level 

saliency maps to indicate the location of suspicious lesions in mammograms. Similarly, 

Wu et al. [43] proposed a convolutional network architecture called ‘DeepMiner,’ which 

used expert annotation to correspond the feature map of the last convolutional layer to 

the BI-RADS lexicon, thus giving a BI-RADS lexicon-based explanation while providing 

prediction about mass type. Kim et al. [9], [15] proposed a NN model that used the shape 

and margin features of the mass to produce a saliency map that justified the prediction 

given by the model. Due to the use of visualization-based interpretation methods, the above 

methods were weak in interpretation and not easily understood by end-users. At the same 

time, these methods utilized only a small portion of the medical knowledge in BI-RADS, 

and there was still great potential for BI-RADS-based interpretable diagnostic systems.

Although automatic breast ultrasound diagnosis systems have gained significant progress 

in the accuracy of recognition and segmentation, relatively little research has been done 

on interpretability. Shan et al. [10] designed a series of computational features based on 

BI-RADS and used a bottom-up approach for feature selection. After comparing several 

classifiers, the authors conclude that margin-based and orientation-based features have the 

most vital discriminative power. Zhang et al. [11] designed an interpretable BUS CAD 

system in which a pre-processing process was introduced to enhance the shape and margin 

features in the input BUS images. The authors then used a neural network based on 

auto encoder-decoder (AED) to predict tumor types and reconstruct the input images. 

The approach in [11] only considered shape and margin descriptors, and the system did 

not explicitly output the probabilities of these two descriptors as an interpretation of the 

prediction results. In addition, neural network models that can generate textual diagnostic 

reports of breast ultrasound images have been reported in the literature [44] and saliency-

based methods for identifying interpretable salient regions in breast histopathology images 

[45]. Although some research exists, interpretable automatic BUS CAD is still an open field 

for further research and exploration.

III. PROPOSED EXPLAINABLE CADx SYSTEM FOR BREAST CANCER 

DIAGNOSIS

This section presents the proposed CADx system with integrated explainability, including 

the network structure, loss function, available dataset, and implementation details. We also 

present the evaluation metrics for the classifier, Explainer I, and Explainer II, respectively.
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A. NETWORK ARCHITECTURE

The architecture of the proposed BI-RADS-Net-V2 is given in Figure 1. The architecture 

consists of a shared backbone network and three functional components. The three 

functional modules are a classifier that determines the category of the mass, a multi-task 

semantic explainer that predicts BI-RADS descriptors and likelihood of malignancy (BI-

RADS assessment), and a quantitative explainer that predicts the contribution of each 

selected BI-RADS descriptor. To simplify the notation, in the rest of the paper, the 

semantic explainer and quantitative explainer are referred to as Explainer I and Explainer II, 

respectively.

The backbone network employs pre-trained convolutional layers and pooling layers to 

extract relevant features from the input BUS images, and then the feature maps are shared 

by the functional modules. In this subsection, we describe the specific structure of each 

of the three functional modules. The classifier is a convolutional neural network with 

binary outputs. For an input BUS image, the classifier predicts whether the mass finding 

contained in the image is benign or malignant. The classifier’s input consists of the features 

obtained by the backbone network and the judgments given by Explainer I, which are the 

BI-RADS assessment and descriptors. This design is because the BI-RADS assessment 

and descriptors contain high-level medical knowledge that helps the classifier make more 

accurate judgments.

1) SEMANTIC EXPLAINER—Explainer I consists of a regression branch that predicts 

the BI-RADS likelihood of malignancy, and a group of classifications branches that output 

the BI-RADS descriptors (see Table 2). In detail, the shape has 2 classes (parallel and 

not parallel), orientation has 3 classes, echo pattern has 6 classes, and posterior features 

has 4 classes. The margin can have multiple annotations. For instance, a tumor with a 

not circumscribed margin could be both indistinct and spiculated. Therefore, we employed 

a different approach to predict the margin descriptors. A margin branch predicts whether 

the margin is circumscribed or not, and afterward, four sub-branches are introduced to 

output binary values of margin sub-classes, including indistinct, angular, microlobulated, 

and spiculated.

