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Introduction
Injuries to peripheral nerves are common presentations 
of trauma resulting in life-changing problems for patients 
alongside high social and health care costs for society (No-
ble et al., 1998; Zochodne, 2012). Peripheral nerves possess 
an intrinsic regenerative capability predominantly due to 
the plasticity of Schwann cells, the myelinating glia of the 
peripheral nervous system (PNS) (Chen et al., 2007). None-
theless, functional recovery following nerve injury is often 
poor and alternatives to the current clinical treatments are 
being sought. In particular, in the repair of a nerve gap con-
ventional treatment would sacrifice a length of nerve from 
elsewhere in the body to be used as a graft in the repair of a 
more functionally crucial defect. This has led to much work 
on developing a bioengineered nerve graft.

The development of bioengineered nerve grafts
Bioengineered nerve grafts consist of natural or synthetic 
nerve guidance tubes, and a multitude of experimental ad-
juncts have been considered including extracellular matrix 
molecules, growth factors, pharmaceutical adjuvants and 
transplanted cells in order to guide the regeneration of ax-
ons across nerve gaps (Bell and Haycock, 2012; Faroni et al., 
2013a). Commercially available nerve conduits include poly-
glicolic acid (PGA, Neurotube®) (Weber et al., 2000; Shin et 
al., 2009), poly-lactic acid (PLA) (Evans et al., 1999; Evans 
et al., 2000), poly(L-lactide-co-glycolide) (PLGA) (Hadlock 
et al., 1998; Bini et al., 2004), as well as poly-ε-caprolactone 
(PCL, Neurolac®) (Bertleff et al., 2005; Sun et al., 2010a, 
2010b) and poly-3-hydroxybutyrate (PHB) (Aberg et al., 

2009). The clinical results of these nerve conduits has failed 
to match the results of nerve grafting, perhaps due to the 
fact that they do not attempt to address the biology of the 
Schwann cell. Schwann cells are a crucial component of 
peripheral nerve regeneration, releasing growth factors and 
assisting in re-myelination (Jessen and Mirsky, 2008). Con-
duits acting as a cellular scaffold will be all the more effective 
if transplanted cells, such as Schwann cells or similar alter-
natives, are translated into clinical practice.     

Adipose-derived stem cells (ASCs) as an 
alternative to Schwann cells
The clinical translation of cell therapy in nerve injury has 
many issues to address before its clinical relevance can be 
assessed. The difficulties in the harvest and expansion of 
Schwann cells together with the morbidity of the donor 
nerve strongly limit their use towards nerve bioengineering 
(Tohill and Terenghi, 2004; Kingham et al., 2007). In the 
search of the ideal alternative to Schwann cells for peripheral 
nerve regeneration, many alternatives have been evaluated, 
especially in the field of stem cell research (Terenghi et al., 
2009). Embryonic stem cells (ESC) (Cui et al., 2008; Ziegler 
et al., 2011), induced pluripotent stem cells (iPSC) (Lee et 
al., 2010; Kreitzer et al., 2013; Ikeda et al., 2014), and also 
mesenchymal adult stem cells (MSC) from various niches 
(that is bone marrow, fat, umbilical cord, dental pulp, skin) 
(McKenzie et al., 2006; Matsuse et al., 2010; Wakao et al., 
2010; di Summa et al., 2011; Martens et al., 2014) have all 
been shown to be potential candidates as transplantable dif-
ferentiated Schwann cell-like cells in nerve guidance tubes 
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for nerve regeneration. In particular adipose tissue, deriving 
from the embryonic mesenchyme, can be easily harvested 
and digested in order to obtain a stromal vascular fraction 
(SVF), containing a population of ASCs, which have shown 
multipotential capability (Zuk et al., 2002).

