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Mesenchymal stem/stromal cells (MSCs) derived from placental tissue show great therapeutic potential 
and have been used in medical treatment, but the similarity and differences between the MSCs derived 
from various parts of the placenta remain unclear. In this study, we compared MSCs derived from 
different perinatal tissues, including the umbilical cord (UC), amniotic membrane (AM), chorionic plate 
(CP) and decidua parietalis (DP). Using human leukocyte antigen (HLA) typing and karyotype analysis, 
we found that the first three cell types were derived from the foetus, while the MSCs from the decidua 
parietalis were derived from the maternal portion of the placental tissue. Our results indicate that both 
foetal and maternal MSCs share a similar phenotype and multi-lineage differentiation potential, but 
foetal MSCs show a significantly higher expansion capacity than do maternal MSCs. Furthermore, MSCs 
from all sources showed significant differences in the levels of several paracrine factors.

Human placenta is well known to not only play a fundamental and essential role in foetal development, nutrition, 
and tolerance, but also function as a bank of MSCs. Placental tissue can be easily obtained as medical waste. 
Placenta-derived MSCs can be procured from this medical waste, free of invasive procedures such as adipose 
tissue collection, and there are no ethical controversies surrounding its use unlike the embryonic stem cells. 
Considering the complexity of the placenta, this tissue can be conceptually divided into the foetal side, consisting 
of the amnion, chorion and umbilical cord, and the maternal side, consisting of the decidua. Numerus reports 
have been published on the MSCs that originate from different parts of the placenta1–11. Many of the perinatal 
sources, including the amniotic membrane (AM), chorionic plate (CP), decidua parietalis (DP) and umbilical 
cord (UC), have advantages over adult sources such as BM in terms of their ease of availability, lack of donor site 
morbidity, naivety of cells, abundance of stem cells in tissues, and high capacity for proliferation7,12,13.

The placenta has been largely used to study MSCs, and several studies have already compared the features 
(phenotype and function) of MSCs isolated from different placental tissues14–24. However, the origin of MSCs 
derived from all sources (AM, CP, DP and UC) of the placenta have not been determined, and there is a lack of 
comprehensive comparisons between MSCs. Moreover, optimal sources for specific clinical applications remain 
to be identified25. The hypothesis that all MSCs, regardless of their origins, are identical in their quality and func-
tion ignores their differences in biology and potential therapeutic use, which cannot be defined and characterized 
by current methods in vitro26. MSCs are routinely defined in vitro by cell surface antigen expression and differ-
entiation potential. These features are also known as the minimal MSC criteria proposed by the International 
Society for Cellular Therapies (ISCT)27. However, these minimal criteria are not specific for MSCs and cannot dis-
tinguish the connective tissue cells that share the same properties28. Cell-cell adhesion mediated by vascular cell 
adhesion protein 1 (VCAM-1) is known to be critical for T cell activation and leukocyte recruitment to the site 
of inflammation. Therefore, VCAM-1 plays an important role in evoking effective immune responses. VCAM-1 

1Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC, Chengdu, 
Sichuan, China. 2Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s 
Hospital, Chengdu, Sichuan, China. 3Center for Stem Cell Research & Application, Institute of Blood Transfusion, 
Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China. Mingjun Wu and 
Ruifan Zhang contributed equally to this work. Correspondence and requests for materials should be addressed to 
Q.C. (email: qchen0810@yahoo.com)

Received: 19 July 2017

Accepted: 12 March 2018

Published: xx xx xxxx

OPEN

mailto:qchen0810@yahoo.com


www.nature.com/scientificreports/

2SCIeNTIfIC REPORtS |  (2018) 8:5014  | DOI:10.1038/s41598-018-23396-1

is also reported to be a biomarker for a subpopulation of chorionic villi-derived MSCs with unique immuno-
suppressive activity12. This finding suggests that a better understanding of the functional properties indicating 
the potential impact on future clinical applications may be achieved by identifying the molecular pathways and 
cytokine profiling of MSCs19,29.