The predictions of the multi-task branches are integrated with the shared feature map, 

and then the features are fed to the regression to predict the BI-RADS assessment. We 

use the likelihood of malignancy, a continuous value from 0% to 100%, to replace the 

discrete BI-RADS assessment. The likelihood of malignancy reflects the probability that 

the input BUS image contains a malignant tumor. The continuous likelihood values could 

be considered as the result of smoothing over the discrete labels. It is more robust to 

inter-observer variability than the discrete assessments and can reduce the impact of label 

noise. The tumor classification branch predicts the tumor type by integrating the BI-RADS 

descriptors, the likelihood of malignancy, and the shared feature map.

The objective of Explainer I is to explain the classification results semantically. 

Explainability is achieved by reporting the BI-RADS descriptors and likelihood of 

malignancy. We hold that this information would be beneficial and valuable to clinicians 

for interpreting BUS images. First, this information provides a link between the information 
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processing by the CAD model and medical diagnosis by clinicians. Namely, clinical 

interpretation involves observing the shape, orientation, margin, echo pattern, and posterior 

features of masses, in combination with associated features (duct, skin changes), exceptional 

cases (implants), and considering additional information, such as the patient medical history, 

age, lifestyle, or known risk factors. Therefore, CAD systems that predict the BI-RADS 

descriptors can be valuable, as they can be related to the mental process undertaken by 

clinicians during BUS interpretation. Second, the provided information can be helpful for 

the reporting phase. Third, all CAD models inevitably make predicting errors (i.e., the 

accuracy on unseen images is always less than 100%). Evaluating the uncertainties in the 

ML predictions on individual BUS images is especially challenging: whenever there is a 

discrepancy between a clinician’s interpretation and the CAD tumor class prediction on 

an individual BUS image, the clinician might be suspicious about the CAD prediction. 

Providing explanations via the BI-RADS descriptors and the BI-RADS likelihood of 

malignancy can assist clinicians in understanding the level of uncertainties in the model’s 

output on individual BUS images. Subsequently, the provision of explainability using the 

BI-RADS lexicon can increase the trustworthiness of clinicians in the CAD systems.

The explanations given by Explainer I differ from the post-hoc explainability approaches 

for deep learning models, where explanations of the decision-making process for a model 

are provided after the training phase is completed. Instead, we use a single end-to-end deep 

learning model that furnishes explainability concurrently with the training/testing phases. 

We justify this approach because we relied on a clinically validated set of visual features—

the BI-RADS descriptors—to explain BUS image analysis.

It is worth mentioning in a separate note that training independent NNs for the risk of 

malignancy and the BI-RADS descriptors may achieve similar performance. However, the 

output of these independent NNs is not considered an interpretation of the classifier because 

it uses different features. Explainer I shares the feature map with the classifier, providing 

Explainer I with the ability to explain the classifier. Independent neural networks, on the 

other hand, do not have the ability to explain.

2) QUANTITATIVE EXPLAINER—Explainer II constructs a quantitative explanation 

based on the classifier and Explainer I. The core idea of Explainer II is to approximate the 

classifier that is considered a ‘black-box’ with an explainable linear model. There have been 

methods with similar ideas applied to other image data [46], [47]. The output of Explainer 

I is categorized into benign favoring and malignant favoring groups. The benign favoring 

group includes 5 descriptors, and the malignant favoring group includes 11 descriptors. With 

the shared feature map as input, Explainer II predicts two weight vectors for the two groups, 

respectively. Then the dot products between the feature group and the predicted weight are 

calculated. In this way, Explainer II has two outputs, corresponding to benign and malignant. 