Indeed, ASCs can be differentiated in vitro towards adipo-
genic, osteogenic, chondrogenic, myogenic, and neurogenic 
lineages (Zuk et al., 2002; Gimble and Guilak, 2003). The 
expression profile of cell-surface markers of ASCs showed 
high similarities with bone marrow derived MSC (BM-
MSC) (Gronthos et al., 2001; Zuk et al., 2001, 2002). For 
instance, ASCs are positive for CD9, CD29, CD44, CD71, 
CD73, CD90 and CD105, but negative for CD11b, CD14, 
CD18, CD31, CD45 and CD56 (Gronthos et al., 2001; Zuk 
et al., 2001, 2002; Gimble and Guilak, 2003). One of the ad-
vantages of using ASCs and other stem cells for allogeneic 
transplantation is the low immunological profile defined by 
the low expression of HLA-DR class II histocompatibility 
antigens, and high expression of HDLA-ABC class I histo-
compatibility proteins (Aust et al., 2004). Furthermore, the 
number of fibroblast-like and alkaline-phosphatase-positive 
colony-forming units (CFU-F) is reported to be 600-fold 
higher in ASCs compared to BM-MSCs (Fraser et al., 2006), 
and they can be expanded faster and for longer periods (Kern 
et al., 2006; Locke et al., 2009). 

ASCs and peripheral nerve regeneration 
All these favourable properties have made ASCs a promising 
candidate for the engineering of several tissues, including 
injured peripheral nerves. In this context, both undifferenti-
ated ASCs and differentiated Schwann cell-like ASCs (dASCs) 
have been assessed in in vitro and in vivo models of periph-
eral nerve regeneration. The results of various in vivo nerve 
regeneration studies investigating the regenerative potential 
of ASCs are summarised in Table 1. Nerve regeneration was 
hindered in vein conduits filled with lipoaspirates (Papalia 
et al., 2013), but cultured or uncultured ASCs isolated from 
the SVF, and seeded in PCL or silicon conduits, have been 
shown to promote nerve regeneration and to survive up 
to 12 weeks in vivo (Santiago et al., 2009; Suganuma et al., 
2013). In particular ASCs facilitated the regeneration of a 
functional nerve and reduced muscular atrophy, but they 
did not directly differentiate into Schwann cells in vivo; fur-
thermore there was evidence of undesired differentiation 
towards adipocytes, which may be detrimental for nerve re-
generation (Santiago et al., 2009). ASCs have also been suc-
cessfully used for re-populating de-cellularised nerve grafts 
used to repair rat nerve gap models (Liu et al., 2011; Luo et 
al., 2012). Moreover, transplanted ASCs have been shown to 
rescue the neuropathic phenotype of laminin-deficient mice, 
by facilitating sorting of axons and myelination (Carlson et 
al., 2011). Following systemic injection of ASCs, a few cells 
have been shown to migrate to the nerve injury site contrib-
uting to reduced inflammation and improved nerve regen-
eration (Marconi et al., 2012). The anatomical site of harvest 
(Kaewkhaw et al., 2011; Engels et al., 2013), the depth of 
the fat layer (Kalbermatten et al., 2011; Tremp et al., 2013), 
and the age of the donor (Mantovani et al., 2012; Sowa et 

al., 2012) are known to affect the neurotrophic potential of 
ASCs. Rather than a commitment to a Schwann cell phe-
notype, the positive effects of ASCs on neuronal protection 
and nerve regeneration in vivo and in vitro has been hypoth-
esised to be associated with the release of growth factors, in 
particular nerve growth factor (NGF), vascular endothelial 
growth factor (VEGF), and brain derived neurotrophic fac-
tor (BDNF) (Zhao et al., 2009; Luo et al., 2012; Sowa et al., 
2012). This may be important for endogenous Schwann cell 
recruitment; even when a considerable number of cells are 
lost a few weeks following transplantation (Erba et al., 2010).  

Schwann cell-like ASCs further improve nerve 
regeneration
A different strategy for the use of ASCs in nerve repair 
consists in the differentiation in vitro into a Schwann cell 
phenotype before transplantation. This could prevent the 
risk of teratomas and in vivo differentiation towards unde-
sired phenotype, and could potentially generate committed 
Schwann cell-like cells able to actively participate in the 
regeneration and re-myelination of the injured nerves. King-
ham et al. showed first that rat ASCs could be differentiated 
into Schwann cell-like cells by exposure for two weeks to a 
cocktail of growth factors including fibroblast growth fac-
tor (FGF), plateled-derived growth factor (PDGF) and glial 
growth factor (Kingham et al., 2007). This differentiation 
mechanism, previously applied to bone marrow-derived 
MSC (Dezawa et al., 2001), mimic the environmental cues 
of Schwann cell development and it has been shown to be 
independent from notch signalling (Kingham et al., 2009). 
Schwann cell-like ASCs obtained by this means express glial 
markers, produce myelin proteins and release growth factors 
that are able to induce neurite sprouting in vitro (Kingham 
et al., 2007; Xu et al., 2008; Mantovani et al., 2010; de Luca 
et al., 2013). More recently, human Schwann cell-like ASCs 
have been shown to possess comparable molecular and func-
tional properties (Tomita et al., 2013; Kingham et al., 2014). 
Schwann cell differentiation through the co-culture with 
primary Schwann cells or by the induction of neurosphere 
formation has also been successfully undertaken (Radtke et 
al., 2009; Wei et al., 2010; Razavi et al., 2012, 2013; Hsueh et 
al., 2014). 