In our study, we compared MSCs derived from the UC, AM, CP of foetal origin and the DP of maternal 
origin in the placenta to understand their similarities and differences. The morphology and immunophenotype 
(assessed by flow cytometry) were analysed. HLA typing and karyotype analysis were carried out to determine 
the origin of the MSCs. Growth kinetics were evaluated using the population doubling time (PDT) and CCK-8. 
Cytokine secretion function was quantitatively analysed using the enzyme-linked immunosorbent assay (ELISA) 
kit. Our data suggest that VCAM-1 could be used as a biomarker to determine the CP-derived MSCs.

Results
Identification of placenta-derived MSCs. According to the ISCT criteria, the MSCs derived from AM, 
CP, DP and UC (Supplementary Fig. S1a,b) exhibited typical fibroblastoid, spindle-shaped morphology and dis-
played a high capacity to adhere to plastic when maintained in standard culture conditions using tissue culture 
flasks (Fig. 1a, top panel). There were significant differences in the cell isolation rates from different sources, rang-
ing from 0.34 to 1.52 million single cells per gram tissue (Fig. 1b). According to our data, MSCs cultured from all 
sources could be established with a comparable positive rate.

After 21 days of induction with the respective induction media, AM-MSCs underwent low-level trilineage dif-
ferentiation. In contrast, the three other types of MSCs showed relatively higher differentiation potential (Fig. 1a). 
CP-, DP-, and UC-MSCs from all three donors differentiated into all three induced lineages (adipocytes, osteo-
blasts and chondroblasts). AM-MSCs from donors 1 and 2 showed only adipogenic and osteogenic differentiation 
potential, and only donor 3 showed trilineage differentiation potential (Supplementary Fig. S2).

To determine the most significant differences among these MSCs, we compared the phenotypes of MSCs iso-
lated from the human placenta using identical methods. Each type of MSC was tested in 10 donors. A series of cell 
markers was examined at passage 3 of in vitro cultivation, including the classical MSC phenotypes as defined by 
the ISCT criteria (CD14, CD34, CD45, CD73, CD90, CD105 and HLA-DR), embryonic stem cell markers (SOX2 
and SSEA4) and VCAM-1, also known as CD106. AM-, CP-, DP- and UC-MSCs showed similar expression levels 
of MSC-specific surface markers (CD73, CD90 and CD105) and an absence of leucocyte, haematopoietic cell, or 
monocyte/macrophage markers (CD45, HLA-DR, CD34 and CD14) (Supplementary Fig. S3). All of these MSCs 
highly expressed the SOX2 and SSEA4 embryonic stem cell markers, as well as mesenchymal markers, includ-
ing CD73, CD90 and CD105 (Supplementary Fig. S4). The most significant difference in their phenotype was 
the expression of CD106, which was expressed highly in CP-MSCs (81.10 ± 12.28%), moderately in UC-MSCs 
(12.07 ± 11.43%), and slightly in AM-MSCs (4.27 ± 4.39%). DP-MSCs did not express CD106 (Fig. 1c,d).

Origin determination. HLA analysis of the culture-expanded cells from the same placental sample (n = 3) 
showed that AM-, CP- and UC-derived MSCs were of foetal origin, and DP-derived MSCs were of maternal 
origin (Table 1). However, some of the culture-expanded DP-derived cell populations expressed both foetal- and 
maternal-specific alleles (data not shown).

To confirm that these MSCs in culture were derived from the foetal or maternal placenta, the cytogenetic 
karyotypes of the cells from the same placenta (n = 4) of male babies were analysed. XX sex chromosomes were 
detected in DP-MSCs, and XY chromosomes were detected in AM-, CP- and UC-MSCs (Fig. 2).

