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Take-home points
•  Proton density fat fraction measurements enable 

unconfounded quantification of hepatic fat 
accumulation.

•  Currently, magnetic resonance elastography is the 
most established magnetic resonance imaging 
(MRI) technique for the assessment of hepatic 
fibrosis.

•  Abbreviated MRI protocols rely on acquisition of 
only a limited number of sequences tailored to a 
specific disease.
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INTRODUCTION

Magnetic resonance imaging (MRI) has emerged as the 
imaging modality of choice for evaluating patients with focal 
or diffuse liver disease. Its unique advantages compared with 
computed tomography include the lack of ionizing radiation 
exposure and an inherently high soft tissue signal. Therefore, 
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additional intravenous contrast is not mandatory. However, 
with the advancement of hepatobiliary contrast agents 
(gadoxetate disodium: Eovist or Primovist, Bayer; gadobenate 
dimeglumine: MultiHance, Bracco Imaging), the assessment of 
hepatocellular function has become feasible [1]. 

In recent years, MRI has developed from being considered 
as a diagnostic tool for the assessment of morphological 
disorders to an advanced technique for multiparametric 
imaging [2], enabling evaluation and prediction of disease 
course [3] and therapeutic success [4]. Development is 
ongoing with a vast number of emerging techniques for 
morphological and quantitative imaging, many of which are 
primarily used in research settings. Discussion of all of these 
is beyond the scope of this article. Instead, this manuscript 
focuses on new techniques that are already applied in 
routine clinical practice or are likely to be more broadly 
applied in the near future. MRI techniques are addressed 
from a clinical perspective, specifically for the assessment 
of hepatic steatosis, fibrosis, and focal liver lesions (FLLs).

Hepatic Steatosis

Clinical Relevance
Hepatic steatosis refers to a pathologically elevated 

fat content in hepatocytes. It is graded histologically 
depending on the percentage of hepatocytes presenting 
intracellular lipid-containing vacuoles [5]. Non-alcoholic 
fatty liver disease (NAFLD) is the most frequent cause of 
hepatic steatosis, affecting more than 25% of the adult 
population and with an increasing prevalence worldwide [6]. 
Approximately 20% of patients with NAFLD progress to non-
alcoholic steatohepatitis (NASH), which is characterized 
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by additional inflammation with or without fibrosis [7]. 
Liver biopsy is the reference standard for diagnosing fat 
accumulation and differentiating NAFLD from NASH. However, 
biopsy is invasive and prone to sampling bias, particularly 
in cases of heterogeneous disease distribution. There is a 
great need for non-invasive biomarkers for the detection and 
quantification of fat accumulation, especially in the early 
stages.

Emerging MRI Techniques for Steatosis Assessment 
Current MRI techniques exploit the differences in the 

resonance frequencies of water and fat protons. Until recently, 
magnetic resonance spectroscopy (MRS) has been considered 
a non-invasive reference standard for the quantification 
of hepatic fat accumulation. In MRS, the proton signals 
of water and fat are acquired in a single breath hold and 
then depicted as a high-resolution spectrum. Currently, 
point-resolved spectroscopy (PRESS) and stimulated-echo 
acquisition mode (STEAM) are the most common techniques 
in practice. Although PRESS is characterized by a higher 
signal-to-noise ratio (SNR), STEAM is often preferred 
because it is less affected by J-coupling [8]. Despite rapid 
MRS techniques (such as, high-speed T2-corrected multi-
echo single voxel spectroscopy), MRS is limited to a voxel 
basis and, therefore, prone to sampling bias. Multivoxel MRS 
increases the imaging time proportionally, but can be used to 
cover larger volumes. 

More recently, proton density frat fraction (PDFF) has 
been introduced and has already superseded MRS. PDFF 
refers to the fraction of mobile protons in the liver that are 
attributable to fat. It is an uncorrected confounded measure 
of steatosis that is influenced by biological, physical, and 
technical factors. Therefore, imaging techniques need to 
address all confounding factors (T1 bias, T2 relaxation, T2* 
decay, the spectral complexity of fat, J-coupling, noise bias, 
and eddy currents). PDFF is an unconfounded measure for the 
quantification of fat accumulation, independent of magnetic 
field strength, scanner platform, and technical parameters 
[9]. To calculate PDFF, multi-echo gradient echo (GRE) 
sequences with chemical shift-encoding (CSE) are used, 
enabling coverage of the whole liver in a single breath-hold. 
PDFF measurements correlate closely with histology [10] and 
are expressed in percentage (0%–100%) (Fig. 1). Different 
strategies for post-processing and calculation exist, with the 
exact strategy for CSE depending on the vendor. Magnitude-
based techniques are simpler to implement but suffer from 
a low SNR and coverage of a limited PDFF range (0%–50%). 

