
Decoding the role of neuroinflammation in the patho-
physiology of neurodegenerative diseases is a crucial
step toward possible therapeutic strategies.
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ABSTRACT
Background: While mechanistic links between tau
abnormalities and neurodegeneration have been proven in
frontotemporal dementia and parkinsonism linked to chro-
mosome 17 caused by MAPT mutations, variability of the
tau pathogenesis and its relation to clinical progressions in
the sameMAPTmutation carriers are yet to be clarified.
Objectives: The present study aimed to analyze clini-
cal profiles, tau accumulations, and their correlations
in 3 kindreds with frontotemporal dementia and par-
kinsonism linked to chromosome 17 attributed to the
MAPT N279K mutation.
Methods: Four patients with N279K mutant fronto-
temporal dementia and parkinsonism linked to chro-
mosome 17/MAPT underwent [11C]PBB3-PET to
estimate regional tau loads.
Results: Haplotype assays revealed that these kindreds
originated from a single founder. Despite homogeneity
of the disease-causing MAPT allele, clinical progression
was more rapid in 2 kindreds than in the other. The kin-
dred with slow progression showed mild tau deposi-
tions, mostly confined to the midbrain and medial
temporal areas. In contrast, kindreds with rapid progres-
sion showed profoundly increased [11C]PBB3 binding in
widespread regions from an early disease stage.
Conclusions: [11C]PBB3-PET can capture four-repeat
tau pathologies characteristic of N279K mutant fron-
totemporal dementia and parkinsonism linked to chro-
mosome 17/MAPT. Our findings indicate that, in
addition to the mutated MAPT allele, genetic and/or
epigenetic modifiers of tau pathologies lead to hetero-
geneous clinicopathological features. © 2019 The
Authors. Movement Disorders published by Wiley
Periodicals, Inc. on behalf of International Parkinson
and Movement Disorder Society.

Key Words: frontotemporal dementia; MAPT; N279K
mutation; tau PET
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Tau protein fibrillation has been implicated in Alzhei-
mer’s disease (AD), frontotemporal lobar degeneration
(FTLD) subtypes and related disorders, which are col-
lectively referred to as tauopathies.1 FTLD tauopathies,
including PSP and corticobasal degeneration (CBD), are
characterized by the deposition of four-repeat tau iso-
forms in neurons, astrocytes, and oligodendrocytes.2

Distinct tau isoforms cause ultrastructural and confor-
mational diversity of the pathological fibrils, repre-
sented by paired helical filaments in AD and straight
filaments in PSP and CBD.3

Despite the association between tau conformers, local-
ization of tau lesions, and clinical phenotypes, the symp-
tomatic manifestations and progression of a single
tauopathy can vary.4-6 The microtubule-associated pro-
tein tau (MAPT) haplotypes may account for the clinico-
pathological characteristics of PSP7 and frontotemporal
dementia (FTD).4,8 Moreover, a number of MAPT
mutations cause familial tauopathies, which are termed
frontotemporal dementia and parkinsonism linked to
chromosome 17 MAPT (FTDP-17/MAPT). However,
the symptomatic profiles of patients carrying identical
MAPTmutations are also variable.9-12

Evaluation of the correlation between the clinical
course and chronological sequence of regional patholog-
ical involvement has been enabled by in vivo PET of tau
lesions in humans. The radioligand, [11C]pyridinyl-buta-
dienyl-benzothiazole 3 ([11C]PBB3), binds to a wide
range of tau fibrils, including AD, PSP, and putative
CBD tau deposits.13-15 Other tracers, such as [18F]AV-
1451, produce a higher contrast for AD-type tau tangles
than it does for four-repeat tau inclusions in PSP and
CBD,16,17 although [18F]AV-1451 has enabled differen-
tiation between groups of PSP patients and healthy con-
trols.18 The distinct selectivity of the PET ligands could
help identify tau isoforms contributing to unique neuro-
degenerative pathologies in each individual.19

The MAPT N279K mutation was discovered in the
white pallidopontonigral degeneration (PPND) kindred20
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and was also found in 6 Japanese kindreds.21-23 In the
present work, we further identified two novel Japanese
families with hereditary tauopathy caused by the N279K
mutation, and we investigated the abundance and extent
of tau deposits in patients harboring the MAPT N279K
mutation derived from three pedigrees, including these
two families. Because our previous in vitro assays dem-
onstrated binding of [11C]PBB3 to N279K mutant four-
repeat tau aggregates,19 [11C]PBB3-PET allowed us to
analyze fibrillary tau pathologies in living patients in
these families. The haplotypes of all mutant MAPT
allele carriers examined here were identical, presumably
originating from a single founder. However, there was a
profound difference in the progression of functional
impairments among these 3 kindreds, in close associa-
tion with the severity of PET-detectable tau pathologies.

