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Abstract: Glioblastoma (GBM) is the most aggressive brain tumor in adults and is characterized by
an immunosuppressive microenvironment. Different factors shaping this tumor microenvironment
(TME) regulate tumor initiation, progression, and treatment response. Genetic alterations and
metabolism pathways are two main elements that influence tumor immune cells and TME. In this
manuscript, we review how both factors can contribute to an immunosuppressive state and overview
the strategies being tested.

Keywords: glioblastoma; metabolism; microenvironment

1. Introduction

Glioblastoma represents the most prevalent and malignant primary tumors of the
central nervous system (CNS) in adults. Currently, the available treatment options are
limited and based on standard surgery and radio-chemotherapy with alkylating agents
and the addition of tumor-treating fields (TTFields), an accepted treatment in several
countries [1–3]. The prognosis for this type of tumor remains poor with an overall survival
time of 14–21 months depending on the studies [4]. Although numerous diagnostic or
predictive of response biomarkers have been identified, such as isocitrate dehydrogenase
(IDH) mutation or O6-methylguanine DNA methylation status [5], treatment has not
improved in parallel over the last three decades [5]. Therefore, there is an urgent need to
develop novel and effective treatment strategies.

Over the last several years, the role of the relationship between tumor metabolism
and immune regulation of the microenvironment has become recognized as an important
factor involved in tumor growth and progression. The brain is a highly metabolically active
organ, dependent on glucose as its main energy substrate. However, other substances, such
as fatty acids or amino acids, can be used as a source of energy [6–8]. Furthermore, the
cells that form the brain, such as astrocytes, neurons, and microglia influence each other’s
nutrient uptake, demonstrating the importance of different cell types in brain metabolic
homeostasis. A better understanding of the brain tumor microenvironment, as well as
the metabolism of brain tumors, will undoubtedly guide effective therapeutic strategies.
In this review, we describe how the relationship between TME, tumor metabolism, and
genetic alterations are fundamental to the initiation and progression of GBM and provide
an overview of strategies currently being tested.

2. Tumor Microenvironment in Glioblastoma

The brain has long been recognized as an “immune privileged” organ because of the
restrictions imposed by the blood-brain barrier (BBB), in addition to the lack of a lymphatic
system [9]. The immune privileged concept was discarded in 2015 after the discovery of
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functional lymphatic vessels in the meninges with a direct drainage pathway to the cervical
lymph nodes [10]. Now, the brain is proposed to be an immunologically distinct rather
than a privileged organ [11].

Brain tumors, as well other tumors, modify the phenotype of stromal cells, creating
a tumor microenvironment that favors tumor development and progression. The BBB is
damaged by inflammatory stimuli and is often characterized by abnormal vasculature,
allowing the flow of circulating myeloid and lymphoid cells, normally absent in the normal
brain parenchyma [12]. GBM is a heterogeneous tumor, and its tumor microenvironment is
composed not only of tumor cells, but also of non-neoplastic cells such as immune, vascular,
and other glial cells [13]. Gliomas are considered a cold tumor due to the low numbers of
tumor-infiltrating lymphocytes (TILs) and other immune effector cell types [14].

In recent years, single-cell RNA-sequencing (scRNAseq) studies have acquired a
higher relevance in the study of TME. Bulk tumor analysis allows the study of the genetic
status of tumor cells, the expression profiles of the various cells within each tumor, limiting
the view of the interaction of tumor cells with the TME. scRNAseq can help solve these
problems. However, it has its drawbacks given the high cost and logistics required for
its development.

scRNAseq enables the study of the biological properties of individual cells with an
unprecedented resolution. In the first scRNAseq studies, between 10 and 100 cells were
analyzed and characterized [15–17]. Currently, transcriptomes of up to tens of thousands
of individual cells can be analyzed and sequenced in a single project [18]. For this reason,
it is the reference technology for the quantification and phenotyping of the TME as well as
characterizing its heterogeneity [19–21].

