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Abstract

Glioblastoma multiforme (GBM) has a poor prognosis—despite aggressive primary treat-
ment composed of surgery, radiotherapy and chemotherapy, median survival is still 
around 15 months. It starts to grow again after a year of treatment and eventually noth-
ing is effective at this stage. Recurrent GBM is one of the most disappointing fields for 
researchers in which their efforts have gained no benefit for patients. They were directed 
for a long time towards understanding the molecular basis that leads to the development 
of GBM. It is now known that GBM is a heterogeneous disease and resistance comes 
mainly from the regrowth of malignant cells after eradicating specific clones by targeted 
treatment. Epidermal growth factor receptor, platelet derived growth factor receptor, 
vascular endothelial growth factor receptor are known to be highly active in primary 
and recurrent GBM through different underlying pathways, despite this bevacizumab is 
the only Food and Drug Administration (FDA) approved drug for recurrent GBM. Immu-
notherapy is another important promising modality of treatment of GBM, after proper 
understanding of the microenvironment of the tumour and overcoming the reasons that 
historically stigmatise GBM as an ‘immunologically cold tumour’. Radiotherapy can aug-
ment the effect of immunotherapy by different mechanisms. Also, dual immunotherapy 
which targets immune pathways at different stages and through different receptors fur-
ther enhances immune stimulation against GBM. Delivery of pro-drugs to be activated 
at the tumour site and suicidal genes by gene therapy using different vectors shows 
promising results. Despite using neurotropic viral vectors specifically targeting glial cells 
(which are the cells of origin of GBM), no significant improvement of overall-survival 
has been seen as yet. Non-viral vectors ‘polymeric and non-polymeric’ show significant 
tumour shrinkage in pre-clinical trials and now at early-stage clinical trials. To this end, 
in this review, we aim to study the possible role of different molecular pathways that are 
involved in GBM’s recurrence, we will also review the most relevant and recent clinical 
experience with targeted treatments and immunotherapies. We will discuss trials uti-
lised tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent 
GBM pointing to the causes of potential disappointing preliminary results of some of 
them. Additionally, we are suggesting a possible future treatment based on recent suc-
cessful clinical data that could alter the outcome for GBM patients.
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Introduction

A group of malignant brain tumours called ‘Gliomas’ arises from the supporting neuroglial cells (astrocytic or oligodendroglial cells). Although 
current WHO classification includes epigenetic, genetic and clinicopathological features of brain tumours, most clinicians still divide brain 
tumours into low-grade glioma including (Grades I, II) and high-grade glioma (HGG) (grades III, IV) [1]. Glioblastoma multiforme (GBM) WHO 
grade IV is the most aggressive and commonest of these brain tumours and constitutes up to 54% of all gliomas and 16% of all intracranial 
tumours (primary and metastatic) [2]. Despite researchers’ efforts to improve the outcome of patients with GBM, the only approved treat-
ments are still maximum safe resection followed by radio-chemotherapy with alkylating agent temozolomide (TMZ) then adjuvant TMZ with 
tumour-treating fields [3], this initial stage of treatment takes around 9 months [4–6], and its result in 7–9 months progression-free survival 
(PFS) and 15 months overall survival (OS) [7]. However, 100% of GBM will recur and response to subsequent treatment is very minimal [8], 
that is why we need to understand the molecular basis that led to recurrence and possible targeted treatments that can be developed to 
overcome its resistance to almost all treatments in the recurrent setting.

As suggested by the term ‘multiforme’, GBM is characterised by intra-tumour heterogeneity not only on cellular but also on molecular levels 
[9]. This heterogeneity is one of the principal reasons for therapeutic resistance and recurrence [9]. It is believed that this happens due to the 
biological selection of resistant malignant clones and then they acquire genetic alterations making them more aggressive after primary treat-
ment [10]. One of the famous publications in which scientists extensively studied GBM at the molecular level was the cancer genome atlas 
(TCGA). TCGA has offered insights into the genetic regulation of GBM by a molecular GBM classification with the identification of molecular 
subgroups with prognostic significance [11, 12]. The four subgroups of GBM are classical, neural, pro-neural and mesenchymal as shown 
in Figure 1, pointing to the defective molecular pathway in each sub-group which could help to develop specific targeted treatments in the 
future and better designing of clinical trials on a molecular basis [12].

Till now, no clinical reflection of the four subgroups with only a slight survival advantage to the pro-neural subtype [13, 14].

Figure 1. Four subtypes of GBM and the dominant genes and molecular abnormality in each group.
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This review article considers the major therapeutic strategies currently being investigated in the field of recurrent GBM, focusing on 
approaches with not only pre-clinical but also clinical data. We aim to discuss novel and experimental tyrosine kinase receptor inhibitors, 
immunotherapy and gene therapy pointing to the underlying pathways that lead to their promising role in recurrent GBM. We also added a 
final section on the most important future direction that scientists are trying to apply to treat recurrent GBM based on pre-clinical data to 
improve the outcome of these patients.

Methods

We searched the MEDLINE, PubMed database for high impact factor journals at least 1.8 with high citations. We also searched clinical trials.
gov for phase I, II trials with reported PFS, OS published on tyrosine receptor kinase inhibitors, immunotherapy and gene therapy in recurrent 
GBM and discussed them. Ongoing trials and pre-clinical relevant up-to-date studies related to this subject have also been discussed. We 
used in our search the keywords glioblastoma, GBM, recurrent GBM and recurrent high-grade glioma.

Discussion

Receptor tyrosine kinase (RTK)

The RTK inhibitors are one of the most extensively studied drugs in oncology, we will discuss in the following section four of the main growth 
factor receptors in GBM and targeted treatments against them focusing on the applied clinical experience from clinical trials.