Complex-based CSE techniques enable measurement of the full 
PDFF range (0%–100%). However, they are more sensitive to 
phase errors and may suffer from occasional water-fat swaps. 
Lastly, hybrid-based methods combine the advantages of 
both approaches [9].

Confounder-corrected CSE-MRI further enables the 
simultaneous assessment of iron deposition. The presence 
of iron results in tissue signal loss in T2 and T2*-weighted 
images, which is proportional to the iron content. Based on 
R2* measurements, fat-corrected R2*maps are a by-product 
of multi-echo CSE acquisitions used to create R2*-corrected 
PDFF maps [11].

There is growing evidence for the use of PDFF, which is an 
increasingly accepted technique, especially for the evaluation 
of NAFLD. In a meta-analysis comparing PDFF measurements 
with transient elastography, MRI offered pooled sensitivities 
and specificities of 0.71–0.91 and 0.88–0.93, respectively, 
for the staging of hepatic steatosis [12]. Studies have shown 
that PDFF can be used to monitor and predict therapeutic 
effects in patients with NAFLD [4,13]. Other potential 
applications for PDFF measurements include surveillance of 
patients undergoing bariatric surgery [14] and preoperative 
evaluation of living liver donor candidates [15].

Future Expectations
Concomitant fat and/or iron deposition is often present in 

patients with chronic liver disease (CLD), and quantification 
is clinically useful for diagnosis and follow-up. PDFF 
measurements with simultaneous evaluation of iron content 
provide a great opportunity for the implementation of 
abbreviated MRI protocols specifically tailored to these 
clinical indications. Automated assessment of PDFF and 
T2* maps based on deep learning algorithms may facilitate 
analysis; until then, a consensus on a standardized approach 
for placement of regions of interest would be desirable. 
Free-breathing techniques, including navigator-based image 
acquisition or non-cartesian sampling strategies, are the 
current areas of research.

Hepatic Fibrosis

Clinical Relevance
Hepatic fibrosis results from progressive liver injury in all 

causes of CLDs. It is defined as an excessive accumulation of 
extracellular matrix proteins and is commonly staged from 
F0-F4 in the radiology literature [16]. CLD is a major health 
problem, with significant morbidity and mortality worldwide. 
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In the USA, CLD and cirrhosis are the 10th leading causes 
of death [17]. Liver biopsy is the reference standard for 
diagnosis and staging of hepatic fibrosis. Early detection 
and treatment of the cause are critical because early stage 
fibrosis is potentially reversible, and liver transplantation is 
the only curative treatment for decompensated cirrhosis [16].

Emerging MRI Techniques for Fibrosis Assessment 
Magnetic resonance elastography (MRE) is currently the 

leading MRI technique for staging hepatic fibrosis, with 
stiffness measurements directly related to fibrosis stage 
[18]. A passive driver that generates mechanical waves is 
positioned over the patient’s liver. Mechanical vibrations 
are produced by an active driver outside the MRI room and 
transported through a flexible tube to the passive driver. 
A phase-contrast pulse sequence with motion-encoding 
gradients is used to evaluate wave propagation. Post-
processing enables the visualization of wave images and 
quantitative maps of liver stiffness, known as elastograms 
[16]. Higher liver stiffness causes faster wave propagation 
and is directly associated with a higher fibrosis stage (Fig. 2). 