Understanding the interaction between brain tumor cells and the other cells of its
microenvironment is of fundamental importance and plays a key role in tumor growth
and identification of therapeutic targets’ response to treatment. Caruso et al., [22] exploit
single-cell data developing single-cell Tumor–Host Interaction (scTHI), a tool to identify
the Ligand-Receptor pairs that modulate the tumor microenvironment cross-talk in glioma.
scTHI is based on the hypothesis that when patterns of interaction are active, they are
also simultaneously and highly expressed in homogeneous cell populations. Their results
suggested shared cross-talk mechanisms that exist in glioma due to unexpected interaction
partners being are highly conserved in most tumor samples.

In this section, we will differentiate between the non-immune cellular components
and immune cellular components focusing on the latter.

2.1. Non-Immune Cellular Components
2.1.1. Vasculature

The brain’s vasculature is composed of a complex network of blood vessels that
provide blood flow and maintain the integrity of the BBB. However, the BBB loses its
integrity in malignant brain tumors such as GBM, being one of the most vascularized
tumors with extensive neo-angiogenesis. However, this vasculature is abnormal and
disorganized forming hyperdilated and permeable vessels, a common hallmark of this
type of tumor [23]. The vascular abnormalities are predominantly due to highly elevated
levels of vascular endothelial growth factor (VEGF) [24].

2.1.2. Glioma Stem Cells (GSC)

Tumors are composed of small populations of cells called cancer stem cells with stem-
like properties, such as self-renewing capacity or differentiation [25]. This cell type was
identified in brain tumors by Singh in 2003 [26] and, later, other studies using single surface
marker approaches also identified them [27,28]. It has been suggested that GSC can differen-
tiate into endothelial cells within the glioma vasculature [29,30], facilitating GSC reservoirs
in the perivascular niche (PVN) to remain isolated and proliferate safely [31]. Furthermore,
GSC initiates, supports, and maintains tumor growth and promotes angiogenesis.
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2.1.3. Glial Cells and Neurons

Glial cells provide structural support in the brain by maintaining homeostasis. They
are the most abundant cell in the CNS, accounting for approximately 80–90% of the total and
two types are distinguished: astrocytes and oligondendrocytes. While oligondendrocytes
are responsible for myelin formation, the astrocytes are usually localized to the PVN and
play an important role in maintaining the BBB [32]. In addition, astrocytes have pro-tumoral
functions, secreting neurotrophic factors that promote glioma cell proliferation [31].

Neurons are a brain-specific cell type, like astrocytes, which are thought to contribute
to the creation and growth of tumors.

2.2. Immune Cellular Components
2.2.1. Microglia/Macrophages

Microglia are the resident macrophages of the CNS, found in all regions of the brain,
and constitute the first line of innate immune defense in the CNS [33]. Microglia develop
from embryonic yolk sac progenitor cells and migrate to the CNS early in development
to mature into different populations of CNS monocytes and they are not replenished
postnatally [34]. They are ontogenetically distinct, but indistinguishable from peripheral
bone marrow-derived macrophage infiltrate after activation by glioma cells. Several studies
have attempted to distinguish microglia from invading monocytes, using bone-marrow
chimeras and cell surface antibodies, with discrepancies in the results [35].

Together, microglia and macrophages are known as tumor-associated macrophages
(TAMs), accounting for up to 30% of the tumor mass being the main immune cells [36].
They are critical for gliomagenesis and continued tumor growth. Microglia depletion
reduces glioma growth in experimental GBM models [35]. Several factors released by
microglia promote glioma proliferation and/or migration. Stress-inducible protein 1 (STI1),
a cellular prion protein-ligand, increases the proliferation and migration of GBM in vitro
and in vivo [37]. Others, such as epidermal growth factor (EGF), stimulate glioblastoma
cell invasion [38], or transforming growth factor-β (TGF-β) that increases the migration of
glioma cells [39].