Epidermal growth factor receptor (EGFR)

Human EGFR (EGFR; HER-1) is over-expressed in 40%–60% of primary GBM tumours and mostly occurs in the classical subtype (Figure 1) 
[15], but EGFR mutation which leads to EGFRvIII expression (Figure 2) present in 20%–30% of primary GBM [15]. In this regard, a study of 
186 pairs of primary and recurrent GBM samples found that patients with recurrent glioblastoma multiform (rGBM) do not represent spe-
cific molecular subtypes and almost 80% of recurrent diseases retain the same molecular abnormalities as in the primary tumour samples 
[16]. Therefore, scientists designed clinical trials investigating targeted treatment for recurrent GBM based on an almost similar percent of 
activating mutations in primary and recurrent samples. Although the EGFR gene is commonly amplified in GBM, this does not correlate with 
responsiveness to EGFR inhibitor in most of the trials. The mutations of EGFR in GBM is linked to ‘gain-of-function miss-sense mutations 
or in-frame deletions affecting the extracellular domain’ [17, 18]. EGFRvIII is always active regardless of the presence of ligand or not with 
dysregulated downstream pathways [19]. This mutant ligand-independent pathway is believed to create a state of ‘pathway addiction’ in 
which the tumour dies if debriefed from this signal by tyrosine kinase inhibitors (TKIs) [20].

EGFR receptor is activated by two mechanisms as mentioned above, either by receptor over-expression or multiple ligand-independent 
and ligand-dependent pathways which will lead to stimulation of subsequent downstream mitogen-activated protein kinase, phospha-
tidylinositol-3-OH kinase (PI3K) and Src kinase pathway besides signal transducers and activators of transcription (STAT) transcription 
factor activation [21].These events starting from upstream mutation will lead to an intracellular cascade of events leading to gene tran-
scription, cell proliferation, survival, invasion and angiogenesis (Figure 2).

Sometimes phosphatase and TENsin homolog (PTEN) activity is lost which mainly acts as a tumour suppressor protein that inhibits the PI3K 
pathway, in this situation, there will be resistance to EGFR kinase inhibitors [22]. Patients with PTEN-deficient tumours could benefit from 
downstream inhibition of the PI3K pathway, maybe at the level of the mammalian target of rapamycin (mTOR), with EGFR inhibitors.

EGFR TKIs are classified into three main categories: first-generation inhibitors that target EGFR and its co-receptor HER2 and bind to it 
reversibly like (gefitinib, erlotinib and lapatinib); second-generation irreversible inhibitors (afatinib, neratinib and dacomitinib) and third-
generation TKIs.
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Almost all trials for recurrent GBM patients ‘based on a high percentage of them expressing EGFR (40%–60%)’ evaluating EGFR TKIs utilised 
a continuous daily dosing schedule but also included unenriched participants (Table 1). Some studies evaluated TKI monotherapy, others 
evaluated the combination regimen.

Gefitinib was evaluated in phase II single-arm trial that included 57 patients during the first recurrence and found that no radiological 
response was found in them, PFS-6 (PFS at 6 months) was 13% and OS was 39.4 weeks. There was no correlation between EGFRvIII muta-
tion’s presence or absence of EGFR over-expression with the outcome [23]. Another study that evaluated gefitinib in the neo-adjuvant set-
ting found that its concentration at the tumour was 20 times more than that found in the plasma but this finding was not associated with 
downstream pathway inhibition. So the drug acts effectively on the EGFR receptor upwards, but no effect on downstream pathways, this 
is also observed with erlotinib [24] and lapatinib. These studies suggest that probably first generation EGFR TKIs do not inhibit the EGFR 
signalling in GBM effectively and the above-mentioned observation could be the reason for the failure of these drugs till now. 

Erlotinib was tested on 44 recurrent GBM patients and again the radiological response was not observed and PFS-6 was 3% [25]. Later 
studies proved that erlotinib has poor central nervous system (CNS) penetration due to interaction with P-gp efflux transporter and breast 
cancer resistance protein [26]. Other study which compared erlotinib with chemotherapy at first recurrence found that the outcome was 
comparable in both arms and EGFRvIII mutation was linked to poor PFS [27].

Resulting from the hypothesis of thinking of the possibility that stimulation of downstream pathways or activation of other survival pathways 
may cause EGFR resistance, subsequent studies evaluated the combination of EGFR TKI with agents that inhibit these signalling pathways 
[28]. Many studies evaluated EGFR TKI combined with (mTOR) inhibitors that act as a mediator of the PI3K/AKT phosphatidylinositol-3 
kinases/AKT, also known as protein kinase B (PKB), signalling pathway. Patients with recurrent GBM were evaluated in a phase I trial to 
determine the maximum tolerable dose (MTD) of gefitinib with (an oral mTOR inhibitor) and reported PFS-6 of 23.5% [29]. Then another 
phase II study which was a single-arm on 32 heavily pretreated, recurrent GBM patients evaluated combining erlotinib with sirolimus and 
found that no radiological response was found and PFS-6 was only 3.1% [30], and also, unfortunately, no correlation between OS and EGFR-
vIII, pEGFR and EGFR amplification. 

Figure 2. EGFRvIII has an extracellular domain truncation from exons 2 to 7, which results in the deletion of amino acids 6-273 and renders the mutant 
receptor incapable of binding the ligand. EGFRvIII can display constitutively active signalling independent of ligand.
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Some of the finished and ongoing trials of anti-EGFR in rGBM are demonstrated in Table 1; 

Depending on the pre-clinical findings that VEGF signal activation acts as a mediator of EGFR resistance, a combination of EGFR inhibitor 
and VEGF2R2 inhibitors was introduced to clinical trials to be tested [38, 39]. Phase II study evaluated erlotinib plus bevacizumab ‘a human-
ised monoclonal antibody against VEGF that is Food and Drug Administration (FDA)-approved for recurrent GBM’ [40] was conducted on 
patients with rGBM [41]. Erlotinib was administered at 200 mg/day and 500 mg/day for participants taking and not taking enzyme-inducing 
antiepileptic drugs, respectively, and bevacizumab was administered at 10 mg/kg biweekly. In the above study, PFS-6 was 28% and OS was 
42 weeks, and these results were the same as that found with bevacizumab monotherapy.

