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Objectives. This paper analyses temporal dependency in the time series recorded from aging rats, the healthy ones and those with
early developed hypertension. The aim is to explore effects of age and hypertension on mutual sample relationship along the time
axis.Methods. A copulamethod is applied to raw and to differentially coded signals.The latter oneswere additionally binary encoded
for a joint conditional entropy application. The signals were recorded from freely moving male Wistar rats and from spontaneous
hypertensive rats, aged 3 months and 12 months. Results. The highest level of comonotonic behavior of pulse interval with respect
to systolic blood pressure is observed at time lags 𝜏 = 0, 3, and 4, while a strong counter-monotonic behavior occurs at time lags𝜏 = 1 and 2. Conclusion. Dynamic range of aging rats is considerably reduced in hypertensive groups. Conditional entropy of
systolic blood pressure signal, compared to unconditional, shows an increased level of discrepancy, except for a time lag 1, where
the equality is preserved in spite of the memory of differential coder. The antiparallel streams play an important role at single beat
time lag.

1. Introduction

Interaction of blood pressure (BP) and pulse interval (PI) are
complex, governed by numerous homeostatic mechanisms,
including the autonomic nervous system [1–3]. Alterations
in their functioning either initiate or worsen cardiovascular
diseases [4–6]. As amain blood pressure corrector, baroreflex
is a subject of numerous studies. A range of methods for esti-
mating its parameters has been developed, both in time
domain [7–9] and in frequency domain [10, 11]. Other
approaches include themodels based on information domain
and on nonlinear nature of the systolic BP (SBP) and heart
period interactions [12–16].The comparative analysis is abun-
dant as well, for example, [6, 17]. Besides the baroreflex as
a feedback pathway, SBP-PI loop also includes a mechanical
feedforward pathway, as PI influences SBP via Frank-Starling
law and diastolic runoff [18].

A time delay (lag) of pulse interval (PI) with respect to
SBP was included into the baroreflex studies via cross-corre-
lation baroreflex sensitivity (𝑥BRS), where the cross-correla-
tion is applied for assessing the time delay that corresponds
to the maximum SBP-PI interaction [9]. This lag is actually a
delay of PI response with respect to changes in SBP, caused by
the signal propagation, as well as processing in the autonomic
nervous system.This delay also presents an important clinical
marker [6, 19]. A longer delay indicates a weaker response
of the parasympathetic and stronger response of sympathetic
nervous system and vice versa. It is changeable according to
the physiological state; for example, it is longer in standing
than in lying position and it increases with the increase of
heart rate and age [20]. Time delay is also affected by a reduc-
tion of baroreflex sensitivity, heart failure [21], and syncope
[22].
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One of the most widely used techniques for studying the
spontaneous BRR without pharmacological or mechanical
interventions is the sequence method [19, 20]. Sequences
are the streams of consecutive beats in which progressive
increases (or decreases) in systolic blood pressure (a SBP
ramp) are followed by progressive increases (or decreases) in
pulse interval (a PI ramp), delayed by a time lag that heavily
depends on species [21–29]. The ramps and streams in phys-
iological time series can be a consequence of physiological
interactions and of mere random occurrence. Short random
streamsmay be indistinguishable from the physiological ones
due to the large coefficient of correlation (a consequence of
shortness). Long streams, on the other hand, are character-
istics of real physiological data only, since their number in
random time series is negligible [30]. For this reason, only the
streams of length that surpass a predefined threshold, usually
three or four beats, are considered as “sequences” [17]. So, to
avoid the ambiguity, the term “sequence” would be reserved
for a stream with a length that exceeds the threshold.

This paper analyses the level of temporal dependency in
time series recorded from aging rats: the healthy ones and the
ones with early developed hypertension. The aim is to find a
time span (time lag) along which a change in one signal sam-
ple affects the changes of other samples from the same or from
the related time series and to explore whether the increased
age and hypertension affect the mutual sample relationship.
Among the tools thatmeasure statistical dependency at signal
level investigated in [31] (e.g., Pearson’s product-moment
correlation that measures linear relationship, Spearman’s
correlation that measures the monotonic relationships, and
Kendall’s correlation that reflects the number of concor-
dances and discordances in time series, as well as the classical
correlation)we opted to use copula, and among the numerous
copula families we opted for the Frank copula, since it was
shown to be well suited to cardiovascular time series [31]; it
distinguishes comonotonic and counter-monotonic behavior
in bivariate signals. The analysis is applied to the source
signals and to the differentially coded signals that process
the real numbers. Novel applications require on-line analysis
in battery-operated devices, implying computationally more
efficient procedures. It brings binary operations to the fore,
so we applied binary conditional entropy as well. Application
range include crowdsensing [32], as well as self-monitoring
during the exercise.

2. Materials and Methods

2.1. Experimental Protocol and Signal Acquisition. All exper-
imental protocols were approved by the Faculty of Medicine
University of Belgrade Experimental Animals’ Ethics Com-
mittee. All procedures conformed to EEC Directive 86/609
and the School ofMedicineUniversity of BelgradeGuidelines
on Animal Experimentation.

2.1.1. Animals. Experiments were performed in 3- and 12-
week-old maleWistar normotensive and spontaneous hyper-
tensive (SHR) rats, weighing 260–400 g. Total number of
rats was 𝑛 = 24. Animals were equipped with a right femoral

artery catheter for blood pressure recording. Rats were kept
in Plexiglas cages (21 cm × 37 cm × 19 cm) under controlled
laboratory conditions (temperature 22 ± 1∘C, humidity of65 ± 1%, 7:00 h–19:00 h light-dark cycle) with tap water and
pelleted food available ad libitum. The number of animals
per experimental group (6) was calculated using software
“Power and Sample Size Calculations” for a given power 90%
and type I error probability of 0.05 freely downloadable at
http://ps-power-and-sample-size-calculation.software.infor-
mer.com/.