As well as macrophages in other tissues, TAMs change their phenotype depending on
the type of stimulus they receive from the environment [40]. Traditionally, two TAM phe-
notypes have been described: M1 macrophages or pro-inflammatory/antitumoral and M2
Macrophages or anti-inflammatory/pro-tumoral [41]. The M1 phenotype is acquired after
stimulation with Toll-like receptor 4 (TLR4) ligands and interferon gamma (IFN-γ), but the
M2 phenotype occurs after stimulation by interleukins 4, 10, and 13. The anti-inflammatory
M2 phenotype has been associated with the promotion of tumor growth. Moreover, the
M2 subtype can be subdivided into M2a (Th2 responses, type II inflammation, killing of
pathogens, allergy), M2b (Th2 activation, immunoregulation), and M2c (immunoregula-
tion, matrix deposition, tissue remodeling) activation states [35]. It appears that the full
spectrum of TAM is much more diverse and dynamic. scRNAseq demonstrated a gradual
change of three transitional states in TAMs [19]. The pattern first started with a microglia
phenotype (P2RY12+/TMEM119+), then it turned into a polarized macrophage (CD163+),
and finally converged into M2b macrophages (IL1RN+) with the activated expression of
strong angiogenesis signaling molecules (VEGF-A).

Furthermore, there is strong evidence between poor survival and the increased
macrophage density in different types of cancer, such as thyroid or lung [42,43]. Szulzewsky
et al., using RNA microarrays analyses, observed that the differential expression of ap-
proximately 1000 transcripts was twofold higher in microglia and glioma-associated
macrophages relative to control microglial cells [44]. In addition, Zeiner et al., conducted
analyses to determine the relationship between the survival of GBM patients and the
expression of specific M1 or M2 polarization markers. CD74, an M1 polarization marker,
correlated positively with increased patient survival [45].
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2.2.2. Tumor-Infiltrating Lymphocytes (TILs)

Lymphocytes are cells that play an important role in the adaptive immune system.
They are produced in the bone marrow and mature in the thymus from which mature T
cells are released to peripheral lymphoid organs where they are primed by engaging with
professional APCs. In a pathological state, such as GBM, T cells leave the circulation and
enter inflamed tissues, this mechanism is well characterized [46].

T cells are the primary lymphoid component of the GBM TME, but they constitute
less than 0.25% of cells in total [47]. They may exert both pro- and anti-tumor functions in
TME and several types can be distinguished, such as CD4+ T helper (Th), CD8+ T cytotoxic
(Tc), and Treg. Tregs are potent suppressors of the adaptive immune response through their
ability to inhibit the proliferation of any cytokine-secreting effector T cells.

The peculiar immune environment of the brain can limit the activity of T cells in GBM
by a low number of antigen-specific TILs and exhausted phenotypes [48].

Fu et al. [49] analyzed, via single-cell study with mass cytometry, infiltrating immune
cells from initial and recurrent GBM surgical tissues, both of which were coupled with
their paired peripheral blood mononuclear cells. They observed the following findings:
(1) The T cell population exhibited a complex diversity based on their surface with high
expression of PD-1, LAG, 3, TIM-3, and IDO in some T cell subgroups; (2) Treg proportions
in the tumor lesions were significantly increased across all patients; (3) PD-1+, TIM-3+, or
LAG-3+ T cells are recognized as exhausted subsets, and (4) the proportions of exhausted
CD4+ and CD8+ T cells were distinctly higher at the tumor sites.

Furthermore, the CD4+ and CD8 + populations increase with tumor grade [50] and
may correlate with poor survival outcomes [47].

2.2.3. Natural Killer Cells

Natural Killer (NK) cells are a type of lymphocyte produced in the bone marrow,
whose effector function is mediated by cytokine production and cytotoxic activity. Their
function is often affected by immunosuppressive factors released by tumor cells such as
highly expressed major histocompatibility complex Class I molecules which act as ligands
for inhibitory receptors expressed on NK cells [51].