We expect the two outputs of Explainer II to be equal to the classifier output before the 

final SoftMax layer. The residual (see section III-B) is defined as the average differences 

between the explain II output and the classifier output on benign and malignant to reflect 

the similarity between Explainer II and the classifier. When the residual is small enough, 

Explainer II could be considered to have the same behavior pattern as the classifier, and the 

contribution of each descriptor could be evaluated by the corresponding weight.
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Explainer II can be considered as a post-hoc method. It can use the same feature maps 

as the classifier and Explainer I, or not. However, experimental results (see section 4.4) 

proved that using shared feature map enhanced the explanation of Explainer II. Quantitative 

interpretation is critical in interpretable systems. It has been proved that different descriptors 

are not equally important in the diagnostic process. For example, the margin is a more 

significant feature in distinguishing malignant tumors from benign ones. Therefore, it is 

necessary to analyze the weights of the different descriptors in the classifier and check 

whether the weights given by the classifier match the clinical experience. In addition, 

quantitative analysis is an essential tool for our understanding of the inner workings of 

classifiers. In particular, when the classifier makes mistakes, the analysis of the quantitative 

explanations allows us to find the reasons for the errors and thus to clarify how to improve 

them.

B. LOSS FUNCTIONS

The training of BI-RADS-Net-V2 consists of two parts. The first part is to train the classifier 

and the Explainer I by using multi-task learning. In the multi-task model, Task 1 to 5 

are the BI-RADS descriptors, Task 6 to 9 are the sub-classes for the margin BI-RADS 

descriptor, Task 10 is the BI-RADS likelihood of malignancy, and Task 11 is the tumor 

classification branch. For each task k, the network loss function is denoted by Lk(Xk, Y k), 
where Xk is the predicted value and Y k is the ground-truth label (for classification) or value 

(for regression). Since the outputs of the likelihood of malignancy branch (Task 10) and the 

tumor classification branch (Task 11) both reflect the level of risk that the present tumor in 

the image is malignant, we added loss term La to enforce the information shared between the 

two branches. The total loss is calculated as the weighted sum of all tasks, equation 1.

Lml = ∑
i = 1

K
λiLi(Xi, Y i) + λaLa(|X11 − X10|, |Y 11 − Y 10|) (1)

In the Lml, the symbol λi denotes the weight coefficient of task i, K = 11 is the number of 

tasks, and λa is the weight coefficient for the La term. Cross-entropy loss is used for the 

classification branches and mean-square error loss is used for the regression branch. The 

output of the classifier, which was denoted as Y 11 in the above multi-task learning algorithm, 

was used as the ground truth when training Explainer II. The residual loss was calculated as 

equation 2.

Lr = 1
2 ∑

l ∈ [B, M]
|W l × D − Y 11| (2)

where D is a vector that reflects the presence of the selected BI-RADS descriptors calculated 

based on Explainer I output, and W B and W M are the weight vectors for benignity and 

malignancy decisions, respectively. An efficient approximation of the classifier can be 

obtained by minimizing the residual loss.
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C. DATASET AND IMPLEMENTATION DETAILS

1) DATASET—The proposed model was validated using 1,192 BUS images, which were 

obtained by combining two different datasets, BUSIS [48] and BUSI [49], into one dataset. 

The BUSIS dataset consists of 562 images, of which 306 images contain benign masses and 

256 contain malignant tumors. For the BUSI dataset, we used a subset of 630 images that 

contain mass findings, of which 421 have benign masses, and 209 have malignant tumors. 

One BUS image that contains a malignant was excluded due to the incompleted BI-RADS 

label. Overall, the positive and negative samples in our experimental data are close to 

balance, as it consists of 727 benign (negative) and 465 malignant (positive) images. All 

images were annotated with ground-truth labels for the tumor class, BI-RADS assessment 

category, and BI-RADS descriptors. There are differences in acquisition equipment, imaging 

conditions, operators, and target populations between the two datasets described above. It 

is expected that these differences will lead to degradation of the system in terms of metrics 

such as classification accuracy. However, diverse data can enhance the robustness of the 

system and thus improve the performance of unobserved data. The details regarding the 

BUSIS and BUSI datasets are provided in the publications [48] and [49], respectively.