Patients and Methods
Participants

The current study was approved by the local ethics
committees of the Juntendo University School of Medi-
cine and National Institute of Radiological Sciences,
of which the registration numbers of UMIN are
#000009863 and #000017978. All participants or care-
givers were fully informed and provided written consent.
Verbal ascent was obtained from demented patients and
was confirmed by their caregivers.We enrolled 10 patients
with FTDP-17 attributed to MAPT N279K mutation,
and 6 of these patients were derived from 2 newly identi-
fied kindreds (families A and B; Supporting Information
Table S1, Supporting Information Fig. S1, and Supporting
Information Case Presentation). Procedures to analyze
their MAPT genes are provided in the Supporting Infor-
mation Materials and Methods. Four participants were
derived from a pedigree reported on previously (desig-
nated family C in the resent study and “family D” in our
earlier report23; Supporting Information Table S1, Sup-
porting Information Fig. S1, and Supporting Informa-
tion Case Presentation). We also included 13 age- and
sex-matched cognitively healthy controls (HCs), who
have been already confirmed as having a negative [11C]
Pittsburgh Compound-B ([11C]PiB) PET scan in our
previous study.10

Tau and Amyloid PET Imaging
PET scans with [11C]PBB3 and [11C]PiB were

performed on 4 patients (A-II-1, B-II-2, C-IV-1, and C-IV-
2) to estimate regional tau and amyloid-β loads, respec-
tively, as described in the Supporting Information Mate-
rials and Methods. Two patients received scans within
1 year of clinical onset of the disease, whereas the other
2 patients underwent scans relatively late. We generated
parametric images of the standardized uptake value ratio

(SUVR) for [11C]PBB3 and [11C]PiB at 30 to 50 and 50 to
70 minutes, respectively, after radioligand injection, using
the cerebellar cortex as a reference region. To estimate
local tau and amyloid-β burdens, we performed volume
of interest (VOI)-based quantifications of SUVRs for a
group analysis, and conducted a voxel-by-voxel jack-
knife examination of parametric SUVR images to statisti-
cally assess distributions of areas with an increased [11C]
PBB3 retention in each patient compared to 13 HCs.
Detailed analytical procedures are provided in the Sup-
porting InformationMaterials andMethods.

Results
Clinical and Genetic Profiles

Clinical and genetic characteristics of all 10 patients
are summarized in Supporting Information Table S1
and Supporting Information Figure S1, and detailed
clinical information of all patients and family members
is described in the Supporting Information Case Presen-
tation. Despite the haplotypic homogeneity of the
mutant MAPT allele among the patients, Kaplan-Meier
analysis depicted significant differences in the survival
proportions between combined A and B families and
family C (P = 0.01 by log-rank test; Supporting Infor-
mation Fig. S1C). Members of family C had a better
prognosis than those of families A and B.

PET Imaging
Compared to HCs, all scanned patients had larger

[11C]PBB3 SUVRs in characteristic brain regions,
including neocortical gray and white matter (Table 1;
Fig. 1A). This was distinct from the gray matter–
dominant topology of tau depositions in the AD spec-
trum13,14 and corresponded to previous [11C]PBB3
autoradiographical findings.19 Subject C-IV-1 had the
shortest interval between onset and PET scans and
exhibited a remarkable increase of [11C]PBB3 SUVRs in
the midbrain, including the SN, hippocampus, and amyg-
dala, suggesting that tau pathologies could arise from these
regions (Fig. 1A). Tau deposits appeared to expand from
the brainstem and limbic areas to the neocortex and sub-
cortical nuclei with disease progression, given that subject
C-IV-2, who underwent PET assays 4 years after onset,
presented more widespread and greater increase of [11C]
PBB3 bindinginvolving neocortical white matter, globus
pallidus, and thalamus than subject C-IV-1 (Table 1).
In line with the notable difference in the rate of progres-