2.2.4. Neutrophils

Neutrophils are the most abundant type of granulocytes in humans and constitute
around 70% of total leukocytes in the body. They form an essential part of the innate
immune system [52]. Commonly, they are located in the GBM tumor core [53].

In recent years, interest in neutrophils as a critical component of TME has grown
because of its prognostic value. Most glioma patients have strong neutrophilia, as do
other cancer patients [54]. Several studies demonstrated that the number of circulating
and infiltrating neutrophils correlates with poor prognosis. Mason et al., assessed altered
neutrophil-lymphocyte ratio (NLR) in a retrospective review of patients with newly diag-
nosed GBM treated with radiotherapy and concomitant temozolomide. They observed
that elevated NLR may predict worse outcomes [55]. Furthermore, NLR is correlated with
glial tumor grade. Zadora et al., evaluated preoperative NLR in a cohort of neurosurgical
patients treated for glial brain tumors. The preoperative NLR was analyzed in accordance
with WHO glial tumor classification, which distinguishes G1, G2, G3, and G4 (glioblas-
toma) tumors. The highest value of NLR was observed in G4 and was significantly higher
compared with G3, G2, and G1 [56]. Other studies, including studies with RNA sequencing
data, have also shown the same results [57–60].

Furthermore, a high peripheral neutrophil count prior to treatment correlates with a
positive initial response to the vascular endothelial growth factor A (VEGF-A) antibody,
bevacizumab [61]. However, increased neutrophil infiltration of tumor tissue is associated
with a higher grade of glioma in later stages and acquired resistance to treatments [62].
Neutrophils directly promoted GBM-initiating cell proliferation and migration via the
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production of S100A4, which induced transition to a mesenchymal phenotype, favoring
cancer invasion and resistance to anti-VEGF therapies [62].

3. Genomic and Epigenomic Alterations in Glioblastoma

To better understand the determinants of GBM progression, several systems have
been proposed for classifying glioblastoma into molecular subtypes [63–72]. The molecular
classification of GBM is a recent tool that can complement the traditional pathology-based
description. In fact, in 2016, by combining morphology and genetic alterations, the WHO
updated their guidelines, leading to the emergence of two entities based on the mutational
status of the IDH gene: IDH wild-type and IDH mutated GBM [73].

Multi-omics studies from the landscape of GBM in the Cancer Genome Atlas Research
Network (TCGA) and the Chinese Glioma Genome Atlas (CGGA) revealed the complicated
genetic profile of GBM [74,75]. The somatic aberrations, such as IDH and TP53 mutations,
EGFR (epidermal growth factor receptor) gene amplification, TERT (Telomerase reverse
transcriptase) promoter mutations, PTEN (Phosphatase and tensin homolog) mutations,
and ATRX (Alpha thalassemia/mental retardation syndrome X-linked) mutations enabled
improved diagnosis and can help determine the prognosis and identify the optimal therapy
for specific subgroups.

The complex genetic profile of GBM is also due to the wide range of chromosomal
changes [67] or significant mutations [74]. The most frequent mutations include TP53,
EGFR, PTEN, NF1 (neurofibromatosis 1), PIK3CA (Phosphatidylinositol 4,5-bisphosphate
3-kinase catalytic subunit alpha isoform), RB1 (Retinoblastoma-associated protein 1),
CDKN2A (Cyclin-dependent kinase inhibitor 2A) deletion, or PDGFRA (Platelet-derived
growth factor receptor) [66,67,74].

It is important to bear in mind DNA (deoxyribonucleic acid) methylation states in
GBM because of the correlation with survival [76]. The status of methyl-guanine-methyl-
transferase (MGMT) is a prognostic factor for GBM patients and has a significant correlation
with worse survival rates [67]. Noushmehr et al., first described the cytosine-phosphate-
guanine (CpG) island methylator phenotype (G-CIMP) and, later, Brennan et al., identified
MGMT methylation as a predictive factor for response to temozolomide [65,67].