2) PRE-PROCESSING—During the experiment, the size of the input image was 256 by 

256 pixels. Unlike generic object recognition tasks, directly adjusting the size and scale of 

the image can break the morphological features of the tumor, and the shape and orientation 

labels of some images would be incorrect (e.g., the shape of some tumors can change from 

oval to round when wide rectangular images are resized to square images). In order to 

prevent distortion of the morphological features of shape and orientation, the original BUS 

images were first cropped to the largest squared segment that encompasses the tumor, and 

afterward, the cropped segment was resized to 256×256 pixels.

Next, for the single-channel grayscale BUS images, we added two additional channels. 

One channel was obtained by performing histogram equalization to the gray channel, and 

another channel was obtained by applying smoothing to the gray channel. The experimental 

results show that this simple pre-preprocessing step was beneficial to improving the model 

performance [50]. We speculate that the reason for this result is that histogram equalization 

and smoothing reduced the variations across the images in BUSIS and BUSI datasets and 

resulted in a more uniformly distributed set of images.

3) CROSS-VALIDATION—We used a five-fold cross-validation method in our 

experiments. The total sample was randomly divided into five subsets of the same size. 

For each round of experiments, we used four subsets as the training set and the remaining 

one as the test set, i.e., 80% of the samples were used as training samples, and 20% were 

testing samples. In each round of experiments, 15% of the training samples were used as the 

validation data set. We observed the model’s performance on the validation dataset to adjust 

the model’s learning rate and determine when to stop training to avoid overfitting the model. 

The system performance was evaluated based on the average of the five experiments.

4) PARAMETER INITIALIZATION—The choice of backbone has a significant impact 

on system performance. We compared the performance differences resulting from different 
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backbone choices. Since our data volume is relatively small, using migration learning can 

speed up the convergence and improve the system’s performance. Therefore, all backbone 

networks were initialized with pre-trained weights on the ImageNet database. On the other 

hand, all parameters, including the parameters of the backbone network, were updated 

during training to acquire unique features of BUS images from the training data.

5) DATA AUGMENTATION—To improve the accuracy of the model, we performed data 

augmentation on our BUS images. It is worth mentioning that not all transformations are 

available in order to maintain the morphological features of the tissues in the image and 

the positional relationships between organs. We applied various types of data augmentation 

techniques, including zoom (20%), width shift (10%), rotation (5 degrees), shear (20%), and 

horizontal flip. Up-down flip wasn’t involved because it changed the relative position of the 

tissues.

6) HYPERPARAMETERS—Hyperparameters in the training process were selected 

empirically. We set the batch size as 6. The models were trained by using the adaptive 

moment estimator optimized (Adam), with an initial learning rate of 10−5, which was 

reduced to 10−6 if the loss of the validation set did not reduce for 15 epochs. The training 

was stopped when the loss of the validation set did not reduce for 30 epochs to avoid 

over-fit. For the loss weight coefficients λ1 to λ11, we adopted the following values: (0.2, 0.2, 

0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.2, 0.5). That is, the largest weight was assigned to the tumor 

class branch. The weight λa for the loss term La was set to 0.2 as well. Considering that 

the goal of Explainer II was to approximate the classifier, the hyperparameters set during 

training were the same as those of the classifier training.

7) EVALUATION METRICS—The performance of the classifier is evaluated using 

accuracy, sensitivity, specificity, and F1-score [51]. Explainer I includes both classification 

and regression branches. The classification branches are evaluated using accuracy, 

sensitivity, and specificity. The regression branch is evaluated using R-Square (equation 

3), MSE (equation 4), and RMSE (equation 5), which are calculated as follows.