2.1.2. Surgery. Under combined xylazine 2% (10mg/kg i.p.)
and ketamine 10% (90mg/kg; i.p.) anesthesia, a polyethylene
catheter (OD = 0.90, ID = 0.58, Smiths Medical International
Ltd., Kent, UK) prefilled with heparinized saline (50 IU/mL)
was inserted in the right femoral artery and tunneled subcu-
taneously between scapulae for BP recording. Perioperatively
rats received gentamicin (25mg/kg, i.m.) to prevent infection
and carprofen (5mg/kg, s.c.) for pain relief.The sutures in the
inguinal and interscapular regions were sprayed with topical
antibiotics. After surgery, each rat was housed individually
in Plexiglas cages (30 cm × 30 cm × 30 cm) under standard
laboratory conditions and left to recover for two days.

2.1.3. Cardiovascular Signal Acquisition and Preprocessing.
Arterial blood pressure was recorded for 30 minutes on
polygraph (Hugo Sachs Electronics D79232, Freiburg, Ger-
many) and digitalized at 1000Hz. Systolic (SBP) and diastolic
BP (DBP) and pulse interval (PI) were derived from the
arterial pulse pressure asmaximum,minimum, and interbeat
interval, respectively. The derived signals were inspected for
misdetections and artifacts and manually corrected. For each
registration period, mean value of SBP, DBP, and PI was
calculated and again averaged for the whole experimental
group. Other usual analytical methods include Poincaré Plots
(PPlots) and cross-approximate entropy (XApEn). PPlot is
primarily a visual method; its spotted images correspond
to the 2D joint probability distribution function. The PPlot
quantitative parameters are standard deviations of signals𝑥1𝑖 = √2−1 ⋅ (PI𝑖+1 − PI𝑖) and 𝑥2𝑖 = √2−1 ⋅ (PI𝑖+1 + PI𝑖), 𝑖 =1, . . . , 𝑁− 1, describing short and long term variability of the
pulse interval time series [33]:

SD1 = 𝐶PI (0) − 𝐶PI (1)
= 𝐸 {(PI𝑖 − 𝐸 {PI})2}

− 𝐸 {(PI𝑖 − 𝐸 {PI}) ⋅ (PI𝑖+1 − 𝐸 {PI})} ,
SD2 = 𝐶PI (0) + 𝐶PI (1)

= 𝐸 {(PI𝑖 − 𝐸 {PI})2}
+ 𝐸 {(PI𝑖 − 𝐸 {PI}) ⋅ (PI𝑖+1 − 𝐸 {PI})} ,

(1)

where 𝐸{ } is an expectation operator, 𝐶( ) is a covariance
function,𝑁 is the time series length, SD is standard deviation,
and the subscript in 𝐸{PI} is omitted since the signals are
assumed to be wide sense stationary (WSS). XApEn [34]

http://ps-power-and-sample-size-calculation.software.informer.com/
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is a classical static measure of the mutual interreaction of
parallel time series. In brief, XApEn procedure divides each
time series into 𝑁 − 𝑚 + 1 overlapping vectors of length 𝑚.
A selected vector from the first series is compared to each
one of the 𝑁 − 𝑚 + 1 vectors from the second series, to
estimate the probability that their absolute distance is below
the specified threshold. It is repeated for each one of the𝑁 − 𝑚 + 1 vectors from the first series, and the logarithms
of the estimated probabilities are averaged (the first average).
Then the procedure is repeated for the vectors of length𝑚+1.
The obtained second average is subtracted from the first one,
yielding XApEn estimate [34].

As a control, pseudorandom and randomized signals
were implemented. Pseudorandom signals include series
of independent and identically distributed (i.i.d.) random
variables with normal and uniformdistribution. Randomized
signals include surrogate data series [35]. Isodistributional
surrogates randomize the temporal order of the observed
time series and destroys the sample dependency but preserve
the signal distributional function. Isospectral surrogates
operate in transformdomain, either randomizing the existing
signal phases, or substituting them with pseudorandom i.i.d.
phase samples with uniform distribution. In both cases, the
power spectral density remains unchanged and, according
to the Wiener-Khinchin theorem, the same applies to the
autocorrelation function, so the intersample connections are
preserved [36].

2.1.4. Drugs. Ketamine, xylazine, and carprofen (Rimadyl�)
as well as the combination of embutramide, mebezonium,
and tetracaine (T61�) injections were purchased fromMarlo-
Farma (Belgrade, RS). Gentamicin injection and bacitracin
neomycin spray (Bivacyn�) were purchased fromHemofarm
(Vršac, RS).

2.1.5. Statistical Analysis. Results are shown as mean ±
standard error of the mean. Statistical comparison between
experimental groups was done using Mann–Whitney test in
GraphPad Prism 4 software (GraphPad Software Inc., San
Diego, CA,USA).The level of significancewas set at𝑝 < 0.05.
2.2. Analytical Methods. The level of dependence inherent to
SBP and PI time series is assessed in two ways: using copula
analysis of original and differentially coded data and esti-
mating mutual uncertainty using computationally efficient
binary conditional entropy, applied to binary differentially
coded time series. The inclusion of the second analysis is
initiated by the increasing number of battery-operated wear-
able monitoring devices.

A copula is a mathematical concept that decomposes a
multivariate (in this case: bivariate) distribution functions
into its univariate marginals, measuring the global statistical
dependency among the components. Its release in [37] ini-
tiated an extensive implementation within the various fields,
but the applications in biomedical studies are rare, including
imaging-based diagnostic classifiers for neuropsychiatric dis-
orders [38], the aortic regurgitation [39], and a drug sensi-
tivity prediction [40]. The possibility of applying a copula for

cardiovascular signals is pointed out in [41], while its pharma-
cological validation is performed in [31]. In brief, observing a
set of𝑁𝑉 variables (RV) 𝑥𝑖 with a joint distribution function𝐽(𝑥1, 𝑥2, . . . , 𝑥𝑁𝑉) and with respective marginal distribution
functions 𝐹1, 𝐹2, . . . , 𝐹𝑁𝑉, a new set of variables 𝑢𝑖, uniformly
distributed on [0, 1]𝑁𝑉 [42, 43], can be derived as 𝑢𝑖 =𝐹𝑖(𝑥𝑖), 𝑖 = 1, . . . , 𝑁𝑉. The corresponding copula is defined
as