Table 1. Some phase I, II trials of anti-EGFR in recurrent GBM and the status of each trial, whether finished or still ongoing.

Mechanism of 
action Agent Route of 

administration Clinical trial Trial phase Status citation

/ = Oral NCT01110876 ‘Vori-
nostat, Erlotinib and 
TMZ for recurrent 
GBM’NCT00301418 ‘Oral 
Tarceva Study for Recur-
rent/Residual GBM and 
Anaplastic Astrocytoma’

Phase I/II Finished [25, 31]

First generation 
EGFR TKI

Gefitinib Oral NCT00250887 ‘Pre- and 
Postoperative Use of 
ZD1839 (Iressa) in Recur-
rent GBM’

Phase II Completed with no 
results yet 

[32]

First generation 
EGFR/vascular 
endothelial growth 
factor receptor 
(VEGFR) TKI

AEE788 Oral Phase I Discontinued [33]

Second generation 
EGFR/EGFRvIII TKI 

Afatinib Oral Phases I, II Finished [34]

Second generation 
EGFR TKI 

Dacomitinib Oral NCT01520870 ‘Safety 
and Efficacy of PF-299804 
(Dacomitinib), a Pan-HER 
Irreversible Inhibitor, in 
Patients With Recurrent 
GBM With EGFR Ampli-
fication or Presence of 
EGFRvIII Mutation’
NCT01112527  ‘PF-
00299804 in Adult 
Patients With Relapsed/
Recurrent GBM’

Phase II Finished [35, 36]

Second generation 
EGFR TKI 

Neratinib Oral NCT01953926 (SUMIT 
trial) ‘Neratinib HER Muta-
tion Basket Study’

Phase II Ongoing [37]

https://doi.org/10.3332/ecancer.2021.1176


Re
vi

ew

ecancer 2021, 15:1176; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2021.1176 6

As regards trials that evaluated second-generation EGFR, in phase I/II study of afatinib with or without protracted TMZ in patients with GBM 
after recurrence, provided that all patients received standard chemo-radiotherapy with TMZ at presentation [42]. The phase I results of the 
trial found that MTD of afatinib with TMZ is 40 mg/day for afatinib and 75 mg/m2/day for TMZ when combined. And the phase II results of 
the same trial found that the PFS-6 for the afatinib monotherapy arm, afatinib-protracted TMZ arm and combination arm was 3%, 23% and 
10%, respectively. Different biomarkers were evaluated like EGFR, EGFRvIII, PTEN, pAKT and O6-methylguanine-DNAmethyltransferase 
(MGMT) but none of them correlated with the outcome although a non-significant association with EGFRvIII expression and better outcome 
were observed in patients treated with afatinib.

Dacomitinib single agent was evaluated in two phases II studies [43, 44]. The first one included two cohorts; one of them included patients 
with EGFR over-expression with no EGFRvIII mutation and achieved PFS6 of 13.3% and OS of 7.8 months, the second cohort included 
patients with EGFR over-expression and EGFRvIII mutation and PFS6 was 5.9% and OS of 6.7 months. The two cohorts received dacomitinib 
till disease progression or unacceptable side effects [35]. The second study contains three arms and still ongoing, one of the three arms is giv-
ing dacomitinib as a neoadjuvant treatment before surgery and this will help to determine the penetration of dacomitinib to the blood–brain 
barrier and also its capability of inhibiting intra-tumour phosphorylation. The other two arms include patients who are naïve and previously 
exposed to bevacizumab. Neratinib is also under evaluation in tumours with either EGFR mutation or amplification in phase II study [45].

Platelet derived growth factor receptor (PDGFR)

PDGFR is another member of the TKI family and is overexpressed in HGGs, especially in GBs [46]. Platelet derived growth factor receptor 
A (PDGFRA) is over-expressed in about 15% of GBMs [47]. That is why researchers make efforts to target this receptor and its pathway. 
Pre-clinical studies are undergoing to test PDGFR inhibitors in vivo and in vitro and some of these inhibitors are approved for clinical trials. 
Imatinib (Gleevec) is one of these drugs which has an inhibitory effect on PDGFR. Although imatinib has activity in other malignancies, it did 
not show significant activity in HGG especially GBM in the recurrent settings. The tumour growth and OS remained unchanged whether it 
was used as a single agent or in combination with hydroxyurea [48, 49]. Recently, in vitro studies on GB cells found that imatinib increases 
the migration and invasion of GB cells, a fact that explains the previous failures of the drug [50]. 

Tandutinib is another platelet derived growth factor receptor B (PDGFRB) inhibitor, which was evaluated in clinical trials in recurrent GBM 
and was found to have a little effect [51]. AG1433 is also another PDGFR inhibitory molecule that proved activity in pre-clinical trials in 
several in vitro HGG cell lines [6]. In 2019, it was tested on 11 and 15 HGG cell lines with radiotherapy or not, and found that AG1433 was 
effective and adding radiation to it does not increase its activity [52] (Figure 3).

Figure 3. PDGFR pathway.
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Vascular endothelial growth factor receptor (VEGFR)

GBM is one of the highly vascularised tumours and increased microvasculature is one of its hallmarks of pathology [53]. Many previous 
studies focused on targeting angiogenesis which occurs by spurting of new capillaries and blood vessels and by also recruitment of endo-
thelial cells to provide blood supply for the growing tumour [54]. VEGFR especially VEGFR2 is an important target in glioblastoma. Vatalanib 
(PTK787) is a VEGFR2, PDGFR and c-kit inhibitor, scientists found that it has a little effect on GBM alone with either chemotherapy or 
radiotherapy [55]. In phase II study, Sorafenib which is another VEGFR inhibitor with temsirolimus had a small effect on GBM [56]. Despite 
that tivozanib ‘an inhibitor of angiogenesis’ had good anti-angiogenic effects on GB, it failed to change the tumours’ volume [57]. Pazopanib 
also was combined with lapatinib but the results were disappointing [58]. Cediranib, ‘a small molecule inhibitor of VEGFR, PDGFR and c-kit’, 
showed a small improvement in the neurological status of the patients but did not change PFS or OS [59]. SU1498 is another VEGFR inhibitor 
that has limited activity on GBM [60].