R2 = 1 − ∑(y − y)2

∑(y − yi)2 (3)

MSE = 1
N ∑ (y − y)2

(4)

MSE = 1
N ∑ (y − y)2

(5)

Explainer II is evaluated using the residual error, accuracy, and relative contribution. The 

residual error could be calculated according to equation 2. The smaller residual error reflects 

that Explainer II is a better approximation of the classifier and vice versa. The Accuracy 

of Explainer II w.r.t biopsy ground instead of classifier output reflects whether Explainer 
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II learned adequate medical knowledge rather than simply fitting the classifier. Moreover, 

we defined a new matric named relative contribution to evaluate Explainer II. Raza et al. 

[52] summarized the reports and categorized the BI-RADS lexicons into three categories: 

favoring malignant, favoring benign, and undetermined features (see Table 3). Only the 

determinative descriptors are used in Explainer II. The relative contribution is calculated as 

follows (equation 6).

RI =

1
N Σi ∈ 1, …, N (∑j ∈ PB ci

j

∑j ∈ P ci
j ), for I = B

1
N Σi ∈ 1, …, N (∑j ∈ PM ci

j

∑j ∈ P ci
j ), for I = M .

(6)

The relative contribution reflects whether the malignant favoring features and benign 

favoring features contribute to the malignant and benign decision, respectively. The benign 

favoring features should have more immense contributions than the malignant features for 

benign masses and vice versa.

IV. EXPERIMENTAL RESULTS

This section presents a series of experimental results to verify the impact of different 

elements on the performance of the system. These include pre-processing, the BI-RADS 

feature set used, the choice of different feature generators, how information is shared 

between different functional modules, and so forth. Besides, we analyzed the explanations 

given by the system for some typical cases, and the results corroborate the medical 

knowledge in BI-RADS, and there are some new findings.

A. DIAGNOSTIC PERFORMANCE

We divided the evaluation of BI-RADS-Net-V2 into two parts, diagnostic performance 

evaluation and explanation evaluation. The first part addresses the evaluation of the 

diagnostic performance of the system, which is the core of the system. The evaluation 

included the accuracy of tumor type classification, likelihood prediction of malignancy, and 

BI-RADS descriptor prediction.

As mentioned above, there are many factors in the experiment that have an impact on 

the performance. We designed an ablation study to evaluate the impact of the different 

components in the design of BI-RADS-Net-V2. The results are shown in Table 4 and Table 

5.

The ablation study assesses the contributions by data augmentation, pre-trained network 

parameters on the ImageNet dataset, additional image channels with histogram equalization 

and smoothing, and cropping the original images to square-size segments. The results in 

Table 4 and Table 5 show that data augmentation, pre-trained weights, additional image 

channels, and image cropping all contribute to the system. Without pre-processing and 

trained from scratch, the model achieved accuracy slightly lower than 80.0%, 71.5% 

sensitivity, 85.5% specificity, and a 73.3% F1 score on the single channel ultrasound 
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image. Removing the dependence of features on location by cropping the images to square 

increased the performance slightly to 81.7% accuracy, 72.6% sensitivity, 87.5% specificity, 

and 75.4% F1 score. Further, adding image channels created by smoothing and histogram 

equalization raised the performance to 82.8% accuracy, 74.6% sensitivity, 88.1% specificity, 

and 75.4% F1 score. Instead of training from scratch, the introduction of pre-trained weights 

helped the performance and achieved 86.8% accuracy, 78.9% sensitivity, 91.9% specificity, 

and 83.2% F1 score. Finally, the effect of data augmentation (detailed in subsection III-C) 

was pronounced. The final results indicate that the network achieved 88.9% accuracy, 83.8% 

sensitivity, 92.3% specificity, and 85.4% F1 score for mass type classification and over 

80% accuracy for all five BI-RADS descriptors. Different backbone networks were also 

tested, the results in Table 4 and Table 5 present that the system with the VGG16 backbone 

outperformed the ResNet and EfficientNet-B6 backbones in most aspects. Due to the low 

resolution, brightness, and contrast of ultrasound images, a simpler structured network is 

more likely to produce better results.

With the hyperparameters determined, we compared the proposed method with a group 

of most current methods concerning the diagnostic performance. The compared methods 

include SHA-MAL [53], Ensemble Network [54], CNNSVM [55], and Dual Sampling 

Network [56]. The results are shown in Table 6.