Although MRE is the most established MRI technique for 
the assessment of hepatic fibrosis, the need for additional 
hardware is a drawback for the expansion of clinical 
implementation. Reliability has been reported to be lower 
in patients with iron overload, massive ascites, or high 
body mass index [16,19]. The recently implemented MRE 
using spin-echo echo-planar imaging (SE-EPI) may overcome 
some of these limitations. Acquisition of MRE is traditionally 
performed with GRE sequences, which tend to have a 
relatively long echo time (TE) and are therefore sensitive to 
iron overload. Compared with GRE sequences, SE or SE-EPI 

sequences have shorter TEs and are inherently insensitive to 
T2* effects due to a 180° refocusing pulse, as shown in a study 
by Zhan et al. [20] for MRE at 3T. Studies have shown that 2D 
or 3D MRE using SE-EPI has lower technical failure rates and 
a larger confidence area while maintaining a comparable or 
higher diagnostic performance than conventional 2D GRE-MRE 
[20-22]. Notably, the cut-off values for staging hepatic fibrosis 
are not significantly different between these two sequences 
[20,23]. 

Recently, 3D MRE has been introduced for the evaluation 
of hepatic fibrosis. In 2D MRE, elastograms are reconstructed 
based on waves propagating in the slice plane, whereas 
waves propagating oblique to the splice plane are discarded. 
In a 3D MRE, wave motions are encoded in three planes 
(x, y, and z), providing more accurate information on the 
properties of materials in theory. Specifically, in a 3D MRE, 
the storage and loss moduli can be calculated independently, 
as compared to the magnitude of the complex shear modulus 
(that is, liver stiffness value) of a 2D MRE. For 3D MRE, 
more data are required; SE-EPI sequences are usually used 
to acquire multiple slices in a limited timeframe. Recent 
studies have shown that the liver damping ratio in 3D MRE 
is further associated with inflammation in patients without 
or early stage fibrosis [24]. Notably, the cut-off values for 
the staging of fibrosis between 3D and conventional 2D 
MRE may be different [25,26].

A more advanced technical approach is the multi-
frequency MRE. Currently, the staging of hepatic fibrosis 
is usually performed at a single frequency (60 Hz). Even 
though single-frequency MRE has been applied successfully 
for the staging of hepatic fibrosis, its accuracy, especially 
for the detection of early stage fibrosis, is relatively low 

A B C

Fig. 1. A 51-year-old male patient referred for magnetic resonance imaging (MRI) with clinical suspicion of iron storage disorder. On the 
in-phase image (A), a slightly increased signal intensity of the liver can be observed compared to that of the spleen. Opposed-phase 
imaging (B) reveals a distinct signal drop in the liver parenchyma. Quantification using chemical-shift encoded MRI (C) demonstrates a 
proton density fat fraction of approximately 17%, consistent with mild steatosis, but with no significant iron deposition (R2* below 70 s-1). 
ROI = region of interest, std = standard deviation
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Fig. 2. Spin-echo magnetic resonance elastography (MRE) at 3T in a 29-year-old male living liver donor candidate (A-E) and gradient 
echo MRE at 3T in a 63-year-old cirrhotic male patient (F-J). Hepatobiliary phase images (A, F) demonstrate homogeneous contrast 
uptake. Magnitude (B, G) and wave (C, H) image data are converted into gray-scale (D, I) and color elastograms (E, J). Compared to 
the healthy donor, faster wave speed is depicted on wave images of the cirrhotic patient (H), consistent with higher liver stiffness on 
gray-scale and color elastograms (I, J).
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[27]. This can be improved by adopting the concept of 
viscoelasticity. For multi-frequency MRE, tissue oscillations 
are acquired either separately or simultaneously at multiple 
frequencies (25–62.5 Hz) [28,29]. The storage and loss 
moduli are then calculated using different rheological models, 
for example, Voit, Maxwell, or spring-pot models [29]. Recent 
studies have shown that multi-frequency MRE may improve 
the performance of MRE in the diagnosis of hepatic fibrosis 
and in differentiating fibrosis from inflammation [28,30].

With the use of MRE, high areas under the receiver 
operating characteristic or area under receiver operating 
characteristics have been determined for the classification 
of fibrosis as ≥ 1, ≥ 2, ≥ 3, or 4 [18,31-33]. Compared 
with ultrasound elastography, MRE has a higher diagnostic 
performance for staging liver fibrosis, especially in patients 
with ascites [19,34]. However, it is important to note 
that the threshold for liver stiffness on MRE needs to be 
further validated depending on the etiology of CLD and scan 
parameters, including applied sequences, dimensions, and 
frequencies [16]. 