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑁𝑉)
= 𝐽 (𝐹1−1 (𝑢1) , 𝐹2−1 (𝑢2) , . . . , 𝐹𝑁𝑉−1 (𝑢𝑁𝑉)) . (2)

or

𝐽 (𝑥1, 𝑥2, . . . , 𝑥𝑁𝑉)
= 𝐶 (𝐹1 (𝑥1) , 𝐹2 (𝑥2) , . . . , 𝐹𝑁𝑉 (𝑥𝑁𝑉)) . (3)

It was shown that Frank copula is the most suitable for
cardiovascular signals [31]: it is unbounded and symmetric
with value zero in absence of dependence, its sensitivity for
SBP-PI signal is the best, and, for a bivariate case, it per-
mits modelling both comonotonic and counter-monotonic
dependence. The Frank copula distribution is given by the
following relation:

𝐶(𝐹) (𝑢1, 𝑢2, . . . , 𝑢𝑁) = −𝜃−1

⋅ log[1 + ∏𝑁𝑖=1 (𝑒−𝜃⋅𝑢𝑖 − 1)
(𝑒−𝜃 − 1)𝑁−1 ] . (4)

The copula parameter 𝜃 shows the level of statistical
dependence and in Frank case it is set to zero if the variables
are completely independent.

The copula concept is clarified considering a simple
example of two (𝑁𝑉 = 2) jointly observed time series: pulse
interval PI𝑖 as the first one and a beat delayed counterpart
PI𝑖+1 as the second time series, 𝑖 = 1, . . . , 𝑁−1.Then both the
joint empirical probability density function (pdf) and the cor-
responding empirical marginal pdfs are estimated and shown
in Figures 1(a) and 1(d), respectively. The second step in
copula procedure is to apply the theory of inverse transform
methods [44]. In brief, a random variable (RV) 𝑥 with
arbitrary distribution can be transformed into a RVwith uni-
form distribution 𝑢, using its own distribution function 𝐹(𝑥)
for transformation, as explained in Figure 2. Such a transfor-
mation yields an empirical copula density function, shown
in Figures 1(b) and 1(e): the transform has eliminated the
marginal distributions, so only the dependency structure is
preserved, revealing that in this example the tail (corner)
samples are the ones that exhibit the maximal dependency
and not the samples with the most frequent values. The last
step of the procedure is to find an analytical copula that is the
closest to the obtained empirical one. After choosing the cop-
ula family, the analytical copulas for a range of parameter 𝜃
are generated, and the one that is the closest in a maximum
likelihood sense to the empirical one is chosen as a repre-
sentative copula. This copula density, as well as its uniform
marginal, is shown in Figures 1(c) and 1(f).
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Figure 1: Visualization of the copula process. (a) Estimated joint pulse interval density function with time lag 1 (it corresponds to PPlot); (b)
estimated copula density showing the level of the dependency structure in [0, 1]2 plane; (c) the best fit theoretical copula (Clayton, 𝜃 = 4.2617,
20 bins). (d, e, f) 1D marginal densities; (d) PI time series; (e) and (f) transformed and calculated uniform density.
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The joint 2D density in Figure 1(a) visually corresponds
to PPlot. Indeed, both techniques start from the same visual
presentations.Their further development is different: PPlot is
devoted to the short and long term signal variability, expres-
sed through the respective standard deviations SD1 and SD2;
copula shows the level of statistical dependence, expressed
through the copula parameter 𝜃. The copula in this study is
applied to bivariate data, to the SBP and PI time series. A level
of freedom is a time lag 𝜏 of PI samples 𝑝𝑖, 𝑖 = 1, . . . , 𝑁, with
respect to SBP samples 𝑠𝑖, 𝑖 = 1, . . . , 𝑁, so the empirical joint
distribution function 𝐽 is estimated over the delayed sample
pairs: 𝑠𝑖-𝑝𝑖+𝜏, 𝑖 = 1, . . . , 𝑁 − 𝜏, as shown in Figure 3.

The estimated copula density shows a structure of mutual
relationship of the SBP and PI time series, that is, the regions
where the signal dependency is the strongest. A fitting pro-
cedure quantifies the overall dependency level, reducing the
copula to a static single value 𝜃. But if the time series comprise
sufficient amount of data, a dynamic tracking can be per-
formed as well. Time series can be partitioned into the over-
lapping segments of size 𝑑, and for each segment a copula
dependency parameter 𝜃 can be evaluated. A series of adja-
cent 𝜃 values show the dynamic changes of dependency para-
meter in time that can be associated with the behavior of the
observed subject. Typical segment lengths are 300 to 500
samples, while the overlapping level of adjacent segments is
typically 𝑑/10.

Copula can be applied to the differentially coded signals
as well.The differentially coded SBP signal 𝑠𝑖 and PI signal 𝑝𝑖,𝑖 = 1, . . . , 𝑁, are expressed as

𝑥𝐷𝑖 = 𝑥𝑖+1 − 𝑥𝑖, 𝑖 = 1, . . . , 𝑁 − 1, 𝑥 ∈ {𝑠, 𝑝} . (5)

In applications where power and processor resources are
limited, it is more appropriate to work with binary signals.
Binary differentially coded counterparts of the signals from
(5) are expressed as

𝑥𝐵𝑖 = {{{
0 𝑥𝐷𝑖 ≤ 0
1 𝑥𝐷𝑖 > 0, 𝑖 = 1, . . . , 𝑁 − 1, 𝑥 ∈ {𝑠, 𝑝} . (6)

sB
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sBn sBl
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𝛼 = 6

𝜏 = 4

pBr

Figure 4: Levels of freedom for mutual positions of binary symbols
in (7) and (8): 𝜏 is time lag between the bit 𝑠𝐵𝑛 from SBP and its
delayed counterpart 𝑝𝐵𝑘 from PI series; 𝛼 is time lag between the
bits 𝑠𝐵𝑛 and 𝑠𝐵𝑙 (𝑝𝐵𝑘 and 𝑝𝐵𝑟) within the SBP (PI) time series.

Copulas cannot be applied to the time series transformed
into a binary form, but the similar goal can be achieved
by unconditional and conditional entropy of a single time
series (𝐻(xB) and 𝐻(xB | xB)) and of the joint time series(𝐻(sB, pB) and 𝐻(sB, pB | sB, pB)) as follows:

𝐻(xB) = − 1∑
𝑛=0

𝑃 (𝑥𝐵𝑛) ⋅ ln (𝑃 (𝑥𝐵𝑛)) ,
𝑥 ∈ {𝑠, 𝑝} , 𝑥𝐵𝑛 ∈ {0, 1} .