From the results in Table 6, it can be found that the BI-RADS-Net-V2 exhibits the highest 

accuracy and sensitivity and the next highest but very close specificity on the experimental 

data. This result demonstrates that medical knowledge in BI-RADS label information 

improves the classifier’s performance under the proposed multi-task learning algorithm.

We used a Wilcoxon signed rank test to validate the significance of our data, analyzing the 

distribution of metric values. Accuracy, sensitivity, specificity, and F1 score were calculated 

for each image, and we conducted a Wilcoxon signed rank test to compare each method 

against the proposed BI-RADS-Net-V2. The results of the hypothesis testing are presented 

in table 7. The cells with asterisks indicate rejection of the null hypothesis with a P-value < 

0.05 Accordingly, for almost all metrics there is a statistically significant difference in the 

median values by the test models in comparison to BI-RADS-Net-V2.

B. SEMANTIC EXPLANATION

The semantic explanation can be evaluated from two perspectives. The first is correctness, 

i.e., the Explainer I must accurately identify the BI-RADS descriptors. Correctness is 

a fundamental prerequisite for semantic explanations to be effective. From the results 

in Table 5, we found that the accuracy of the network for shape, direction, margin, 

echo pattern, and posterior features is around 85% on average, based on the use of 

image cropping, enhancement, and the introduced pre-training weights. Comparing with 

the doctor’s conclusion, we believe the Explainer I output with the current accuracy can 

constitute a valid explanation.

The second way to evaluate the semantic explanation is perform case study. Figure 2 (b) 

and (d) give examples of the semantic explanations for benign and malignant tumors, 

respectively. For the benign mass in Figure 2 (b), the Explainer I predict the shape is 
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oval, which is a benign favoring feature; the margin is circumscribed, which is also benign 

favoring. Besides the above two, the parallel orientation, hypoechoic pattern, and enhanced 

posterior features are all favoring benign. As a conclusion, Explainer I predict the likelihood 

of malignancy is 0.21%, and this matches the classifier decision and the clinical diagnosis.

Another example, Explainer I is very certain that the tumor in Figure 2 (b) has an irregular 

shape and a group of malignant favoring margin descriptors. Although it isn’t very certain 

about the orientation (the ratio between height and width is very close due to the irregular 

shape), it still gives the likelihood of malignancy over 60%, which justifies the classifier 

decision. In summary, by validating the correctness of the BI-RADS descriptor prediction 

and the correlation between Explainer I output and the classifier decision, we can conclude 

that Explainer I could effectively justify the classifier decision and explains why the tumor 

was diagnosed as benign or malignant.

C. QUANTITATIVE EXPLANATION

Explainer II provides a quantitative explanation based on Explainer I. Explainer II 

is expected to have two essential characteristics, correctness and explainability. The 

explainability means the building blocks and calculations must be understandable for the 

end-users. The explainability is satisfied because Explainer II is a linear model based on 

BI-RADS descriptors. Correctness has multiple meanings. First, Explainer II should be a 

validated equivalent of the classifier, which is, the difference between Explainer II and 

the classifier should be minimized. And second, the explanation is required to match the 

medical knowledge. The correctness is evaluated using residual error, accuracy, and relative 

contribution.

When evaluating Explainer II, we binarized the Explainer I output and used 1 to indicate the 

presence of the BI-RADS descriptors and 0 otherwise. Overall, 15 determinative descriptors 

were used as the input of Explainer II, and the undetermined descriptors were ignored. 

Besides, an extra margin feature was added in Explainer II because the margin has the most 

positive correlation with the malignancy. The descriptor indicates whether the mass margin 

is circumscribed, and the not circumscribed cases include at least one from microlobulated, 

indistinct, angular, and spiculated. Overall, Explainer II used 11 malignant favoring and 5 

benign favoring descriptors.