Expression profiling of GBM tumors identified four subtypes: proneural (PN), neural
(NEU), classical (CL), and mesenchymal (MES) [66]. Later, Wang et al. [77], suggested that
the NEU phenotype is non-tumor specific but rather a contamination, thus explaining why
the neural subtype was the only subtype to lack characteristic gene abnormalities.

The PN subtype is characterized by IDH1 mutations and/or PDGFRA amplification,
is found mainly in younger patients, and may have better survival rates. The NEU subtype,
characterized by the expression of neuron markers similar to normal brain tissue has a
good response to radiation and chemotherapy. The CL subtype with EGFR amplification
and/or mutations has the best response to chemoradiotherapy, with a dramatic reduction
in mortality. MES with NF1 loss and/or mutations has the worst prognosis among all the
subtypes [66,78].

Correlation with Tumor Microenvironment

Given the differences between GBM subtypes, it is very important to know whether
there are differences in the respective TMEs.

The analysis of TCGA gene expression data for GBM showed that mRNA expression
for different cytokines, immune cell markers, and immune-associated signaling path-
ways was increased in the mesenchymal subtype, suggesting that this was the most
pro-inflammatory [79]. Later, Wang et al., by performing in silico analysis, found that the
MES subtype was enriched in M2 macrophages and neutrophils [77]. Other studies have
observed the same results. Carrato et al., observed that immunophenotyping of the MES
subtype exhibited higher positive effector and suppressor cell score, and lower levels of
immune checkpoint molecules. Moreover, the cell-type deconvolution analysis revealed
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that these tumors are highly enriched in M2 macrophages, resting memory CD4+ T cells,
and activated dendritic cells [80].

In addition, Wang et al., described that the NF1 gene is associated with the recruitment
of TAMs [77]. By contrast, the presence of IDH1/2 mutations is associated with a limited
number of immune cells [81] as well as a PN subtype [77,82]. EGFR alterations have been
linked to vasculature modifications facilitating the recruitment of immune cells in brain
tumors [83,84].

4. Metabolism in Glioblastoma

The brain is a highly metabolic organ and consumes 25% of the body’s glucose.
Glucose is the main energy substrate, however, other metabolites such as amino acids, fatty
acids, or lactate are also used as a source of energy [6,85].

Gliomas arise in a hypoxic environment, being forced to modify their metabolic
pathways to obtain nutrients [86]. Altered cellular metabolism is a relevant hallmark of
gliomas and genetic alterations are the cause of these deviations.

4.1. Metabolic Pathways
4.1.1. Aerobic Glycolysis

Glycolysis is the metabolic pathway by which glucose is broken down into two
molecules of pyruvate, while producing energy in the form of ATP and NADH. One of the
best-known alterations in tumor cell metabolism is the capacity for aerobic glycolysis first
described by Otto Warburg in the 1920s [87]. The Warburg effect is defined by two points
in the context of oxygen availability: (i) increased glucose consumption by the tumor, and
(ii) conversion of glucose to lactate outside the mitochondrion as opposed to mitochondrial
oxidative phosphorylation in normal cells. It also promotes biosynthesis by providing the
macromolecules necessary for the synthesis of DNA and lipids essential for tumor growth,
termed anabolic metabolism [88], which is so relevant in GBM [89].

4.1.2. Amino Acids Metabolis

Different amino acids are metabolized by GBM cells, with tryptophan being the
best-characterized pathway.