𝐻 (xB | xB) = − 1∑
𝑘=0

𝑃 (𝑥𝐵𝑘) ⋅ 1∑
𝑛=0

𝑃 (𝑥𝐵𝑛 | 𝑥𝐵𝑘)
⋅ ln (𝑃 (𝑥𝐵𝑛 | 𝑥𝐵𝑘)) ,

𝑥 ∈ {𝑠, 𝑝} , 𝑥𝐵𝑛, 𝑥𝐵𝑘 ∈ {0, 1} .

(7)

𝐻(sB, pB) = − 1∑
𝑛=0

1∑
𝑘=0

𝑃 (𝑠𝐵𝑛, 𝑝𝐵𝑘) ⋅ ln (𝑃 (𝑠𝐵𝑛, 𝑝𝐵𝑘)) ,
𝑠𝐵𝑛, 𝑝𝐵𝑘 ∈ {0, 1} .

𝐻 (sB, pB | sB, pB) = − 1∑
𝑘=0

1∑
𝑛=0

𝑃 (𝑠𝐵𝑛, 𝑝𝐵𝑘)

⋅ 1∑
𝑙=0

1∑
𝑟=0

𝑃 (𝑠𝐵𝑙, 𝑝𝐵𝑟 | 𝑠𝐵𝑛, 𝑝𝐵𝑘)
⋅ ln (𝑃 (𝑠𝐵𝑙, 𝑝𝐵𝑟 | 𝑠𝐵𝑛, 𝑝𝐵𝑘)) ,

𝑠𝐵𝑛, 𝑝𝐵𝑘, 𝑠𝐵𝑙, 𝑝𝐵𝑟 ∈ {0, 1} .

(8)

In the above equations,𝑃(𝑥),𝑃(𝑥, 𝑦), and𝑃(𝑥 | 𝑦) denote
a probability, a joint probability, and a conditional probability.
Since entropy, as a rule, is a relative measure, conditional
entropy (lower parts of (7) and (8)) is usually presented in
percentage of its unconditional counterpart (upper part of
the same equations). The relationship between the binary
symbols in (7) and (8) is shown in Figure 4.

There are two levels of freedom for estimating the joint
entropy: time lag 𝜏 between the pairs of bits from SBP and
PI time series and time lag 𝛼 within the bits of that belong to
the same time series (either SBP or PI). It should be noted that
indices 𝑛, 𝑘, 𝑙, and 𝑟 in Figure 4 correspond to (7) and (8), that
is, to the binary symbols andnot to the time axis. For example,
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Figure 5: A two-branch counter; states correspond to the successive positive and negative differential signal (5), that is, to the successive
increasing and decreasing amplitudes.

if the bit 𝑠𝐵𝑛 in Figure 4 is the 𝑖th bit along the time axis, then
the bits 𝑝𝐵𝑘, 𝑠𝐵𝑙, and 𝑝𝐵𝑟 would be at the positions 𝑖+𝜏, 𝑖+𝛼,
and 𝑖 + 𝜏 + 𝛼.

Figure 5 presents a two-branch counter [30] with states
corresponding to the successive positive signal differences,
that is, successive increasing signal amplitudes (branch with
gray states) and successive decreasing signal amplitudes
(branch with white states). If the counter is in the state
denoted “𝑘,” itmeans that 𝑘 signal differences of the same sign
have already occurred in a row. It is in a form of a finite ergo-
dicMarkov chain and itmodels the increasing and decreasing
ramps of differentially encoded signal samples.

If a ramp in SBP signal is followed by a ramp in PI signal
at a particular time lag 𝜏 and if the ramps comprise either
increasing or decreasing differences, such ramps form a “par-
allel stream.” Similarly, antiparallel stream may be defined
as an increasing SBP ramp followed by decreasing PI ramp
at a time lag 𝜏 (and vice versa). The occurrence of parallel
and antiparallel streams will be of importance for dynamic
tracking and explanation of copula parameters.

The model shown in Figure 5, aided with the theory of
Markov chains, enables analytical evaluation of parameters,
such as the exact number of ramps and streams in i.i.d.
random data, as well as the state transition probabilities
evaluation:

𝑁RAMP (𝑛) = (𝑁 − 1) ⋅ (𝑛 + 1)2 + 𝑛(𝑛 + 3)! ,
𝑁SEQ (𝑛) = (𝑁 − 1)

⋅ 2 ⋅ [(𝑛 + 1)2 ⋅ (𝑛 + 3)2 − (𝑛 + 2)2]
[(𝑛 + 3)!]2 ,

𝑝𝑛+1,𝑛 (𝑛) = (𝑛 + 2)(𝑛 + 1) ⋅ (𝑛 + 3) .

(9)

The detailed mathematical derivation of the expressions
(9) is given in [30].

3. Results and Discussion

3.1. Static Results. The results of the conventional analyses are
presented in Table 1. While the PI statistics and the corres-
ponding Poincaré Plot measures SD1 and SD2 were statisti-
cally the same in all four groups, bloodpressure, both SBP and
DBP, was high in spontaneous hypertensive (SHR) rats, and,
with their increasing age, pressure significantly increased.
XApEn could not make any distinction between the observed
groups. Further on, although XApEn is frequently used in
assessing the level of interrelations of time series, it has no
possibility to observe if one time series is delayed with respect
to another: XApEn, by definition, compares all possible com-
binations of𝑚-sized partitions of both time series, producing
always the same result, regardless of time lag 𝜏.

Copula, however, can take the time lag 𝜏 between the
observed time series into account. Figure 6 presents a static
copula measure, calculated over 4000 SBP-PI pairs, as a func-
tion of a particular time lag 𝜏. (a, b) show the dependency esti-
mated from the original detrended [45] signals, while (c, d)
show dependency estimated from the differentially coded
signals (5). Copula parameters derived from differentially
coded signals show that the statistical dependency induced by
signal changes are consistent with time lags in all four experi-
mental groups: the highest dependence is observed at lags𝜏 = 0 and 𝜏 = 3, while a strong negative dependency occurs
at time lag 𝜏 = 1. While the dependency of SBP-PI changes
remained intact in healthy rats with increased age (c), small
values of 𝜃, almost close to zero, in aging hypertensive rats
show loosening the SBP-PI connections (b), also emphasized
by decreased dynamic range dependency level of SBP-PI
changes (d).
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Table 1: Mean and s.e.m. of measured time series, classical variability analysis.