Recent data suggest that YKL-40 is a good marker for angiogenesis in recurrent GBM for which targeted treatment may improve the out-
come. YKL-40 is a mesenchymal marker which is named as ‘human cartilage glycoprotein-39 or chitinase-like protein-1’ and probably has an 
important role in migration and motility of glioma stem cells (GSCs) and their differentiation into endothelial cells, that is why it has a role in 
angiogenesis [61]. It was proven that YKL-40 causes up-regulation of VEGF expression and new tumour vasculature induced by YKL-40 is 
partially dependent on VEGF [62]; therefore, targeted treatments against YKL-40 could affect GB’s treatment.

Fibroblast growth factor receptor (FGFR)

Although FGFR mutations are not frequent in GBM, several studies suggest that modification of the FGFR signalling pathway stimulates 
GBM progression and patient survival [63]. Small molecules that inhibit the FGFR TKI are under investigation [64]. Some of them are non-
specific to FGFR and act on other RTK like ‘lenvatinib, ponatinib, dovitinib and brivanib’, and others selectively target FGFR, like PD173074, 
BGJ398, AZ4547 and JNJ-493 [65]. A study, which used a large-scale shRNA to know the FGFR signalling to be targeted in glioma at the 
paediatric age, found that dovitinib, ponatinib, PD173074 and AZ4547 can inhibit the growth of glioma cells in vitro more than TMZ [66]. 
In December 2019, a trial involving BGJ398 in rGBM was completed, but no results have been published yet. Another phase I/II trial using 
TAS-120 is currently recruiting patients with metastatic solid tumours, regardless of fibroblast growth factor (FGF)/FGFR-related abnormali-
ties [67].

Multi-target tyrosine receptor kinase inhibitors (TRKI) agents 

The multi-targeted approaches may represent a good choice for effective selection of resistant tumour subtypes. Vandetanib is one of these 
multitargeted TKI (VEGFR, EGFR) that was evaluated in clinical trials for patients with recurrent GBM. The drug was safe and tolerable but 
its antitumour effects were limited [68]. 

Another phase I clinical trial proved the safety of administrating vandetanib in combination with sirolimus in patients with rGBM [69]. 
Two other multitarget (cabozantinib) and (PD173074) are small molecules that act by inhibiting VEGFR and other receptors. Cabozantinib 
achieved good results in vitro and clinical trials, and PD173074 had good results in vitro. Sunitinib is a multi-kinase inhibitor of VEGFR, 
PDGFR, fms-related receptor tyrosine kinase 1 (FLT1), FLT1/kinase insert domain receptor (KDR), FLT3 and Ret Proto-Oncogene (RET) 
kinases with no encouraging results in patients with GBM [70].

Immunotherapy in GBM

Immunotherapy stimulates the immune system to recognise, target and get rid of tumour cells. Many trials have focused on developing 
immunomodulating therapies to restore the functional ability of different immune cells against neoplastic cells and with promising results in 
several tumour types including melanoma, lung cancer, urothelial tumours and colon cancer [71]. Recent efforts and advances in translational 
research have led promising several strategies for immunomodulation in GBM, we discussed here the potential limitations and advances of 
immunotherapy in GBM. First limitations of immunotherapy in GBM is based on that immunotherapy has been most successful in tumours 
with high tumour mutational burden (TMB) but have yet to yield breakthroughs in GBM. GBM has low TMB despite its profound heterogene-
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ity, rendering it an intrinsically immunologically quiet disease. Further suggested limitations of immunotherapy in GBM include the immuno-
suppressive environment that down regulates antigen presentation and disengages infiltrating immune cells [72, 73]. Also, immunotherapies 
can lead to inflammation within the intracranial space which could result in severe treatment-limiting neurological complications due to 
increased vasogenic oedema, autoimmune encephalitis and cytokine release syndrome [74, 75]. 

To leverage the natural immune response and restore its elimination ability of glioblastoma malignant cells, crucial understanding of the BBB 
and the tumour microenvironment and its complex interaction with the immune system is required In GBM, the BBB integrity is changed due 
to endothelial tight junctions damage reflecting molecular composition changes [76]. The BBB breakdown allows CD8 + T cells to migrate to 
the CNS, and stimulation of the innate and adaptive immune responses which produce cytokines and chemokines to recruit lymphocytes and 
up-regulate immune-modularity markers on T-cell surfaces [77]. Nowadays, it is also accepted that functional expansion secondary to high 
cerebrospinal fluid (CSF) pressure [78]. Consequently, brain lymphatic vasculature provides an important pathway in both fluid and immune 
cells circulation from CSF to systemic lymph system, suggesting a role in antigen presentation and immune surveillance of the CNS.

It is also believed that simultaneous ionising radiations’ exposure augments the strength of immunotherapy by: 1) a direct and indirect 
destruction to tumour cells causing cell deaths, 2) an alteration of the cancer stromal microenvironment and 3) activation of CD8 + T cells. 
Radiation induces activation of sequential biological mechanisms and biochemical events, including stimulation of interferon genes pathway 
and up-regulation of transforming growth factor β, leading to initiation of immune responses [79].Therefore, co-administration of immuno-
therapy to block immune checkpoint is beneficial [80]. We will discuss here immune check point inhibitors and the dendritic cell (DC) vaccine 
as part of immunotherapy strategies in recurrent GBM. At the end, we will highlight genetic syndromes in paediatric GBM patients for whom 
immunotherapy could be the best choice for them based on recent clinical data. 