Tryptophan

Tryptophan is an essential amino acid, a precursor of neurotransmitters such as sero-
tonin and melatonin. In addition, tryptophan can be metabolized to kynurenine by two
enzymes, indoleamine 2,3-dioxygenase 1/2 (IDO1/2) and tryptophan 2,3 dioxygenase
(TDO), generating nicotinamide adenine dinucleotide (NAD+) [90]. Kynurenine is subse-
quently metabolized via several pathways to produce other metabolites such as kynurenic
acids, quinolinic acids, anthranilic acid, etc. [91].

Glutamine and D2-Hydroxyglutarate Metabolism (2HG)

Glutamine is the most abundant amino acid in the human body, it is an excitatory
neurotransmitter and is involved in numerous intermediary metabolic processes, especially
in the synthesis of amino acids and purines, the tricarboxylic acid cycle (TCA cycle), and
the generation of urea. In the TCA cycle, also known as the Krebs cycle, energy is released
via the oxidation of acetyl-CoA derived from macromolecules (carbohydrates, lipids, and
proteins) into carbon dioxide and chemical energy in the form of ATP. In addition, the
cycle provides precursors of certain amino acids, as well as the reducing agents NADH
and NADPH [92].

Intratumoral glutamine levels in GBM are increased when compared with normal
brain tissue [93,94]. Glutamine comes from two main sources: astrocyte-derived glutamine
using the glutamine transporter ASCT2 present in glioma cells and a small fraction comes
from the systemic circulation. In addition, when glioma cells are depleted of glutamine,
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they regulate the conversion of glutamate into glutamine by upregulation of the enzyme
glutamine synthetase (GS) [95].

It is noteworthy, that the role of glutamine metabolism in glioma has become more
important with the discovery that glutamine can give rise to the oncometabolite 2HG in
gliomas that have IDH1/2 mutants [96]. 2HG is the unique immune metabolomic pathway
found in many cancer cells. Both IDH1 and IDH2 catalyze the decarboxylation of citrate
using NADP+ and produce alfa ketoglutarate (alpha-KG). Alpha-ketoglutarate acts as a
substrate for an alternative reduction reaction that incompletely reduces it to 2HG instead
of isocitrate like NADPH (Figure 1).
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Other Amino Acids: Adenosine and Arginine

Adenosine plays an important role in biochemical processes, such as energy transfer,
in the form of ATP and ADP, as well as being a signal transducer in the form of cyclic
adenosine monophosphate (cAMP). Furthermore, it plays an important role as a neuro-
modulator in the central nervous system. In normal physiology, adenosine and ATP are
found in the cytosol, while at the extracellular level they are rarely observable [97]. In
gliomagenesis, intracellular adenosine can be secreted bidirectionally and ATP liberated
extracellularly induced by inflammation or hypoxia [98].

Arginine is a semi-essential amino acid with different functions. Its serves as a
precursor for the synthesis of nitric oxide, proteins, polyamines, and urea [99]. Arginine is
a substrate for arginase 1 (ARG1), which converts it to urea and ornithine, and cytokine-
inducible nitric oxide synthase (iNOS), which converts it to citrulline and nitric oxide (NO).
In GBM, a high accumulation of arginine by-products from arginine metabolism is evident
due to the abundance of arginine transporters [89]. This suggests that arginine metabolism
is functional and that it may be sensitive to selective depletion.

4.1.3. Lipid Metabolism

Lipids are essential to the structure and function of the brain. Indeed, it is the organ
with the highest cholesterol content in the body. Cholesterol is mainly synthesized locally
by astrocytes because it does not cross the BBB [100].

Other lipids found in large quantities in the brain are sphingolipids. Their biological
importance lies in the cell signaling role they effect. Two of the most studied are ceramide,
which is involved in the regulation of apoptosis, and sphingosine-1-phosphate (S1P), which
plays a role in survival, migration, and inflammation [101]. Ceramide is obtained de
novo via ceramide synthase (CERS1-6) but can also be produced via salvage following the
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breakdown of complex sphingolipids [102]. Sphingosine kinase 1 and 2 (SK) are enzymes
that regulate the levels of ceramide and S1P.