SBP [mmHg] DBP [mmHg] PI [ms] Poincaré plot XApEn
SD1 [ms] SD2 [ms]

SHR 3 172.04 ± 4.25 117.53 ± 4.93 184.13 ± 6.04 2.42 ± 0.28 11.01 ± 1.78 1.59 ± 0.10
SHR 12 200.47 ± 5.01∗∗ 134.10 ± 2.59∗ 197.05 ± 6.10 3.8 ± 0.97 14 ± 2.16 1.39 ± 0.17
WIS 3 123.99 ± 3.82 77.66 ± 4.32 174.02 ± 4.69 2.63 ± 0.37 10.1 ± 1.4 1.38 ± 0.08
WIS 12 132.81 ± 2.44 87.51 ± 1.14 174.18 ± 3.38 3.15 ± 0.45 11.09 ± 1.64 1.49 ± 0.12
Data are expressed as mean ± s.e.m. ∗ < 0.05 versus SHR3. ∗∗ < 0.01 versus SHR3.
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Figure 6: A static copula dependency measure estimated from the original signals with trend removed and from the differentially coded
signals ((a–d), resp.); (a, c) correspond to Wistar normotensive rats; (b, d) correspond to spontaneous hypertensive rats.
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Figure 7: Relative conditional entropy estimates from binary differentially coded PI signals (a, b) and SBP signal (c, d).

Conditional entropy defined over the binary differentially
coded signals (6) operates over coarsely coded signals, but it
is computationally less demanding. The relative conditional
entropy of signals taken from the same time series is pre-
sented in Figure 7.

Except for the time lag 𝛼 = 1 (to be explained later on),
conditional entropy of PI signals in young healthyWistar rats
is equal to its statistically independent counterpart. As the age
increases, the PI signals exhibit more order (inputs are atten-
uated) and more mutual dependency so the entropy slightly
decreases. Surprisingly, hypertensive rats (b, d) showed just
opposite results: conditional and unconditional entropies
were equal in aging rats, while young ones had a slight
increase of statistical dependency between the signal samples
at the time lag 𝛼, and the corresponding entropy was slightly
lower. Considering the binary samples of SBP signals (c,
d), the discrepancy of conditional entropy with respect to

its unconditional counterpart is considerably enlarged. This
discrepancy diminishes at time lag 𝛼 = 10 (12 in hypertensive
young rats); that is, there is no statistical dependency between
the changes in blood pressure if the observed samples are at
time lag of 10 (12) beats one from another.

The dependency at the time lag of 𝛼 = 1 (adjacent sym-
bols) is different as it is not related to the physiological cons-
traints of PI and SBP signals. It is predominantly a conseque-
nce of the differential coding procedure: the adjacent samples
of differentially coded signal both comprise the same original
signal sample 𝑥𝑖+1 (5). In the first differential sample 𝑥𝑖+1 is a
minuend, 𝑥𝐷𝑖 = 𝑥𝑖+1 −𝑥𝑖, and in the second differential sam-
ple 𝑥𝑖+1 is a subtrahend, 𝑥𝐷𝑖+1 = 𝑥𝑖+2 − 𝑥𝑖+1. The conditional
entropy at time lag 𝛼 = 1 is shown in Figure 8, including the
entropy estimates of real signals (red bars) and, as a control,
estimates taken from the surrogate signals. Isodistributional
surrogates randomize the order of the original signal samples,
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Figure 8: Relative conditional entropy estimated at time lag 𝛼 = 1 from the original PI signals, original SBP signals, and the three types
of surrogate control signals. The results are expressed as mean ± s.e.m; ∗ < 0.05 versus 3-month-old animals. Gray line shows the value of
unconditional entropy.

thus destroying their dependency but preserving the distri-
bution function. Isospectral surrogates randomize the signal
phase thus altering the samples and their distribution, but
preserving the spectral density, autocorrelation function, and,
consequently, intersample relationship.

Even if the signals are random and independent, their
differentially coded counterparts are not. Differential coding
forces the conditional entropy estimates of randomized data
(isodistributional surrogates) to lose 8 to 9% of their values
(white bars in Figure 8). These simulation results are in a
perfect accordance with theoretical entropy loss that is equal
to 8.17%, as shown in Appendix. Conditional entropy of PI
signal and all of its control surrogates follow the theoretical
constraints induced by differential coding. The same holds
for isodistributional controls of SBP signals, since the random
scrambling destroys intersample relationship. But SBP signals
seems to be resilient to the coding-induced dependency, pre-
serving the entropy value that, according to the theory, should
be reserved for statistically independent binary data. The
same applies to SBP Isospectral surrogates, since the phase
randomization does not affect the intersample relationship.
Seemingly, the regulatory mechanisms of systolic blood pres-
sure are so firm and manage to oppose coding-induced dep-
endency so well that the conditional entropy does not differ
from its unconditional counterpart. It is also in accordance
with the finding that the transition probabilities of differ-
entially coded SBP samples (model in Figure 5) follow the
Bernoulli distribution: the probabilities that the next SBP
sample amplitude would increase or decrease are the same;
that is, the transition probabilities for the model in Figure 5
are equal to 𝑝𝑛+1,𝑛 = 0.5 (Figure 9).
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Figure 9: Transition probabilities of binary differentially coded
signal samples (Figure 5), estimated fromall the subjects. SBPproba-
bilities are in a vicinity of 0.5. Probabilities estimated from random
and randomized signals are in an excellent accordance with the
probability in (8). PI probabilities differ from the previous groups.

3.2. Dynamic Measures. Dynamic observation of copulas
imply, as already said, an analysis of the overlapping segments
of data and plotting the results obtained from each particular
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segment along the time axis (Figure 10(e)), keeping time lag𝜏 as a parameter along the ordinate.
The changes in copula parameter might be a consequence

of the appearance of parallel and antiparallel streams, so the
occurrence of streams is plotted along the same time axis.
(Figures 10(a), 10(b), and 10(c)).Theplot distinguishes length
of streams, marked by the corresponding amplitude in plot.
Type of the stream, parallel and antiparallel, is marked black
and red, respectively.