Immune checkpoint inhibitors (ICIs)

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and PD-1 pathways operate at distinct stages of an immune-response, resulting in 
negative effects on T-cell activity (Figure 4). CTLA-4 pathway is in the early stage of T cell activation, by binding of CD28 molecules on T-cells 
with B7-1 (CD80) and/or B7-2 (CD86) molecules on the surface of an antigen-presenting cell, mainly in the lymph nodes. On the other hand, 
PD-1 pathway blocks T cells at a later stage of the immune response through binding to PD-L1 and programmed death ligand 2 (PD-L2), in 
peripheral tissues [80] as in Figure 4.

Figure 4. Immunotherapeutic pathways to in-activate T-cell against tumour cells and different immunotherapy to reactivate T-cells, CTLA4 inhibitor 
ipilimumab, PD1 inhibitor pembrolizumab and nivolumab and PDL-1 inhibitor atezolizumab, avelumab and durvalumab.

https://doi.org/10.3332/ecancer.2021.1176


Re
vi

ew

ecancer 2021, 15:1176; www.ecancer.org; DOI: https://doi.org/10.3332/ecancer.2021.1176 9

Generally, anti-PD-1 drugs have a well-tolerated adverse event profile rather than anti-CTLA-4. It is suggested that a greater toxicity could 
be related to a better responses. Additional results are needed to decide whether this hypothesis is validated. Despite a different spectrum 
of adverse events, a safe and effective management of checkpoint inhibitors’ toxicity is mainly based on early sign and symptom recognition.

Overall, objective responses to ICI in rGBM were seen in the following trials shown in Table 2 the most important of them are as follows  
[81, 82].

In one retrospective analysis which investigated the effect of ipilimumab 3 mg/kg every 3 weeks with bevacizumab found an over-all response 
rate (ORR) of 31% in patients with rGBM [82]. A phase I trial found that the ORR of nivolumab single agent and nivolumab+ ipilimumab was 
11% and 10%, respectively [83]. Other phase I study used atezolizumab (1,200 mg Q3W) in 16 patients with glioblastoma showed an ORR 
of 6.0% [84]. Three patients with isocitrate dehydrogenase 1 (IDH1)-mutant tumours had better PFS (5.5 months versus 1.2 months) and 
slight better OS (16.0 months versus 2.7 months) than patients who had IDH1-wild-type tumours. Some studies looked at the utilisation of 
immunotherapy as neoadjuvant treatment and one of them found that when pembrolizumab was given before surgery, patients had longer 
OS than patients who received it as adjuvant therapy only. Neoadjuvant therapy with pembrolizumab was linked to up-regulation of T cell 
and interferon-γ-related gene expression, and down regulation of genes related to cell cycle progression [85]. Similar changes were observed 
with neoadjuvant nivolumab in a phase II trial [86].

Ongoing, three important phase III studies investigating the role of nivolumab in newly-diagnosed and recurrent glioblastoma are awaiting 
the final analysis publication, but the initial results are disappointing, checkmate-143 was the only one included patients with recurrent GBM, 
the other two trials included primary GBM only. The first trial was a randomised, open-label, phase III CheckMate-143 trial (NCT02017717), 
nivolumab monotherapy did not show significant change of OS in comparison to bevacizumab in rGBM patients [87]. The second one com-
bined nivolumab with radiotherapy in CheckMate-498 trial (NCT02617589) but also failed to significantly improve OS of patients with newly 
diagnosed MGMT-unmethylated glioblastoma, in comparison to chemo-radiotherapy with TMZ [88]. Lastly, in MGMT-methylated glioblas-
toma patients, adding nivolumab to the first-line standard of care chemo-radiotherapy with TMZ in CheckMate-548 (NCT02667587) did not 
show an effect on PFS which was one of the primary end points, and OS data is still pending [88].  Possible explanation of failure of PD-1 
inhibitor nivolumab in checkmate 143 is attributed to impaired interaction between it and PD-1 receptors on patient’s lymphocyte due to 
either 1) physical barrier by BBB 2) Systemic lymphopenia and 3) Reduced T-cell expression of PD-1 receptors. Poor drug penetration of BBB 
has been linked to inability of drugs to reach glioma malignant cells. BBB does not allow particles larger than 400–600 Da to pass [89] and 
nivolumab has calculated molecular mass of 146 kDa [90]. PD-1/programmed death-ligand 1 (PDL-1) axis inhibition occurs outside tumour 
at lymphoid tissue peripherally then activated coated T-cells enter tumour microenvironment. In the recurrent setting, any activated T cells 
with PD-1 against the tumour are supposed to have been migrated to tumour site inside CNS where they are inaccessible to mono-clonal 
antibodies [91] (Figure 5). Another possible reason for failure of checkpoint inhibitors is that patients with GBM have heavily dys-functioning 
antigen-specific T-cells activation and usually permanently anergic towards tumour’s antigens. This is due to chronic antigen exposure which 
results in ‘exhausted T-cells’ and over-expression of PDL-1 tumour cells that their function may not be fully regained by PD-1 inhibitor [92, 
93]. Single agent with anti-PD-1 is unlikely to reverse all factors that cause T-cell inhibition.