In recent years, the interest in S1P has grown in GBM due to its important role as a sig-
naling molecule, able to stimulate proliferation, motility, migration, and survival [102,103].
S1P is formed intracellularly from sphingosine by two isoenzymes SK 1 and 2. The S1P
phosphatases 1 and 2 (SGPP1) dephosphorylate S1P back to sphingosine whereas S1P lyase
(SGPL) mediates the irreversible cleavage to hexadecenal and phosphoethanolamine [104].

S1P levels in glioma tissues were higher than in normal brain tissue [105]. Likewise, the
levels found in surgical specimens of glial tumor (low and high-grade malignancy) revealed
an inverse correlation between the amount of ceramide and tumor malignancy [106].
Abuhusain et al. [105] observed sphingolipid metabolism favoring S1P over ceramide in
GBM tissues compared with normal gray matter, and increased S1P content in the tumors
significantly correlated with increased SK) and decreased SGPP2 expression. Moreover,
the inhibition of S1P production by cultured GBM cells, using a highly potent and selective
SK1 inhibitor, blocked angiogenesis in co-cultured endothelial cells without affecting
VEGF secretion.

This altered ceramide/S1P balance seems to be important and may be an opportunity
for the development of new therapies such as antiangiogenic agents.

4.2. Correlation with Genomic Alterations

Genomic alterations are associated with metabolic adaptation allowing the prolifera-
tion and survival of tumor cells but, currently, this is incompletely understood. Both, IDH
mutations and growth factor receptor tyrosine kinase (RTK) encoding genes have become
important in recent years.

4.2.1. Receptor Tyrosine Kinase Amplification

Gain-of-function changes in the growth factor signaling system are among the most
frequent genetic alterations in glioma. RTKs, especially epidermal growth factor, are
commonly amplified in GBM by over 50%, including approximately half of these carrying
the gain of function EGFR variant III (EGFRvIII) alteration [107].

The PI3k-Akt-mTOR pathway has a critical regulatory role in energy metabolism in
neurons and glia [108] signaling downstream of amplified RTKs. RTK signaling through
PI3K–AKT and both mTORC1 and mTORC2 increases MYC expression. The amplified
oncogenes can coexist with mutations in genes encoding PI3k and with loss of PTEN [67].
This situation may result in the reprogramming of the cellular metabolism by engaging
AKT–mTOR signaling [109]. Data suggest a central role for mutated EGFR in glycolysis
and lipogenesis in the pathogenesis of GBM. Mutant EGFR drives GBM glycolysis by
AKT-dependent and independent pathways via MYC and mTORC2 and drives fatty acid
and cholesterol synthesis [109–111]. EGFR may also be involved in amino acid metabolism
by phosphorylation of the cystine-glutamate antiporter xCT regulated by mTORC2 [112].
The biological function of MYC in cell proliferation and metabolism has been well estab-
lished [113], but it is rarely amplified in adult GBM [67]. MYC controls the expression of
glucose metabolism genes such as glucose transporter (GLUT 1), located in the blood-brain
barrier, simulating the Warburg effect [114]. Additionally, MYC increases intratumoral
glutamine levels in GBM [92,95].

4.2.2. Isocitrate Dehydrogenase (IDH) Mutations

IDH is a carbohydrate metabolism enzyme involved in the Krebs cycle that catalyzes
the oxidative decarboxylation of isocitrate to form 2-oxoglutarate [115].