For time lags 𝜏 = 0 and 𝜏 = 4 parallel streams (black) are
dominant (a) and (c). For time lag 𝜏 = 4, antiparallel streams
(red (b)) outnumber the parallel ones.These observations are
in a perfect accordancewith the dynamic copula parameter in
(e): at the time lags 𝜏 = 0 and 𝜏 = 4 dependency is expressed
as a horizontal red line along the time axis, showing a strong
positive dependence; at the time lag 𝜏 = 2, the dependence is
negative (horizontal dark blue line). A temporary increased
concentration of parallel streams between the seconds 400
and 500 (encircled region at 𝜏 = 2, (b)) is reflected in short
drop of dependency strength marked with lighter blue color
of short duration, encircled in (e).

Conditional entropy is estimated from a coarsely coded
binary signal. Yet, as amethod, it distinguishes the changes in
entropy values at the time lags 𝜏, shownby light red horizontal
stripes in (d).The entropy changes have lower dynamic range
as the coding itself is coarse, reducing 4096 levels of the
original data to binary symbols. However, joint conditional
entropy suffers a methodical drawbacks when the results are
presented simultaneously in 𝛼-𝜏 plane: levels of freedom 𝛼
and 𝜏 shown in Figure 3 enable a deterministic sample overlap
and induce a dependence that result in diagonal artifacts in
Figure 10(d), that may cause an ambiguity in results.

Unconditional entropy as defined in the upper part of (8)
corresponds to Shannon entropy JSDSh with 𝑚 = 1, defined
within the concept of joint symbolic dynamics (JSD) [46, 47].
JSD forms joint “words” taking 𝑚 bits from each one of the
observed time series, and, among the other parameters, it
calculates unconditional entropy JSDSh. Typically, 𝑚 is equal
to 3, so the cardinality of words is equal to 64, making condi-
tional entropy difficult to achieve word-by-word estimation
of the required 4096 transition probabilities, which is not
suited with the concept of limited power resources that are
the reason for including the binary operations [48].

Figure 11 illustrates the characteristic cases. (a) corre-
sponds to signals without exposed statistical dependency.
Except for the unwanted but deterministic diagonal artifacts,
increase of dependency in 𝛼-𝜏 plane is registered only at 𝜏 =1, for the adjacent SBP-PI pairs only, and the same applies
for copula parameter estimated from differentially coded
signals. Copula estimated from the raw signals, however,
changes along the time axis. (b) corresponds to signals with
strong statistical dependency. Entropy in 𝛼-𝜏 plane, although
with visible horizontal and vertical lines (the changes of
dependency due to lags 𝜏 and 𝛼, resp.), also exhibits toomany
diagonal artifacts that make the image difficult to interpret.
Dependency estimated by copula, from both raw data and
differentially coded data, exhibits strong comonotonic and
counter-monotonic relation at the characteristic time lags,
shown by dark red and dark blue horizontal lines. Copulas

also reveal an interesting phenomenon: statistical depen-
dency can decrease, change the sign, or completely vanish
along the time axis (middle and especially lower panels in
Figure 11). That might point out a short temporary loss of
these portions of neural connection that can be measured by
SBP-PI interdependency.

To explore the relationship between the copula param-
eters and streams, the number of parallel and antiparallel
streams at different time lags is shown in Table 2. Antipar-
allel streams are considered as “increasing” if SBP samples
increase and PI samples decrease.

The statistically significant differences exist between the
numbers of parallel and antiparallel streams, but not between
the different groups of animals. The average number of
parallel streams is extremely small at time lags 𝜏 = 1 and 5,
while it is extremely large for time lag 𝜏 = 0. It is in accordance
with the mean copula values shown in Figure 6. The streams
are further connected with copula parameters in Figure 12:
for each rat a copula parameter is estimated and the number
of parallel and antiparallel streams are counted. The 𝑥-axis
of the obtained plots presents a copula parameter, while the𝑦-axis presents the number of streams. A visual inspection of
plots reveals that the same number of parallel and antiparallel
streams in one rat produce positive dependence with 𝜃 = 1
and in the other rat negative dependence with 𝜃 = −1. There-
fore, the copula value is related to the number of parallel and
antiparallel streams, but loosely, and the dependency that
copula reveals is more complex to be explained by the occur-
rences of SBP and PI ramps that change their amplitudes in
the same or in the opposite direction.

4. Conclusion

The aim of this paper was to explore a time lag along which
a change in one signal sample affects the changes of other
samples in rats with hypertension and with increased age.
Healthy Wistar rats, young and aging, were used as control.
The dependency is measured using copula method at signal
level (both raw signal and differentially coded signal) and at
the binary level (binary differentially coded signals). Tools for
assessing dependency were copulas within the field of real
numbers and conditional entropy within the binary field.

Copulas applied as a staticmeasure of SBP-PI dependency
showed that the highest level of comonotonic behavior of PI
with respect to SBP is observed at time lags 𝜏 = 0, 3, and 4,
while a strong counter-monotonic behavior occurs at time
lags 𝜏 = 1 and 2 in all four animal groups and is observable
both for raw and for differentially coded signals. Dynamic
range of copula parameter in aging rats was considerably
reduced in hypertensive groups, showing a reduced capability
for SBP-PI responses along the time axis. Contrary to this,
dynamic range in healthy rats remained intact. Copula para-
meter observed along the time axis can be loosely related to
the number of parallel and antiparallel streams and, indeed,
the time lags with considerably increased average number
of parallel streams correspond to the time lags that exhibits
the strongest (averaged) comonotonic dependence and vice
versa, the lags with increased number of antiparallel streams
are the ones with lowest copula parameter. The number
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Figure 10: Dynamic observation of streams and copula; (a, b, c) show the position of a particular stream at the time axis; length of sequence
is marked in the right, while the type of sequence is marked by a different symbol and a slight amplitude offset. (d) shows joint relative
cross-entropy for different time lags 𝜏 and 𝛼, while (e) shows a copula plot, change of copula along the time axis.
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Figure 11: Joint conditional entropy and copula parameter observed along the time axis, (a) signals with poor statistical dependency; (b)
signals with strong dependency (horizontal lines).