1) MODEL SELECTION—Three models were investigated. The first model was a 

single-layer MLP that took the Explainer I prediction as input, and the expected output 

was the classifier prediction. There was no activation function in the model. Meanwhile, the 

weights were restricted to be positive, and the bias was set as zero. It is easy to understand 

that the normalized weights are how vital the corresponding descriptor is for all training 

samples. The second model was a convolutional neural network with the encoder of the 

network initialized using the Imagenet weights. The model took the BUS images as input, 

and the output was a weight vector for the input image. The third model was similar to 

the second model, except that the backbone network was initialized using the classifier 

weights, and the parameters of the backbone network are not trainable. Compared to the 

second model, Explainer II shared the same feature with the classifier and Explainer I in 
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the third model. The configuration added tougher restrictions but made the model more 

explainable. Five-folded cross-validation was used for evaluation. The averaged residual 

errors and deviations are presented in Figure 3.

The third model, which shared the same feature map with the classifier, achieved 

significantly minimal residual error compared to the other two models. The results proved 

that the feature map played a key role when composing the classifier output. Intuitively, the 

second model had fewer restrictions and was expected to approximate the classifier better. 

However, the assumption is only feasible when a large number of samples are given.

Moreover, the residual error helps us understand the behaviors of the classifier. The MLP 

model learned one weight vector for all BUS images. The assumption behind the MLP 

model was that the classifier always puts fixed weights on descriptors and then integrates the 

contributions. The other two models assumed that the classifier used different weight vectors 

for different samples based on the input BUS images’ characteristics.

Besides the residual error, the weights learned using the MLP model should have minor 

variations if the assumption was valid. However, the experiments presented opposite results. 

The variations of the weights are relatively large (see Figure 4). The experimental results 

generally favored the second assumption that the classifier used different weights for 

different image samples.

2) BACKBONE—The backbone was another essential factor. The results above proved 

that using the shared feature map was the optimized option. Thus, we only compared the 

models using shared feature maps. The evaluated networks included VGG16, ResNet, and 

EfficientNet. The residual error, accuracy, and relative contribution of benign and malignant 

masses were calculated for each backbone. The results are presented in Table 8.

The VGG16 backbone that was initialized using classifier weight outperformed the ResNet 

and EfficentNet regarding the residual error, and all models achieved competitive accuracy. 

Besides, the model with a VGG16 backbone had a higher relative contribution regarding 

malignant masses. This result explained the result in Table 4 that the structure with 

VGG16 backbone had higher specificity and sensitivity. Explainer II with VGG16 backbone 

achieved minimal residual error, competitive classification accuracy, and a higher relative 

contribution on malignant masses.

3) CASE STUDY—Similar to the semantic explainer, we present a set of representative 

cases as the case study of Explainer II. Figure 5 (a) and (b) shows a true negative mass 

finding. Based on Explainer II output, we could find that the circumscribed margin and the 

oval shape contributed the most to the decision. Besides, the model put consideration on the 

parallel orientation by a smaller portion. It could be seen that the components matched the 

image feature and the biopsy result. Another example, Figure 5 (c) and (d) present a true 

positive sample. The model put heavyweights on the irregular shape and not circumscribed 

margin for the tumor, and the above two contribute the most to the final decision. These 

two figures prove that Explainer II could effectively explain the classifier output, and the 

explanation matched the clinical experiences.
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Meanwhile, we noticed that there were some errors in the explanations. For the malignant 

mass finding in Figure 5 (c) and (d), a small weight was put on the parallel orientation, 

which is a benign favoring feature. We believe these minor mismatches are from the BI-

RADS features’ ambiguity and the training labels’ noise.