Lastly unlike adult brain GBM, paediatric GBM is linked to genetic syndromes like Li-Fraumeni (Tp53) syndrome and bi-allelic mismatch repair 
genes syndrome (bMMRD), it is associated with increased incidence of malignancies in the first years of life; most common malignancies 
include glioblastoma, haematological malignancies and gastrointestinal tract cancers. BMMRD results from homologous germline mutations 
in one of the following genes (PMS2, MLH1, MSH2 and MSH6). ‘DNA mismatch repair deficient (DMMRD) GBM’ has the highest muta-
tional load in all cancers. Knowing that non-DMMRD cancers with high mutational load like melanoma, lung and bladder malignancies have 
high response to ICI lead to potential therapeutic opportunity to this subset of patients with GBM. One study did exome sequencing and 
neoantigen prediction on 37 dMMRD cancers (hyper-mutated) and compared them to adult and paediatric GBM patients, bMMRD GBM 
had high mutational load compared to sporadic paediatric and adult GBM. Based on this data, two siblings with dMMRD who had recurrent 
multifocal GBM treated with nivolumab and this treatment resulted in strong radiological response and significant prolongation of clinical 
response [94].
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Figure 5. In recurrent disease, efficacy of nivolumab is limited by its inability to cross the BBB and a paucity of functional circulating T-cells with which to 
interact and form a protective barrier against subsequent possible PD-1/PD-L1 interactions. Exposed to numerous immunosuppressive influences within 
the glioma microenvironment, including uninhibited PD-1/PD-L1 interactions, T-cells already sequestered within the TME are expected to be heavily 
dysfunctional and unable to be rescued solely with immune checkpoint inhibition.

DC vaccine

DC is a highly specialised antigen processing and presenting cell which plays a vital role in initiating immune response and useful in immuno-
therapy as providing a way for cytotoxic T lymphocytes, natural killer cells and cytokines to kill tumour cell directly or indirectly [95]. Several 
small clinical trials utilised DCs in GBM with conflicting results; some showed no clinical benefit, others showed significant durable response. 
Recent meta-analysis of six phase II randomised controlled trials [96] included 347 patients with recurrent or primary glioblastoma. 

Patients who received DC vaccine had significantly prolonged OS (HR: 0.6995% confidence interval (CI): 0.49 to 0.97, p = 0.03) compared to 
the control group and a trend towards better PFS was also detected (HR: 0.76, 95% CI: 0.56 to 1.02, p = 0.07).

Moreover, the incidence of side effects was comparable between patients treated with dendritic cell vaccine and control (odds ratio = 1.52, 
95% CI: 0.88 to 2.62, p = 0.14; I2= 0%) [96].Some trials reported improvement from 13 month OS in the control group to 15.7–35.9 months 
OS in those patients who received DCs [95]. So data on this modality of treatment is still immature and results from phase III trials are 
urgently needed. 

Gene therapy in GBM

Gene therapy simply is delivering either tumour suppressor genes to the tumour to regulate its growth by inhibiting oncogenes, or delivering 
an inactive pro-drug to be activated at the site of the tumour to a lethal compound. GBM gene therapy until now has used different delivery 
vectors like viral vectors, non-polymeric NPs and polymeric NPs. We will discuss briefly these vectors in the following section [116].

Viral vectors

It is the first and commonly used vectors in GBM like neurotropic retroviruses and adenovirus that possess a specific ability to infect neuron 
and glial cells like, herpes simplex virus1 (HSV-1) [117, 118]. First trial in retrovirus evaluated HSV thymidine kinase (HSV-TK) which is the 
suicide gene in combination with ganciclovir (Cytovene) as the pro-drug. HSV-TK will convert the pro-drug ganciclovir to the active form 
ganciclovir triphosphate which inhibits DNA replication [119]. The results demonstrated limited transfection ability into the tumour [120].
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Table 2. Most of the finished and ongoing immunotherapy trials in recurrent GBM.

Trial Phase Cohort 
N of 

patient 
planned 

Agent PFS OS

NCT03493932 
[97]

I Recurrent GBM 15 Nivolumab + BMS-986016 No results yet

NCT02017717 
[98]Checkmate 
143

III Recurrent GBM, newly 
diagnosed 

A 626 Nivolumab
Nivolumab + ipilimumab
Bevacizumab

Final OS results not 
yet available

Median OS at 
9.5 months 
nivolumab, 
9.8 months 
(95% CI, 
8.2–11.8); 
bevacizumab, 
10.0 months

NCT02336165 
[99]

II Newly diagnosed or 
recurrent

159 First recurrence 
-durvalumab (10 mg/kg Q2W) as
-durvalumab (10 mg/kg Q2W) + bevaci-
zumab (10 mg/kg Q2W)
-durvalumab (10 mg/kg Q2W) + bevaci-
zumab (3 mg/kg Q2W).

/PFS-6 20%
PFS > 7 weeks in 
50%

OS-6 59%; 
OS12 44.4%/
OS > 21 
weeks in 36%

NCT02529072 
[100] (AVERT)

I First or second recur-
rence GIII, GIV glioma

6 Nivolumab+ DC vaccine Primary end point 
safety and combi-
nation was as safe 
as Nivo single agent

NCT02798406 
[101] CAPTIVE/
KEYNOTE-192

II Glioblastoma or gliosar-
coma tumour first time or 
recurrent

49 DNX-2401 (5e8 vp) delivered (adenovirus) 
intratumourally by cannula, followed by 
intravenous pembrolizumab every 3 weeks

Still recruiting

NCT03058289 
[102]

I, II Refractory cancers E 60 Experimental (Cohort A superficial tumours): 
INT230-6 low starting dose, low concen-
tration per tumour. Experimental (Cohort 
B1 superficial or deep tumours): INT230-6 
low starting dose, low concentration per 
tumour. Experimental (Cohort B2 superfi-
cial or deep tumours): INT230-6 medium 
starting dose, low drug concentration per 
tumour. Experimental (Cohort B3 superficial 
or deep tumours): INT230-6 high starting 
dose, low drug concentration per tumour. 
Experimental (Cohort C1 superficial or deep 
tumours): INT230-6 low starting dose, high 
drug concentration per tumour. Experimen-
tal (Cohort C2 superficial or deep tumours): 
INT230-6 medium starting dose, high drug 
concentration per tumour. Experimental 
(Cohort C3 superficial or deep tumours): 
INT230-6 high starting dose, high drug con-
centration per tumour. Experimental (Co-
hort D and E superficial or deep tumours): 
INT230-6 + anti-PD-1 antibodies

Still recruiting
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Table 2. Most of the finished and ongoing immunotherapy trials in recurrent GBM. (Continued)