MRI evaluation of hepatic fibrosis using hepatobiliary 
contrast agents is also feasible. Hepatocellular contrast 
uptake in the hepatobiliary phase is quantified as a 
surrogate biomarker for the estimation of liver fibrosis. 

Different techniques have been developed for quantifying 
hepatocellular contrast uptake. Signal intensity-based indices 
such as relative liver enhancement and liver-to-spleen index 
are easy to implement because there is no need for specific 
sequences or post-processing [35]. Studies have shown a 
good correlation of signal intensity (SI)-based indices with 
liver function tests and established clinical scores [3,36]. 
However, it must be noted that SI measurements are only 
relative values and are dependent on technical parameters. 
In addition, the nonlinear relationship between gadolinium 
(Gd) concentration and SI is a potential caveat.

T1 mapping, also known as relaxometry, overcomes some 
of the limitations of direct SI measurements. Contrast-
induced T1 relaxation time changes are directly correlated 
with Gd concentration and are therefore more reliable than 
SI measurements [37]. For hepatic fibrosis evaluation, 
the variable flip-angle method with B1 inhomogeneity 
correction, modified look-locker, and look-locker inversion 
recovery sequences have been proposed [38-40]. In 
addition to T1 relaxation time, the contrast uptake ratio or 
contrast uptake rate can be calculated using a dedicated 
software [41,42] (Fig. 3). Encouragingly, T1 relaxation time 
and calculated contrast uptake ratio have been shown to 
correlate with liver function and clinical outcome [40,43]. 
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Fig. 3. Evaluation of contrast uptake for fibrosis assessment. A 53-year-old female patient with chronic hepatitis B (A-C). Hepatobiliary 
phase imaging (A) and hepatocyte uptake ratio (HUR) map (B) using Look-Locker sequence depict homogeneous and high contrast 
uptake (HUR: 63.6). In comparison, hepatobiliary phase imaging (D) and HUR map (E) in a 65-year-old male patient with Child B 
cirrhosis demonstrate decreased contrast uptake (HUR: 39.9). Histogram analyses (C, F) reveal comparatively more heterogeneous 
contrast uptake in the patient with advanced cirrhosis (F). ave = average
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Although T1 relaxometry has theoretical advantages over 
direct SI measurements, the requirement for dedicated 
sequences and software limits its application in research 
settings. Moreover, confounding factors, such as iron, 
fat, and off-resonance effects, may affect T1 values. For 
example, if fat is not suppressed correctly when performing 
T1 mapping using the modified look-locker technique, 
T1 values may be overestimated owing to the fat. Recent 
studies have demonstrated the feasibility of obtaining 
confounding factor-corrected T1 values [44-46]. 

Future Expectations
MRE is likely to be more widely implemented in the near 

future, along with verification of etiology-based cut-off 
values. The possibility of differentiating between fibrosis 
and inflammation, as well as an increase in the diagnostic 
accuracy for early stage fibrosis are promising expectations. 
T1 mapping may improve in precision by corrections in 
confounding factors and liver MR fingerprinting may enable 
water-specific T1 acquisition [47,48]. The integration of 
automatic liver segmentation and automated reporting of 
liver stiffness or T1 values will ease the radiology workflow 
[49]. The same is true for the implementation of deep- or 
machine-learning algorithms for the evaluation of fibrosis and 
liver function derived from routine MRI sequences [50,51]. 
These techniques are expected to play an important role in 
the context of abbreviated MRI in combination with PDFF 
measurements for the evaluation of diffuse liver diseases, 
including NAFLD and NASH [26,52]. Finally, improving the 
cost-effectiveness of these applications by adopting low-
field point-of-care MRI [53] will help to further popularize 
the implementation of MRI for the evaluation of diffuse liver 
disease.