sion to death between families A/B and C, a subject from
family B (B-II-2), who was scanned 12 months after onset,
had even higher levels of [11C]PBB3 retentions in most
VOIs than subject C-IV-2, despite the relatively early stage
of the clinical course (Fig. 1A). Radioligand binding in
subject A-II-1, a member of family A undergoing PET
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examinations 3 years after onset, was comparable with
that of subject B-II-2 in the majority of VOIs, although
additional increases of [11C]PBB3 SUVRs were noted in
several areas, including the parahippocampal gyrus and
amygdala (Table 1). Therefore, PET-visible tau patholo-
gies in families A and B seemingly plateaued early during
clinical progression. None of the patients were amyloid-β
positive according to visual and quantitative assessments
of [11C]PiB-PET data, which were conducted as in previ-
ous studies.10

In order to highlight areas with increased [11C]PBB3
retentions on brain maps, we also conducted voxel-based
statistical assessments of SUVR images for this tracer.
SPM t-maps depicted enhanced [11C]PBB3 radiosignals
rather confined to the brainstem and a few other
regions, including the hippocampus in family C, which
was in sharp contrast with increases of radioligand

binding in extensive areas containing neocortical
gray and white matter in families A and B (Fig. 1B).
This familial difference was observed in subjects with both
short and long durations, notwithstanding that areas
highlighted in the SPM maps were somewhat increased in
a manner dependent on the disease duration.

Discussion

We documented three Japanese families with the N279K
FTDP-17/MAPT mutation originating from a single foun-
der according to a haplotype analysis. Two of these kin-
dreds (A and B) are newly identified and are characterized
by markedly rapid clinical progression, leading to death
within 5 years of disease onset. In contrast, the third kin-
dred (family C) showed relatively slow clinical progression

TABLE 1. [11C]PBB3-PET data in subjects A-II-1, B-II-2, C-IV-1, and C-IV-2 in comparison to HCs [Color table can
be viewed at wileyonlinelibrary.com]
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with an approximate postonset survival period of 10 years.
Hence, the present data illustrated a pronounced interfami-
lial difference in the aggressiveness of the illness, despite
the similarity of their mutantMAPT allele.

Previous studies reported that patients with FTDP-
17/MAPT, which could be linked to the same single
mutation, demonstrated inter- and intrafamilial hetero-
geneity in clinicopathological features, including ages at

FIG. 1. [11C]PBB3-PET images of representative cognitively HCs and patients with N279K mutant FTDP-17/MAPT and voxel-based comparison of [11C]
PBB3 SUVR between each patient and control group. (A) Axial parametric SUVR images, acquired at 30 to 50 minutes after radioligand injection, were
superimposed on the corresponding MR images. All patients showed noticeable uptake of [11C]PBB3 in multiple brain regions and the superior sagittal
sinus (yellow arrowheads). (B) Localization of increased [11C]PBB3 SUVR in each patient compared with HCs was highlighted in coronal (top), axial
(middle), and sagittal (bottom) SPM t-maps. A patient with the shortest disease duration (C-IV-1) already showed remarkable enhancement of [11C]PBB3
binding in several areas, including the midbrain (white arrows) and medial temporal cortex (yellow arrowheads). Members of families A and B exhibited
more extensive [11C]PBB3 radiosignals, particularly in neocortical gray and white matter, than cases derived from family C. [Color figure can be viewed at
wileyonlinelibrary.com]
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onset and death, disease duration, clinical symptoms,
brain atrophy, and pathological findings.9,10,12,24

Taken together with the present results, these observa-
tions support the view that the MAPT mutation alone
may not fully define the clinical and neuropathological
outcomes, which could in fact be modulated by other
genetic and/or environmental components.
The PET results of the present study provide the first

demonstration of heterogeneous neuroimaging pheno-
types among patients with FTDP-17/MAPT who possess
the same pathogenic mutation and MAPT allele haplo-
type. In close association with clinical progress, affected
cases in families A and B exhibited extensive increases of
[11C]PBB3 binding in neocortical and subcortical areas
from an early period after onset. Enhancement of [11C]
PBB3 binding, however, was less prominent in patients
from family C, who had a longer clinical duration than
those from the other two families. These findings indicated
that the formation of tau lesions in families A and B
occurred rapidly at the perionset stage and then almost
plateaued at an early postonset stage. This was then fol-
lowed by a prompt evolution of functional deteriorations,
resulting in a short life span of the affected members after
onset. This may also suggest the significance of tau PET as
a predictor of the following neurodegenerative processes,
resembling findings in patients with AD, who show a tight
correlation between baseline retention of a tau PET probe
and subsequent longitudinal atrophy of the cortex.25