Growth characteristics. The growth curves of all MSCs show that the DP-MSCs grew the slowest (Fig. 3a). 
During cell proliferation, the MSCs were cultured up to passage 11. Based on our calculations of the cell popula-
tion doubling time, the cell PDT of the UC-MSCs was 28.34 ± 2.89 h, and that of the AM-, CP- and DP-MSCs was 
35.19 ± 9.28 h, 38.71 ± 9.27 h and 48.01 ± 8.26 h, respectively (Fig. 3b,c). Thus, the order of the growth rate of the 
cells was as follows (from the fastest to the slowest): UC-, AM-, CP- and DP-MSCs.

Secretion patterns of selected growth factors and cytokines. Secretion of paracrine factors, includ-
ing human angiopoietin-1 (Ang-1), hepatocyte growth factor (HGF), insulin-like growth factor I (IGF-I), pros-
taglandin E2 (PGE2), transforming growth factor beta 1 (TGF-β1), VCAM-1 and vascular endothelial growth 
factor (VEGF), in all MSCs was assessed using ELISA kits according to the manufacturer’s instructions. MSCs 
from all sources showed significant differences in the levels of selected factors. AM-MSCs showed the highest 
secretion of PGE2 and TGF-β1. CP-MSCs showed the highest secretion of HGF and VCAM-1. DP-MSCs showed 
the highest secretion of Ang-1 and VEGF and the lowest secretion of TGF-β1, while UC-MSCs showed the high-
est secretion of IGF-I (Fig. 4).

Discussion
In this study, we performed a side-by-side comparison of 4 populations of MSCs derived from perinatal tissues, 
including AM, CP, DP and UC. In summary, this study resulted in the following major conclusions:

First, we analysed the origin of different perinatal tissue-derived MSCs. HLA typing and karyotype analysis 
confirmed that AM-, CP- and UC-derived MSCs were of foetal origin, and DP-derived MSCs were of maternal 
origin. Moreover, we observed significant differences in the proliferative potential among the 4 populations of 
MSCs, and the proliferation rate from the fastest to the slowest was as follows: UC-, AM-, CP- and DP-MSCs. The 
growth curve showed that the proliferative capacity of the MSCs of foetal origin was significantly greater than that 
of the MSCs of maternal origin.

Second, we found that MSCs derived from different perinatal tissues are not identical in terms of their biolog-
ical properties. Although MSCs from all sources were shown to express similar surface markers according to the 
ISCT criteria and some pluripotency related markers; for instance, SOX2 and SSEA4, CP-MSCs show the highest 
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CD106 expression compared to the other three MSCs, which displays a positive correlation with the immuno-
suppressive effect. CD106 is known to play an important role in embryonic development in the formation of 
the umbilical cord and placenta30. Moreover, surface molecules, such as CD106 and CD54, are considered to be 
important for the immunomodulation of MSCs31.

Figure 1. Characterization and isolation yield of different types of MSCs derived from perinatal tissues. (a) 
All MSCs exhibited a similar morphology and became positive for oil red O (adipocytic differentiation), alcian 
blue (chondrocytic differentiation), and alizarin red (osteocytic differentiation). (b) Original raw material, MSC 
isolation yield. Data are presented as the mean ± SEM (*p < 0.05, **p < 0.005). (c) Flow cytometric analysis 
of CD106 expression in different MSCs. (d) Statistical result of CD106 expression in different MSCs. Data are 
presented as the mean ± SEM (***P < 0.0001).
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Third, MSCs derived from different tissues have been demonstrated in numerous studies to differentiate into 
cells in the mesodermal lineage, such as adipocytes, osteoblasts and chondroblasts32–35. Our results demonstrated 
that there are quantitative differences between various populations of MSCs derived from different perinatal 
tissues with respect to their differentiation potential. Our data indicated that AM-MSCs underwent trilineage 
differentiation at a low level. Furthermore, the differentiation potential of foetal (AM origin) vs. adult (DP origin) 
MSCs in our work showed that the proliferative capacity of the adult (maternal) cells was significantly lower than 
that of the feotal cells which is inconsistent with their differentiation potential (Fig. 3, supplementary Fig. S2).