NCT02335918 
[103]

I, II Histologically diagnosed 
advanced non-small cell 
lung cancer, melanoma, 
colorectal, head and neck 
squamous cell carcinoma, 
ovarian cancer, GBM or 
renal cell carcinoma

A175 Varlilumab + Nivolumab No results yet

NCT02852655 
[104]

I Surgically accessible 
recurrent/progressive 
GBM

A 35 Pre-surgery MK-3475 Comparator: No MK-
3475 at pre-surgery

Active not 
recruiting

NCT02658981 
[105]

I Recurrent/progressive 
GBM 

E 100 A1) Anti-LAG-3 Experimental: (A2) 
AntiCD137 (Urelumab) Experimental: 
(B1) Anti-LAG3 + Anti-PD-1 (nivolumab) 
Experimental: (B2) Anti-CD137 + Anti-
PD-1 Experimental: (Intratumoural Studies) 
Patients pre-operatively receive drug from 
one of the four arms

Still recruiting

NCT03233152 
[106]

I Primary and recurrent 
GBM 

E 6 Ipilimumab + nivolumab No results

NCT02794883 
[103]

II Recurrent GBM E 36 Tremelimumab Comparator: Durvalumab 
Comparator: Tremelimumab + Durvalumab

Recruiting 

NCT02311582 
[107]

I/II rGBM E 58 Phase I: MK-3475 + MLA Experimental: 
Phase II: MK-3475 Only (Arm B) Experimen-
tal: Phase II: MK-3475 + MLA (Arm A)

Recruiting 

NCT02937844 
[107]

I rGBM E 20 Anti-PD-L1 Chimeric Switch Receptor 
Engineered T cells

Recruiting 

NCT02866747 
[107] (STERIMGLI) 

I/II Recurrent GBM E 62 RT (Hypofractionated stereotactic radiation 
therapy (hFSRT) 24 Gy, 8 Gy per fraction) + 
Durvalumab 1,500 milligrams (mg) every 4 
weeks Comparator: RT hFSRT 24 Gray (Gy), 
8 Gy per fraction

Recruiting 

NCT02658279 
[107]

N/A Recurrent GBM with 
hyper-mutated subtype 

E 44 Pembrolizumab Recruiting

NCT02829723 
[108]

I/II Advanced/metastatic 
solid tumours

E 151 BLZ945 
BLZ945 + PDR001

Recruiting

NCT02423343 
[109]

I/II Phase 1b, advanced 
refractory solid tumours 
in any line of therapy 2) 
Phase 2, recurrent or re-
fractory NSCLC, or HCC 
with AFP ≥ 200 ng/mL

E 75 Galunisertib + Nivolumab (Phase 1b) Experi-
mental: Galunisertib + Nivolumab (NSCLC) 
(Phase 2) Experimental: Galunisertib + 
Nivolumab (HCC) (Phase 2)

Recruiting
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Table 2. Most of the finished and ongoing immunotherapy trials in recurrent GBM. (Continued)

NCT01375842 
[110]

I Recurrent GBM 16 Atezolizumab 1.2 month range 
(0.7–10.7)

4.2 (range 
1.2–18.8+)

NCT02550249 
[111]

II Newly diagnosed and 
recurrent 

29 Nivolumab 4.1 7.3

Retrospective 
[112]

Recurrent 37 NIVO (+ BEV) 4.6 (range 
0.5–15.0)

6.5 (range 
0.8–19.5)

Retrospective 
[113]

N/A Recurrent GBM 16 Ipilimumab + bevacizumab ORR 31%

Retrospective 
[114]

Recurrent GBM 17 
(10GBM)

OS 2.6 
(0.4–11.6)

Retrospective 
[115]

Recurrent GBM NIVO 16 2 (95% CI 1.3–2.7) 3.5 (95% CI 
2.8–4.2)

LAG-3: lymphocyte activation gene-3; MLA: MRI-guided laser ablation; NSCLC: non-small cell lung cancer; HCC: hepatocellular carcinoma; AFP: alphafeto 
protein

Toca 511 is another retroviral vector which delivers tumour suppressor gene, cytosine deaminase (CD) and oral pro-drug Toca FC, CD enzyme 
converts 5-fluorocytosine to active 5-fluorouracil [121]. A phase I trial showed safety of the drug in patients with recurrent GBM with regres-
sion of the tumour at the infusion site and now this treatment is being evaluated in phase II/III trials [122].

As regards adenoviral vectors, a phase I trial evaluated adenoviral vector with wild P53 (Ad-p53) transfected into tumour cells showed 
minimal toxicity but limited ability to penetrate tumour tissue [123, 124]. Another phase Ib trial evaluated adenovirus V-tk with valaciclovir 
injected post-surgery to tumour bed with concomitant radiation followed by adjuvant TMZ in newly diagnosed patients with GBM [125]. It 
showed small survival advantage over standard treatment. However, CD3+ T cells increased after the new treatment, supporting immune-
activation after this therapy. Then a phase II trial with the same treatment versus SOC demonstrated increase in OS from 13.5 months in SOC 
arm to 17.1 months with the new treatment [126]. 

Despite many studies of viral vectors in GBM, it resulted only in small survival advantage and the main challenge facing it is the ability to 
penetrate tumour tissue.

Non-viral vectors

Including polymeric and non-polymeric systems. Few non-polymeric vectors have been studied in GBM including liposomes, gold nanopar-
ticles (NPs) and RNA NP. A transferrin receptor-targeted liposome vector SG-53 encapsulates P53 wild type plasmid DNA can cross BBB 
targeting glioblastoma cells leading to reduction in MGMT and can induce apoptosis in xenograft mice [127]. So, SGT-53 can increase 
chemo-sensitivity of TMZ and now under evaluation in phase II trial in combination with TMZ in patients with recurrent GBM [128]. 