The potential of Schwann cell-like ASCs for nerve repair 
has been also demonstrated by several in vivo studies. These 
cells seeded in fibrin or silicon conduits have been shown to 
promote nerve regeneration and the functional outcome of 
nerve repair in 2 weeks (di Summa et al., 2010), 16 weeks (di 
Summa et al., 2011) and 6 months-long studies (Orbay et al., 
2011). Nevertheless, they failed to enhance short-term nerve 
regeneration when seeded in commercially available colla-
gen-based (Neuragen®) conduits (di Summa et al., 2014), 
unless dispersed in fibrin hydrogels (Carriel et al., 2013). In-
terestingly, magnetic resonance imaging (MRI) was proven 
effective to monitor the efficacy of Schwann cell-like ASCs 
to improve nerve growth, by monitoring the regenerating 
axon front over time (Tremp et al., 2013). Schwann cell-like 
ASCs have been successfully used to re-populate decellular-
ised nerve allografts (Wang et al., 2012) or allogeneic artery 
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Table 1 Regenerative potential of adipose-derived stem cells (ASCs) in vivo

Study Species Injury type Repair type Duration Outcome

Carlson et al. (2011) Mouse Laminin knockout Sciatic nerve treated 
with ASCs 

3 weeks ASCs cause endogenous Schwann cells to 
differentiate and myelinate.

Carriel et al. (2013) Rat Sciatic nerve gap 
(10 mm)

Collagen conduit 12 weeks ASCs in fibrin-agarose hydrogel  improve 
remyelination and ECM organization.

di Summa et al. 
(2010, 2011)

Rat Sciatic nerve gap 
(10 mm)

Fibrin conduit 2, 16 weeks ASCs improve regenerative distance (2 wk), 
improve fiber diameter and reduce muscle 
atrophy (16 wk).

di Summa et al. (2014) Rat Sciatic nerve gap 
(10 mm)

Collagen conduit 2 weeks ASCs show no short-term benefits.

Erba et al. (2010) Rat Sciatic nerve gap
   (10 mm)

PHB conduit 2 weeks ASCs increase Schwann cell proliferation, increase 
regeneration distance.

Kingham et al. (2014) Rat Sciatic nerve gap
   (10 mm)

Fibrin conduit 2 weeks ASCs improve regeneration distance.

Liu et al. (2011) Rat Sciatic nerve gap 
(15 mm)

Acellular nerve 
allograft

12 weeks ASCs improve motor function recovery, reduce 
muscle atrophy, improve nerve conduction 
velocity, and increase myelination.

Luo et al. (2012) Dog Sciatic nerve gap 
(50 mm)

Acellular nerve 
allograft

6 months ASCs in combination with TGFβ1 improve 
myelination, reduce muscle atrophy.

Marconi et al. (2012) Mouse Sciatic nerve crush 1 wk post-crush 
intravenous injection 
of ASCs

5 weeks ASCs reduce inflammation, improve motor 
function recovery, improve number of 
regenerating fibers.

Orbay et al. (2011) Rat Sciatic nerve gap 
(10 mm)

Silicon conduit 6 months ASCs improve long-term recovery of nerve 
conduction and myelination.

Reid et al. (2011) Rat Sciatic nerve gap 
(10 mm)

PCL conduit 2 weeks ASCs decrease apoptotic gene expression in dorsal 
root ganglia neurons.

Santiago et al. (2009) Rat Sciatic nerve gap 
(6 mm)

PCL conduit 12 weeks ASCs improve nerve thickness, reduce muscle 
atrophy.

Suganuma et al. 
(2013)

Rat Sciatic nerve gap 
(10 mm)

Silicon conduit 2 weeks ASCs cause faster regeneration.