Fourth, the secretion patterns of selected growth factors and cytokines revealed that MSCs from all sources 
showed distinct differences in the levels of the selected factors. These factors were selected because multiple stud-
ies have shown that they are secreted by MSCs during inhibition of apoptosis, immunomodulation, anti-fibrotic 
processes, angiogenesis, chemotaxis and haematopoiesis induction/support in vitro or in vivo36–41. Recent studies 
have demonstrated that the high expression of HGF and VCAM-1 in MSCs was associated with a favourable 
angiogenic potency and displayed therapeutic efficacy in hindlimb ischaemia42,43.

In conclusion, our study compared MSCs derived from different perinatal tissues to better understand the 
similarities and differences among these cell types. The origin and purity of each cells was confirmed by HLA 

Donor Genotype AM-MSCs CP-MSCs DP-MSCs UC-MSCs

1

HLA-A A24, - A24, - A11, A24 A24, -

HLA-B B39, B60 B39, B60 B13, B39 B39, B60

HLA-DRB1 DR12, DR13 DR12, DR13 DR12, DR15 DR12, DR13

2

HLA-A A2, A24 A2, A24 A24, - A2, A24

HLA-B B75, B61 B75, B61 B8, B61 B75, B61

HLA-DRB1 DR12, DR15 DR12, DR15 DR17, DR12 DR12, DR15

3

HLA-A A2, A33 A2, A33 A2, - A2, A33

HLA-B B13, B61 B13, B61 B13, B46 B13, B61

HLA-DRB1 DR14, DR15 DR14, DR15 DR8, DR15 DR14, DR15

Table 1. HLA typing of culture-expanded MSCs from the same placental sample.

Figure 2. Karyotype analysis of different MSCs derived from different sources of the placenta of male babies 
(n = 3). G-band staining revealed that AM-, CP- and UC-MSCs were foetal cells exhibiting a normal 46, XY 
karyotype, and DP-MSCs were maternal cells exhibiting a normal 46, XX karyotype.
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typing and karyotype analysis and showed that the first three cell types were of foetal origin and the last cell type 
was of maternal origin from the placental tissue. Although both foetal and maternal MSCs have similar pheno-
types and multi-lineage differentiation potential, foetal MSCs showed a significantly higher expansion capacity 
than did maternal MSCs, and furthermore, MSCs from all sources showed significant differences in the levels of 
selected paracrine factors. These findings may offer clues to the clinical application of different types of MSCs. For 
instance, AM-MSCs may be used in the treatment of premature ovarian ageing due to their higher secretion of 
PGE2 and TGF-β144; CP-MSCs display potential pro-angiogenic activity due to the higher secretion of HGF and 
VCAM-143 and could be used in angiogenic therapy; and DP-MSCs show advantages in the treatment of critical 
limb ischaemia because of the higher secretion of VEGF and Ang-145. Compared to AM-, CP- and DP-MSCs, 
UC-MSCs secreted higher levels of a wide range of selected paracrine factors. Thus, UC-MSCs may be a source 
of cell therapy to treat other diseases. Furthermore, it would be necessary to identify the ability of MSCs derived 
from different sources differentiating into various types of cells specifically into the three germ layers such as ecto-
derm (epithelial and neuronal cells), mesoderm (endothelial cells and cardiomyocytes) and endoderm (hepato-
cytes and insulin producing β-cells). More functional studies are required to confirm these findings and to obtain 
a further understanding of the biological differences of MSCs from various sources so that the most suitable 
MSCs for treatment of specific diseases can be verified and acquired.

Methods
Isolation and culture of MSCs from the human placenta and umbilical cord. The experiments 
involving human tissue were approved by the Research Center for Stem Cell and Regenerative Medicine, Sichuan 
Neo-life Stem Cell Biotech INC./ Center for Stem Cell Research & Application, Institute of Blood Transfusion, 
Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC). All the experi-
ments were carried out in accordance with the approved guidelines. Human placentae (n = 60) and umbilical 
cords (n = 13) were collected from healthy, full-term, uncomplicated pregnancies. Written informed consent was 
obtained from the mothers and the donors.