The symptomatic profiles of the current N279K
mutant cohort were all PSP like, consistent with pre-
vious studies.26 However, two patients from family A
initially presented personality changes (Supporting
Information Table S1), raising the possibility that
there is a variable chronology of neuropsychiatric
phenotypes within pedigrees of a common origin.
Similar diversities were also noted in members of
PPND and Italian families with the N279K muta-
tion27 and were conceived to stem from the H1/H2
haplotypes of MAPT.28 Given that the Japanese pop-
ulation does not possess the H2 haplotype,29,30 the
personality-related presentation of initial symptoms
observed in family A, but not in the other two fami-
lies, could be attributed to additional genotypic varia-
tions located on the nonmutant MAPT allele and/or
non-MAPT elements.
Parkinsonian symptoms in affected individuals from

family C from an early clinical stage are typical of the
N279K mutation26 and could be induced by involve-
ment of the extrapyramidal tract in tau pathologies.
Indeed, a profound increase of [11C]PBB3 binding in
subject C-IV-1 with a short postonset duration was par-
ticularly evident in the SN (Table 1), which might be an
initiation site of tau fibrillogenesis at a preclinical stage.
This may be in line with our previous PET findings,
where the nigrostriatal dopaminergic system was dis-
rupted in presymptomatic carriers of the N279K

mutation derived from the PPND pedigree.29 Mean-
while, the origin of tau depositions in members of fam-
ily A with initial manifestations dominated by
psychiatric signs has yet to be clarified. The tau PET
data of subject C-IV-1 (in the current study) also sug-
gest that tau pathologies in the amygdala and hippo-
campal formation emerge early during the clinical
course. This might elicit local neuronal death and atro-
phic changes, as illustrated by an MRI analysis of the
above-mentioned N279K mutant carriers at a prodro-
mal disease stage.29

Similar to the AD spectrum,30 the extent of tau
pathologies may reflect the disease progression in
N279K mutant cases. However, the tau pathogenesis,
even in family C, appeared to be rapidly progressive rel-
ative to AD. Moreover, regions and voxels with
increased [11C]PBB3 binding in neocortical white mat-
ter of mutation carriers from all three families
expanded over time, which differed from the gray
matter–predominant distribution of tau fibrils in
AD. Deposition of tau assemblies in white matter may
be a neuropathological characteristic of familial31,32

and sporadic33,34 FTLDs with an excess of insoluble
four-repeat tau isoforms.
A few technical issues need to be considered in the

interpretation of the current PET data. In vivo off-
target binding and nonspecific retention of [11C]PBB3
remain undetermined. Our recent in vitro binding
assays using human brain homogenates have indicated
that [11C]PBB3 does not cross-react with monoamine
oxidases A and B,35 which is in clear distinction from
properties of other tau radioligands, including [18F]AV-
145136 and [18F]THK5351.37 This observation, how-
ever, does not fully ensure the selectivity of [11C]PBB3
for tau fibrils in PET imaging of living patients with
tauopathies. Another methodological issue is that tau
deposits might exist in a portion of the reference VOI
defined in cerebellar gray matter. This might occur in a
case with severe and widespread tau accumulations as
exemplified by subject A-II-1 (indicated in a sagittal
map of Fig. 1B), potentially leading to underestimation
of radioligand SUVRs in target areas and voxels.
In conclusion, the current study delineated the neu-

ropathological basis of the clinical phenotypes in living
patients with FTDP-17/MAPT, underscoring the con-
tribution of factors beyond the disease-causative
MAPT haplotypes and mutations to prompt the
spread of tau and clinical progress. Although these
modifiers are still unidentified, there could be common
accelerators or decelerators of tau pathologies across a
wide range of tauopathies. Moreover, our imaging
assay has supported the significance of the baseline
extent of tau lesions at an early clinical stage as a pre-
dictor of rapid and slow subsequent disease progres-
sions. In the event that future clinical assays
demonstrate that this can be translated to other four-
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repeat tauopathies, tau PET would help to stratify an
observational or interventional cohort of participants,
based on an expected rate of clinical and pathological
advancements.
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