Computational and Mathematical Methods in Medicine 13

Ta
bl
e
2:
M
ea
n
nu

m
be
ro

fs
tre

am
s±

s.e
.m

.a
td

iff
er
en
tS
BB

-P
It
im

el
ag
s𝜏.

St
re
am

sh
av
et
w
o
at
tr
ib
ut
es
:p
ar
al
lel

or
an
tip

ar
al
lel
,p
os
iti
ve

or
ne
ga
tiv

e.

Pa
ra
lle
l+

Pa
ra
lle
l−

A
nt
ip
ar
+

A
nt
ip
ar

−
Pa
ra
lle
l+

Pa
ra
lle
l−

A
nt
ip
ar
+

A
nt
ip
ar

−
La
g
𝜏=

0
La
g
𝜏=

1
SH

R
3

213
.16

±34
.27

227
.33

±28
.67

70.3
3±

18.9
8

67±
21.1

1
74.1

6±
24.8

8
62.8

3±
22.1

2
276

.66
±50

356
.16

±62
.89

SH
R
12

268
.33

±43
.27

241
.16

±40
.46

86.6
6±

19.6
6

79.1
5±

12.8
1

120
±23

.87
112

±13
.55

157
±30

.79
211

.66
±34

.06
W
IS

3
268

.833
±25

.44
277

.83
±24

.96
62.5

±6.
42

74.5
±5.

89
63.6

6±
7.16

54.3
±6.

95
238

±33
.78

289
.333

±24
.02

W
IS

12
288

.66
±87

.92
286

.33
±86

.19
57±

15/3
70±

12.8
59.3

3±
13.9

8
61.6

66±
8.3

245
.66

±48
.85

302
.833

±30
.35

La
g
𝜏=

2
La
g
𝜏=

3
SH

R
3

121
.5±

12.5
9

129
.5±

12
130

.83
±14

.35
136

.16
±15

.46
306

.66
±42

.42
233

±25
.9

76.1
6±

19
,9
7

108
.33

±20
.17

SH
R
12

109
.83

±3.
42

121
.66

±6.
24

156
±13

.1
165

.83
±4.

27
211

.16
±28

.07
176

±25
.77

121
.16

±9,
06

135
.33

±10
.21

W
IS

3
155

±15
.08

169
.166

±18
,9
9

122
.33

±10
.97

131
.5±

11.7
2

212
.16

±18
.19

181
.33

±16
.05

101
.5±

14.4
2

140
.83

±12
.46

W
IS

12
111

.5±
18.2

1
96.3

33±
26.8

6
156

±25
.35

172
.66

±24
.28

275
.66

±72
.40

227
.333

±74
.06

88±
17.1

4
112

.66
±25

.24
La
g
𝜏=

4
La
g
𝜏=

5
SH

R
3

144
.16

±15
.09

131
.33

±13
.12

159
.16

±16
.73

155
.16

±10
.89

98±
22.6

3
100

.16
±20

.30
195

.83
±23

.51
236

.16
±26

.38
SH

R
12

170
.83

±19
,8
2

155
.33

±10
.88

119
.83

±2.
85

132
.16

±4.
222

141
.5±

15
,12

134
.5±

6.13
145

.833
±15

.89
174

.33
±18

,4
9

W
IS

3
191

.66
±11

.68
175

.333
±5.

85
126

.83
±19

.91
152

.333
±13

.60
119

.5±
15.1

8
127

.16
±21

.23
151

.166
±12

.22
193

.83
±13

.95
W
IS

12
187

.33
±32

,5
9

164
±23

.96
137

.5±
59.0

7
150

.66
±53

.56
131

.5±
20.7

6
121

.833
±17

.64
153

.16
±22

195
.5±

30.8
1



14 Computational and Mathematical Methods in Medicine

AntiparallelParallel
SHR, 3
WISTAR, 3
SHR, 12
WISTAR, 12

SHR, 3
WISTAR, 3
SHR, 12
WISTAR, 12

𝜏 = 0 𝜏 = 1

𝜏 = 2 𝜏 = 3

𝜏 = 4

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l n
um

be
r o

f s
tre

am
s

20 1 3 4−1−2
Copula parameter 𝜃

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l n
um

be
r o

f s
tre

am
s

20 1 3 4−1−2
Copula parameter 𝜃

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l n
um

be
r o

f s
tre

am
s

20 1 3 4−1−2
Copula parameter 𝜃

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l n
um

be
r o

f s
tre

am
s

20 1 3 4−1−2
Copula parameter 𝜃

0

250

500

750

1000

1250

1500

1750

2000

To
ta

l n
um

be
r o

f s
tre

am
s

20 1 3 4−1−2
Copula parameter 𝜃

Figure 12: Number of parallel streams (black) and antiparallel streams (red) plotted against the copula parameter 𝜃. Each point is estimated
from 4000 SBP-PI signal samples.

of streams has not shown statistically significant difference
among the experimental groups but did show the difference at
different time lags. When the copula parameter is related to
the number of streams for each rat separately, it turned out

that the same number of parallel and antiparallel streams
produced positive dependency in one rat and negative depen-
dency in another rat for the same time lag. It shows that
the dependency that copula reveals is more complex to be
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explained by mere occurrences of parallel and antiparallel
SBP-PI streams. This conclusion is also confirmed with dec-
reased dynamic range of copula parameter: it was consid-
erably attenuated in hypertensive rat with an increased age,
although no significant change in number of streams is
observed.