FLLs 

Clinical Relevance
In healthy livers, most incidentally detected FLLs in 

patients without known malignancies are benign. Most 
malignant FLLs are metastases, especially from the 
gastrointestinal tract, pancreas, breast, and lungs. In 
the cirrhotic liver, however, approximately 75% of FLLs 
are consistent with hepatocellular carcinoma (HCC) [54]. 
Therefore, differential diagnosis is dependent on patient 
history, age, and clinical examination. Imaging is a mainstay 
not only for diagnosis but also for the determination of the 
number and localization of lesions. In this context, MRI has 

evolved into the imaging modality of choice for evaluating 
patients with suspected or known FLLs. A conventional full 
MRI exam, however, is time consuming, which is in contrast 
to the rising clinical demand and overall limited scanner 
availability.

Emerging MRI Techniques for Assessment of FLLs
Recently, abbreviated MRI protocols have been introduced. 

This approach is characterized by the acquisition of only a 
limited number of selected sequences tailored to a specific 
disease. With acquisition times of approximately 10 min 
or less, abbreviated MRI aims to reduce exam complexity 
while maintaining a high diagnostic sensitivity. Therefore, 
it is of utmost importance that each sequence has a 
consistent and acceptable image quality. Rapid imaging 
techniques may facilitate adherence to this timeframe. 
For example, compressed sensing-based rapid imaging has 
been successfully adopted for T1-weighted imaging in full 
MRI protocols [55]. Deep-learning-based T2- or diffusion-
weighted imaging may shorten acquisition times while 
simultaneously improving image quality and lesion detection 
[56-58]. The implementation of these techniques may further 
reduce the acquisition times without compromising the image 
quality, which is critical for abbreviated MRI. 

Three general abbreviated MRI approaches have been 
developed for FLLs, as follows, and are currently being 
discussed in the literature: non-contrast abbreviated MRI, 
dynamic abbreviated MRI, and hepatobiliary abbreviated 
MRI (Fig. 4). Each protocol has specific advantages and 
disadvantages [59,60]. The clinical potential of abbreviated 
MRI protocols is promising, for example, for the evaluation 
and follow-up of diffuse liver disease [61] and the detection 
and follow-up of metastatic liver disease [62,63]. However, 
most evidence is available in the context of HCC screening 
and surveillance. A meta-analysis showed that abbreviated 
MRI had higher sensitivity than ultrasound (82% vs. 53%) 
for HCC screening [64]. Similarly, for HCC surveillance, 
abbreviated MRI had high sensitivity, especially for very 
early tumor detection, with pooled sensitivities and 
specificities of 85% and 94%, respectively, for any tumor 
stage [65]. 

Future Expectations
Abbreviated MRI protocols are likely to become 

firmly established in clinical routine in the near future. 
Implementation of deep-learning algorithms may improve 
the diagnostic confidence and accuracy for the detection 
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of FLLs [66]. However, despite apparent advantages, some 
open issues for the use of abbreviated MRI still need to be 
addressed: the optimal target population, which patients 
benefit the most, how findings should be reported and 
followed-up, and the appropriate cost of abbreviated MRI. In 
addition, there is a lack of large prospective studies directly 
comparing abbreviated MRI with full MRI or other imaging 
modalities; until then, the best abbreviated MRI protocol 
for each setting needs to be defined. 

CONCLUSION

MRI has advanced from a mere diagnostic tool for the 
assessment of morphological disorders to a non-invasive 
quantitative biomarker for predicting prognosis and 
therapeutic success. Multiparametric imaging enables the 
comprehensive assessment of diffuse liver disease. PDFF 
is an emerging technique for the quantification of hepatic 
steatosis. Similarly, MRE) and the use of hepatocyte-
specific contrast agents are promising applications for the 
quantification of hepatic fibrosis. Abbreviated MRI protocols 
tailored to a specific disease (such as focal lesions and diffuse 

Fig. 4. Abbreviated magnetic resonance imaging (AMRI) in three different patients with hepatocellular carcinoma. Non-contrast (NC)-
AMRI (A), hepatobiliary (HBP)-AMRI (B) and dynamic (DYN)-AMRI (C) in three different patients with hepatocellular carcinoma (arrows 
in A-C). In the hepatobiliary phase an additional lesion can be appreciated (dashed arrow in B). *There is no consensus on whether 
diffusion-weighted imaging (DWI) should be a part of this protocol or not. in/opp = in and opposed phase imaging, pre = pre-contrast
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liver disease) are likely to become firmly established and will 
help fulfill the increasing demand for imaging.
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