Tomita et al. (2013) Rat Tibial nerve crush Tibial nerve treated   
with ASCs

8 weeks Human ASCs improve myelin formation.

Compilation of in vivo studies of nerve regeneration using ASCs in conjunction with injury treatments. ECM: Extracellular matrix; TGFβ1: 
transforming growth factor β1; PCL: polycaprolactone; PHB: poly-3-hydroxybutyrate.

conduits (Sun et al., 2011) used for nerve repair. Another 
reported effect of the transplantation of Schwann cell-like 
ASCs for nerve repair is the reduction of neuronal loss at the 
level of the dorsal root ganglia (DRG) neurons, probably due 
to the delivery of growth factors that prevent the activation 
of caspase-3, which leads to cell death (Reid et al., 2011). 

At the Blond McIndoe Laboratories we have focused 
recently on the investigation of novel pharmacological tar-
gets to improve the survival and neurotrophic potential of 
Schwann cell-like ASCs. In particular, we have shown that 
Schwann cell-like ASCs express several neurotransmitters 
receptors (that is γ-amino butyric acid GABA type-A and -B 
receptors, as well as the ionotropic P2X receptors for adenos-
ine triphosphate, ATP), which can be stimulated in order to 
modulate cell death and survival, proliferation and expres-
sion or release of neurotrophic factors (NGF and BDNF) 
(Faroni et al., 2011, 2012, 2013b, c). In particular, stimula-
tion with GABA-A agonists increases cell growth (Faroni et 
al., 2012), whereas GABA-B stimulation reduces dASC pro-
liferation (Faroni et al., 2011) and induces increased expres-
sion of BDNF and NGF, suggesting improved differentiation 
(Faroni et al., 2013b). Similar effects have been previously 
reported in primary Schwann cells (Magnaghi et al., 2004), 

which are known to express GABA-B receptors that are also 
involved in differentiation and myelination (Magnaghi et 
al., 2008; Faroni et al., 2014b). Interestingly, we showed that 
specific inhibitors to P2X7 receptors are able to rescue the 
ATP-evoked cell death, which may be partially responsible 
for the low survival rate of transplanted ASC at the site of 
nerve injury (Faroni et al., 2013c). This was also confirmed 
by Luo et al. (2013) in primary Schwann cells, and we have 
recently shown that P2X7 receptors in Schwann cells control 
peripheral myelination (Faroni et al., 2014a). We believe that 
this evidence may point towards the development of novel 
approaches for nerve repair combining a cell-based therapy 
and pharmacological intervention.

Remaining clinical problems
Although ASCs have proved to be a promising tool for nerve 
repair, many questions remain before clinical translation 
could be considered. Firstly, it is still not clear if culturing 
and expanding the cells in vitro is beneficial for transplanta-
tion strategies, or if a more immediate approach, using SVF 
obtained and transplanted on the day of nerve repair, would 
be a better option. Secondly, although differentiation of ASCs 
has proven to be an effective means to improve their neuro-
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trophic potential, there is still little evidence that Schwann 
cell-like ASCs actively participate in the regeneration process 
by forming new myelin sheets. It seems, if anything, that 
their main role is to support endogenous Schwann cells by 
producing growth factors. In this scenario, it is worth con-
sidering what the benefits are of delaying nerve repair to ob-
tain a sufficient number of transplantable Schwann cell-like 
ASCs (meaning a reduced risk of undesired differentiation), 
or if it is feasible to develop protocols for direct trans-differ-
entiation in vivo. Another aspect that should be considered 
when working with ASCs is the high heterogeneity of this 
particular stem cell population. It is known that the adherent 
cells obtained from the SVF contain different cell subpopula-
tions differentially expressing several surface markers. From 
a clinical point of view, it would be of interest to identify the 
specific subpopulation leading to the best outcome for nerve 
repair or generating better performing Schwann cell-like 
ASCs. Another area that could benefit from further investiga-
tion is to improve the interaction of ASCs with the different 
biomaterials that are currently used to generate nerve guides, 
by means of functionalization of the coating with biological-
ly active substrates (Madduri et al., 2010). Finally, pharmaco-
logical intervention on ASCs has proven effective to improve 
survival and growth factor expression, thus further study on 
the identification of novel pharmacological targets on ASCs 
is worth further investigation.
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