Nu129, a spherical nucleic acid gold NP, contains siRNA targeting B-cell lymphoma 2 (BCL-2) like protein 12 which participates in tumour 
progression and resistance to apoptosis [129]. Nu129 has proved its ability to cross BBB and increases apoptosis in xenograft mice model 
and now is under evaluation in phase I trial in patients with recurrent GBM [129]. 

RNA NPs, for example, tested to deliver anti-miR-21 locked nucleic acid sequences to inhibit miR21 in xenograft GBM models in mice, with 
significant tumour regression [130]. RNA NP is considered to be a promising treatment although it is still in the pre-clinical phase [131].

Future directions

Based on current evidence and preliminary results of clinical trials assessing new treatment strategies, clustering patients with recurrent 
GBM according to their molecular profile involved in their disease development will defiantly help optimising decisions in clinical scenarios. 
This fact can be attributed to the widely varying molecular nature of this disease and its unique micro-environment. The awaited clinical trials 
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results mentioned in this review (Tables 1 and 2) and probably starting phase III trials for the most successful treatment strategies from phase 
I, II trials will definitely help approving new treatment strategies for these patients. 

Also, there is clearly much work to be done to identify novel therapeutic targets and to develop strategies for treating advanced thyroid 
cancer. Pre-clinical data suggests a number of areas that could be developed in the coming years. For example, GSCs is believed by scientists 
to be the main cause of relapse as it causes re-growth of the tumour after eradicating the main bulk of it by surgery and chemo radiotherapy 
[132] (Figure 6). It is important to understand the main pathways that lead to maintenance of GSCs and this area now represents an impor-
tant scope of research in pre-clinical studies [133]. We mentioned here the most important pathways responsible for GSC maintenance abil-
ity, the ‘notch and the Wnt pathways’.

Notch signalling pathway

Notch pathway is important for determination of cell fate, proliferation, maintenance of cell quiescence, migration and regulate neural stem 
cell differentiation [134]. It starts by activation of γ-secretase by the jagged family ligands which leads to cleavage of notch receptors, then 
the intracellular notch receptor domain (NICD) translocates to the nucleus and formation of recombination signal binding protein for immu-
noglobulin kappa J region (RBPJ) and Mastermind-like 1 (MAML) complexes in the nucleus and activation of the hairy and enhancer of split 
(HES) and HEY genes that maintain multi-potency [135] (Figure 7).

CD 133-positive GSCs over-express genes like ID4 and FABP7 which are notch-pathway activator that leads to enhance infiltration ability 
of GBM [136]. Due to the above-mentioned function of notch pathway, inactivation of it may be effective for blocking GSCs and limiting 
sonic hedgehog (SHH/glioma associated oncogene (GLI) signalling pathway which plays an important role in oncogenesis especially neural 
progenitor regulation. That is why SHH/GLI is an important pathway for self-renewal and tumorigenicity of GSCs in which SHH/GLI pathway 
is active [137]. Studies found recently that SHH/GLI activity is important for Nanog regulation and expression which is a potent transcription 
factor and considered as a master regulator of many stem cells [138]. However, P53 decreases GLI activity which leads to Nanog down-
regulation. So, P53 loss leads to Nanog up-regulation and maintaining stemness properties. Pre-clinical studies confirmed that this pathway 
contributes to GSC chemo-resistance and inhibition of SHH could potentiate activity of TMZ [139]. 

Figure 6. Describing the idea of targeting cancer stem cells in tumors which contain them.
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Figure 7. Canonical Notch signaling with points of intervention of current therapies. The interaction between Delta/Jagged-type ligands and Notch 
receptors leads to S2 cleavage on the extracellular site by “a disintegrin and metalloprotease” 10 (ADAM10) or ADAM17, which is followed by S3 cleavage 
by the γ-secretase–presenilin complex. The S3 cleavage gives rise to an intracellular Notch fragment (NICD) that translocates into the nucleus, where 
NICD binds to a protein complex containing recombination signal-binding protein Jκ (RBP-Jκ). This mediates the conversion of RBP-Jκ from a repressor 
to a transcriptional activator and is followed by the recruitment of the co-activator mastermind-like 1 (MAML1). These events lead to the de-repression 
of transcription of hairy/enhancer of split (Hes) and Hey. Several stages of the Notch signaling pathway are prone to pharmacological intervention and 
are labeled in the figure. Gamma-secretase inhibitors and blocking antibodies are already in clinical trials and decoys have been tested in animal models. 
Peptide inhibitors represent potential future treatment modalities. NECD, Notch extracellular domain; NTM, Notch transmembrane domain.

The Wnt/β-catenin signalling pathway

This pathway is important during CNS development and plays a role in self-renewal, differentiation and neural stem cell development [140]. 
However, aberrant activation of this pathway in the CNS leads to transformation into brain tumours. There is genetic and epigenetic factors 
which regulate the association between Wnt pathway and GSC maintenance [141]. Wnt 5A is another member of Wnt family which stimu-
lates endothelial differentiation from GSC then neovascularisation that facilitates tumour growth and invasion [142]. In addition to above-
mentioned mechanisms, Wnt signalling promotes (MGMT) expression which leads to TMZ resistance [143]. It is not possible to design a drug 
that targets Wnt pathway broadly as it is involved in many physiological processes inside brain and in other organs and this will lead to serious 
side effects. So developing strategies that target Wnt pathway at the tumour level is essential [140]. 

Conclusion

Recurrent GBM is a fatal disease despite progression in understanding its molecular pathways and trying to target them. EGFR, PDGFR, 
FGFR and VEGFR inhibitors all showed few advantages although they are amplified or mutated in rGBM. YKL-40 targeting and multi-target 
of tyrosine receptor kinases may be beneficial. Immunotherapy has many limitations but it is still too early to decide that it is useless, 
especially DC vaccination which achieved significant advantage in some trials. A future direction towards targeting cancer stem cells path-
ways like notch and Wnt pathways could be an excellent solution for this disease.
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