First, UCs were dissected longitudinally, and the arteries and veins were removed. The remaining pieces 
were chopped mechanically. Second, the decidua parietalis attached to the maternal side of the human pla-
centa was manually separated from the chorion. Third, the placental amnion attached to the foetal side of the 
human placenta was separated from the chorionic plate. Finally, the chorionic plate without the amnion and 
decidua basalis was separated from the human placenta. All of the above three tissues were washed thoroughly 
with phosphate-buffered saline (PBS; pH 7.4) to remove excess blood. The tissues were rinsed in PBS and were 
extensively minced. All of the explants, including the UCs, were transferred into 100 mm plates (Corning, USA). 
Complete culture medium (Dulbecco’s modified Eagle’s medium/nutrient mixture F-12, DMEM-F12 containing 
10% foetal bovine serum, 100 mg/mL streptomycin and 100 U/mL penicillin) was added to the plates, and the 

Figure 3. Proliferative potential of different sources of MSCs. The number of MSCs was counted each time 
following subculture from passages 3 to 11 (n = 3 donors). (a) Growth curves of different types of MSCs. (b) 
The population doubling time was also calculated based on cell counts. (c) Comparison of average population 
doubling time of different sources of MSCs following subculture from passages 3 to 11. Data are presented as the 
mean ± SEM (*P < 0.05. **P < 0.005. ***P < 0.0001).
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explants were cultured at 37 °C in a 5% CO2 incubator and left undisturbed to allow the cells to migrate from the 
explants. After 10–15 days, MSC-like cells were found around the fragments. MSCs were identified on the basis 
of their fibroblastic morphology and phenotypic characterization, which was performed after passage 3, and were 
used in subsequent experiments. The cell cultures at different time intervals were observed under an inverted 
phase contrast microscope (Leica DMI3000 B, Leica Microsystems Inc., Germany) and the images were captured 
using Leica Application Suite Version 3.8.0 software.

Determination of the maternal and foetal origin of MSCs. To analyse the origin of culture-expanded 
MSCs derived from the amnion, chorionic plate, decidua parietalis and umbilical cord, molecular HLA typing 
was performed on DNA obtained from expanded MSCs using PCR-SSP with an AllSet+ Gold SSP HLA-A\B\
DRB1 kit (ONE LAMBDA, Canoga Park, CA).

Flow cytometry analysis. For phenotypic identification of the MSCs derived from all sources, a total of 
1 × 106 cells were divided into aliquots in 1.5 mL microcentrifuge tubes, and the samples were centrifuged at 
500 × g for 5 minutes. Pelleted cells were washed twice in phosphate-buffered saline (PBS) supplemented with 
0.2% foetal bovine serum (FBS) (Gibco, Life Technologies, USA). The cells were then suspended in 50 μL of 
PBS with 1% bovine serum albumin (BSA), and the following cell surface epitopes were detected: anti-human 
CD73-PE, CD90-FITC, CD105-PE, VCAM-1-PE, CD166-PE, CD14-PE, CD34-PE, CD45-Pc7, HLA-DR-FITC 
(BD Biosciences, USA), SOX2-PE and SSEA4-PE (eBioscience, USA). Appropriate isotype controls were used for 
each antibody to assess for nonspecific antibody binding. The cells were then analysed using a flow cytometry 
instrument (FC500; Beckman Coulter, USA) and data processing software (FlowJo 10.0.7; TreeStar, USA).