More than justifying the classifier output, another desired expectation of the explainers is 

to reveal the reasons when the classifier made a mistake. Figure 5 (e) and (f) show a false 

negative example. It could be found that the classifier made the wrong decision because 

that the malignant descriptors, including complex posterior feature and echo pattern, were 

undetected, and the benign favoring descriptors dominated the decision. This reminded us to 

introduce more similar samples into the training set to enhance Explainer I. Comparingly, 

Figure 5 (g) and (h) gives a more complex error, where the tissues around the mass 

formed a margin-like area that was considered as not circumscribed, and vague margin 

caused uncertainty of the shape descriptor, which should have a regular shape based on the 

clinicians. Thus, the mass was misclassified into the malignant class, where the biopsy 

result was benign. The explanation reveals that the image-based BI-RADS descriptors 

don’t cover all mass features even confirmed by its clinical applications. In general, the 

presented examples prove that Explainer II explanations could help end-users understand the 

foundation of the classifier’s decision and reveal the possible reasons for making mistakes.

Inspired by the above results, we calculate the average contribution for all involved 

BI-RADS descriptors. The results are presented in Figure 6 and Figure 7. The average 

contribution shows that the most benign favoring descriptors present strong distinguishing 

power, including the parallel orientation, oval shape, circumscribed margin. The anechoic 

and hyperechoic echo patterns didn’t affect much during the process. The malignant 

favoring descriptors, not circumscribed margin, shadowing posterior feature, and indistinct 

and microlobulated margin present reliable distinguishing power. The rest descriptors 

contributed similarly to both categories.

To summarize, we posit that explainability is task-dependent and audience-dependent, 

and therefore, requires ML models designed for specific tasks and targeted to end-users. 

For instance, the practical relevance of our proposed explainable model for BUS would 

diminish for other tasks because they employ different image features for representation 

learning. Likewise, our approach may not provide adequate explainability to a data scientist 

without medical knowledge or patients. In this aspect, our model is designed for providing 

explanations to and assisting BUS clinicians.

V. CONCLUSION AND FUTURE WORK

This paper designs an interpretable, deep network-based breast ultrasound diagnostic 

system, BI-RADS-Net-V2. This system provides reliable and efficient interpretation for end-

users by introducing medical expertise in BI-RADS. The system has a high accuracy and is 

more likely to gain the trust of end-users, which facilitates the diffusion of the automated 

diagnostic system. It promotes the diffusion of early universal breast cancer screening. 

The experimental results demonstrate that the introduction of BI-RADS can enhance the 

generalization ability of the diagnostic model and improve the accuracy of the model under 
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a multi-task learning framework. In addition, systematic BI-RADS descriptor prediction can 

effectively prove the correctness of the discriminative model. The quantitative explanation 

based on knowledge distillation, on the other hand, can analyze the causes of errors in the 

discriminative model and indicate the direction to improve the model performance.

The further work includes further expanding the BUS image dataset and collecting BI-

RADS description sublevel labels. The analysis of existing samples is also used to increase 

the interpretability of the model by cross-corroborating with clinical BI-RADS diagnoses.
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FIGURE 1. 
Network architecture of the proposed BI-RADS-Net-V2 for BUS CADx. The lines with 

arrows is the flow of data, and the numbers on softmax blocks are the dimension of the 

vectors.
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FIGURE 2. 
(a) Conventional BUS CAD system output for a benign mass finding. The bars in the 

sub-figures indicate the predicted class probabilities by the CAD systems.; (b) Output 

of the proposed explainable BUS CAD system for the same benign mass finding; (c) 

Conventional BUS CAD system output for a malignant mass finding; (d) Output of the 

proposed explainable BUS CAD system for the same malignant mass finding.

ZHANG et al. Page 22

IEEE Access. Author manuscript; available in PMC 2023 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Residual Error using different models.
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FIGURE 4. 
Average weights using MLP with errors.
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FIGURE 5. 
Representative output on the BUSI dataset. (a) and (b) are the output and BUS image of a 

true negative sample; (c) and (d) are the output and BUS image of a true positive example; 

(e) and (f) are the output and BUS image of a false positive example; (g) and (h) are the 

output and BUS image of a false negative example.
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FIGURE 6. 
Average contributions of benign favoring descriptors.
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FIGURE 7. 
Average contribution of malignant favoring descriptors.
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