Conditional entropy is a measure applicable to the binary
data, important for applications in wearable battery-operated
devices (crowdsensing, self-monitoring), where saving the
processor power and increased computing efficiency are the
ultimate goal. Although the binary coding is extremely coa-
rse, conditional entropy can observe the changes in sample
dependency. The sensitivity is slightly reduced, due to the
reduced number of amplitude levels of the observed signals.
Conditional and unconditional entropy of PI signals in young
healthy Wistar rats are equal, revealing the sample indepen-
dence. As the age increases, the PI signals exhibit more order
(inputs are attenuated) and more mutual dependency so
the entropy slightly decreases. Surprisingly, hypertensive rats
showed just opposite results: conditional and unconditional
entropies were equal in aging rats, while young ones had a
slight increase of statistical dependency. Conditional entropy
of SBP signals shows a considerable discrepancy with respect
to unconditional counterparts that diminishes at time lag𝛼 = 12 in hypertensive young rats and at time lag 𝛼 = 10
in all the other groups. Simultaneous observation of entropy
changes in 𝜏-𝛼 plane is not recommended, as the artifacts
due to the signal overlap occur. The level of conditional
entropy at time lag 𝛼 = 1 (adjacent symbols) is reduced by
a theoretical value of 8.17%, induced by the constraints of
differential coding. This applies if the raw data are random
and statistically independent, and this also applies to PI sig-
nals, to their isospectral surrogates, and to isodistributional
surrogates of all the signals. SBP signals, however, preserve
the equality of conditional and unconditional entropy in spite
of dependency induced by differential coding. Seemingly, the
regulatory mechanisms of systolic blood pressure are so firm
and manage to oppose coding-induced dependency.

Dynamic tracing the dependency parameters shows that,
occasionally, SBP and PI signalsmay become unconnected. A
future task would include quantification of these occurrences
and mode of their exploitation. Another goal of the future
research would be to include multivariable time series (respi-
ratory rate, such as in [49], or temperature), since the copula
method allows creation of dependency structures among
multidimensional signals.

Appendix

The purpose of this appendix is to derive an exact amount of
conditional entropy loss if a random and statistically inde-
pendent signal is submitted to the binary differential coding.

The probability that the adjacent binary differentially
coded samples would be both equal to zero is equal to

𝑃 (𝑥𝐵𝑖 = 1, 𝑥𝐵𝑖+1 = 1) = 𝑃 (𝑥𝐷𝑖 < 0, 𝑥𝐷𝑖+1 < 0)
= 𝑃 (𝑥𝑖+1 − 𝑥𝑖 < 0, 𝑥𝑖+2 − 𝑥𝑖+1 < 0) . (A.1)

The notation is taken from (5), (6), and (7).

If 𝑥𝑖 are independent and identically distributed random
variables (i.i.d. RVs) with probability distribution function𝑓(𝑥𝑖), then the probability (A.1) can be obtained as follows:

𝑃 (𝑥𝐵𝑖 = 1, 𝑥𝐵𝑖+1 = 1)
= 𝐸 {𝑃 (𝑥𝑖+1 < 𝑥𝑖, 𝑥𝑖+2 < 𝑥𝑖+1)}
= 𝐸 {𝑃 (𝑥𝑖+1 < 𝑥𝑖) ⋅ (𝑥𝑖+2 < 𝑥𝑖+1)}
= 𝐸{(∫𝑥𝑖+1

−∞

𝑓 (𝑥𝑖+2) ⋅ d𝑥𝑖+2)
⋅ (∫∞
𝑥𝑖+1

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖)} = ∫∞
−∞

𝑓 (𝑥𝑖+1)
⋅ ((∫𝑥𝑖+1
−∞

𝑓 (𝑥𝑖+2) ⋅ d𝑥𝑖+2) ⋅ (∫∞
𝑥𝑖+1

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖))
⋅ d𝑥𝑖+1.

(A.2)

Similarly,

𝑃 (𝑥𝐵𝑖 = 0, 𝑥𝐵𝑖+1 = 0) = ∫∞
−∞

𝑓 (𝑥𝑖+1)
⋅ ((∫∞
𝑥𝑖+1

𝑓 (𝑥𝑖+2) ⋅ d𝑥𝑖+2) ⋅ (∫𝑥𝑖+1
−∞

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖))
⋅ d𝑥𝑖+1,

𝑃 (𝑥𝐵𝑖 = 0, 𝑥𝐵𝑖+1 = 1) = ∫∞
−∞

𝑓 (𝑥𝑖+1)
⋅ ((∫𝑥𝑖+1
−∞

𝑓 (𝑥𝑖+2) ⋅ d𝑥𝑖+2) ⋅ (∫𝑥𝑖+1
−∞

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖))
⋅ d𝑥𝑖+1,

𝑃 (𝑥𝐵𝑖 = 1, 𝑥𝐵𝑖+1 = 0) = ∫∞
−∞

𝑓 (𝑥𝑖+1)
⋅ ((∫∞
𝑥𝑖+1

𝑓 (𝑥𝑖+2) ⋅ d𝑥𝑖+2) ⋅ (∫∞
𝑥𝑖+1

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖))
⋅ d𝑥𝑖+1,

𝑃 (𝑥𝐵𝑖 = 0) = ∫∞
−∞

𝑓 (𝑥𝑖+1) ⋅ (∫𝑥𝑖+1
−∞

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖)
⋅ d𝑥𝑖+1,

𝑃 (𝑥𝐵𝑖 = 1) = ∫∞
−∞

𝑓 (𝑥𝑖+1) ⋅ (∫∞
𝑥𝑖+1

𝑓 (𝑥𝑖) ⋅ d𝑥𝑖)
⋅ d𝑥𝑖+1.

(A.3)

For i.i.d. RVs with uniform probability density function𝑓(𝑥) = 1/𝑎, 0 ≤ 𝑥 ≤ 𝑎, and 𝑓(𝑥) = 0 elsewhere, the proba-
bilities defined with (A.3) are equal to 𝑃(00) = 𝑃(11) = 1/3,𝑃(10) = 𝑃(01) = 1/6, and 𝑃(0) = 𝑃(1) = 0.5. Conditional
probabilities that follow are 𝑃(0 | 0) = 𝑃(1 | 1) = 2/3 and𝑃(1 | 0) = 𝑃(0 | 1) = 1/3. All four conditional probabilities
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in statistically independent data are equal to 0.5. Imple-
menting (7), lower part, entropy values (conditional and
unconditional) are 0.27643 and 0.30103, while their relative
measure is 91.92968, perfectly in accordance with the values
estimated from randomized signal (isodistributional surro-
gate data).This conclusion is general, since it was proven [30]
that the differentially coded samples of i.i.d. RVs (including
the isodistributional surrogates) statistically follow the same
distribution.
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