Figure 4. Comparison of the secretion patterns of selected growth factors and cytokines. Differences in the 
four sources were determined to be significant and were labelled with a star if the P-value determined using 
ANOVA followed by Tukey’s test was <0.05. Data are expressed as the mean ± SEM (*P < 0.05. **P < 0.005. 
***P < 0.0001). Ang-1, angiopoietin-1; HGF, hepatocyte growth factor; IGF-I, insulin-like growth factor 
I; PGE2, prostaglandin E2; TGF-β1, transforming growth factor beta 1; VCAM-1, vascular cell adhesion 
molecule-1; VEGF, vascular endothelial growth factor.
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Growth kinetics analysis. The proliferation of MSCs from P3 to P11 was assessed (n = 3). MSCs from all 
sources were inoculated on a six-well culture plate at a density of 7–10 × 105 cells/well, and the cells were counted 
until they reached 100% confluency. The PDT was calculated using the following formula:

= ×PDT (CT ln2)/ ln(N /Ni),f

where CT is the cell culture time, Ni is the initial number of cells, and Nf is the final number of cells46.

Proliferation assay. The proliferation of MSCs from all sources was determined using the Cell Counting 
Kit-8 (CCK-8, Dojindo Molecular Technology, Japan). MSCs were plated at a density of 2,000 cells per well in 
96-well plates in standard culture medium. After 4 hours of incubation, 10 µL of CCK-8 was added to each well, 
and the plates were incubated at 37 °C. Optical density (OD) was measured every 24 hours with a spectrophotom-
eter (Multiskan GO, Thermo Scientific) at 450 nm. Cell viability was calculated relative to the control.

In vitro differentiation assay for MSCs. AM-, CP-, DP- and UC-derived MSCs were differentiated into 
adipocytes, osteoblasts and chondrocytes after three passages as follows. In brief, for adipogenic, osteogenic or 
chondrogenic differentiation, MSCs from all sources were seeded into 12-well plates at 200,000 cells per well and 
were maintained in standard culture medium until confluency. Cells were exposed to adipogenic, osteogenic or 
chondrogenic induction medium (All from Gibco, Life Technologies, Grand Island, USA) for 21 days. Cells were 
fixed in 4% paraformaldehyde. To assess adipogenic differentiation, lipid droplets of differentiated cells were 
stained using oil red O. To assess osteogenic differentiation, cells were stained with alizarin red S. To assess chon-
drogenic differentiation, cells were stained with alcian blue. Control cells were maintained in standard culture 
medium over the same time period (All stains were procured from Sigma Aldrich, St Louis, USA). The stained 
plates were observed under an inverted phase contrast microscope (Leica DMI3000 B, Leica Microsystems Inc., 
Germany) and the images were captured using Leica Application Suite Version 3.8.0 software.

Karyotype analysis. To analyse the karyotype of the AM-, CP-, DP- and UC-derived MSCs from the same pla-
centa (male new-born), cell division was blocked at metaphase with 0.1 μg/mL colcemid (Calbiochem, Germany) for 
2 hours at 37 °C. The cells were washed and trypsinized, resuspended in 0.075 M KCl, incubated for 20 minutes at 37 °C, 
and fixed with methanol and acetic acid (3:1). G band standard staining was used to visualize the chromosomes. At least 
20 metaphase-nuclei were detected in each sample. The cells in metaphase were analysed and reported on by a certified 
cytogenetic laboratory according to the International System for Human Cytogenetic Nomenclature.

Quantification of secreted factors. Culture supernatants were generated as follows. Cells were seeded in 
standard culture medium at a density of 10,000 cells/cm2. After 72 hours, cell-free supernatants were collected and 
were stored at −80 °C. The levels of hepatocyte growth factor (HGF), angiopoietin-1 (Ang-1), vascular endothe-
lial growth factor (VEGF), vascular cell adhesion molecule-1 (VCAM-1), insulin-like growth factor I (IGF-I), 
prostaglandin E2 (PGE2) and transforming growth factor beta 1 (TGF-β1) were measured using the respective 
ELISA kit (Bio-Rad) according to the manufacturer’s protocol.

Statistical analysis. Statistical analyses were performed using GraphPad Prism version 5.0 (California, 
USA). Comparisons of parameters for more than three groups were made by one-way analysis of variance 
(ANOVA) followed by Tukey’s test. Parametric data are expressed as the means ± standard deviation (SD). A 
value of P < 0.05 was considered statistically significant.
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