IDH mutations are early events in gliomagenesis [116,117]. They have been observed
in 5% of GBM and 70–80% of low-grade gliomas, with the IDH1 mutation being the most
frequent, accounting for more than 95% of cases [118,119]. Both IDH1 and IDH2 mutations
play an important role in several cellular functions, such as glucose sensing, glutamine
metabolism, lipogenesis, and regulation of the cellular redox state.
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In 2009, Dang et al., discovered that IDH1 mutations carried a gain of function that
reduces alpha-KG to produce oncometabolite (2HG) [96]. IDH is an NADP+ dependent
enzyme that interconverts isocitrate and alpha-KG [120]. Consequently, 2HG production
impairs the normal biosynthetic pathways of IDH activity to convert isocitrate to alpha-KG
and generate NADPH by altering the metabolic flux of alpha-KG and depleting NADPH.
Glutaminolysis represents a compensatory mechanism in IDH-mutated gliomas to maintain
the necessary level of metabolites while producing abundant amounts of 2HG [121]. The
accumulation of 2HG increases the oxidative stress present in cancer cells and increases
reactive oxygen species (ROS), promoting tumor growth [122]). Moreover, the increased
synthesis of alpha-KG via the mitochondria produces a reduction of alpha-KG substrates,
such as citrate. Citrate is fundamental for acetyl-CoA synthesis and fatty acid formation.

4.2.3. Other Genomic Alterations

The TP53 gene is the most frequently mutated gene in human cancer [123]. A TP53
mutation occurs in about 30% of primary GBM cases, however, it is found in 65–90% of
cases of secondary GBM [124]. This tumor suppressor gene has key roles in responding to
DNA damage, hypoxia, and oncogenic activation. A novel function of p53 has emerged,
showing its potential to regulate cellular metabolism and oxidative stress. One of the
ways in which p53 functions is by slowing down glycolysis and promoting oxidative
phosphorylation, providing a mechanism for blocking the Warburg effect [125]. Research
in this area is currently underway.

GBM with loss of PTEN activity has an elevated expression of the glycolytic enzyme
hexokinase 2 (HK2). HK2 is an important facilitator of aerobic glycolysis in GBM, enabling
survival and proliferation of the tumor microenvironment. High expression of HK2 predicts
poorer overall survival [126].

5. The Role of Metabolism in the GBM Microenvironment

GBM is characterized by heterogeneous and immunosuppressive TME. The interaction
between brain tumor cells and the other cells of its TME is regulated, at least in part,
by tumor metabolism. Alterations in tumor cell metabolism, remodeling biological cell
processes, contribute to progression. We explain how altered metabolic pathways in GBM
contribute to tumor growth and immunosuppression.

5.1. Aerobic Glycolysis

The immune cells, in particular effector T cells, are dependent on glycolysis [127].
Glycolysis supports the proliferation and effector functions of T cells, and their exhausted
phenotype is related to low glucose availability [128]. Exhausted T cells are refractory
to checkpoint inhibitor therapy and maintain an immunosuppressive microenvironment.
Another factor contributing to immunosuppression is lactate accumulation. Lactate has
been shown to polarize macrophages towards the M2/pro-tumoral phenotype [129].

The glycolytic pathway also controls the functionality of neutrophils, decreasing
their effectiveness [130]. NK cells undergo metabolic reprogramming due to the direct
limitation of the rate of glycolysis is sufficient to inhibit IFN-γ production and granzyme B
expression [131]. Both mechanisms contribute to an inefficient immune response.

5.2. Amino Acid Metabolism

Several studies demonstrated that tryptophan metabolism induces a state of immuno-
suppression [132,133]. The upregulated expression of IDO1 produces low tryptophan
levels, resulting in anergy in effector T cells [133]. This pathway can induce Treg differ-
entiation based on the activation of the aryl hydrocarbon receptor (AHR), a cytoplasmic
transcription receptor, via kynurenine [134]. Furthermore, AHR activation reduces pro-
liferation and infiltration of effector T cells, decreases inflammatory cytokines, such as
IFN-gamma or IL-17, and regulates IL-1 Beta, facilitating the conversion of naïve CD4 to
the Treg suppressor immunophenotype [135,136].
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Arginine is a modulator of immune function promoting tumor progression and im-
munosuppression. Macrophages are the immune cell subset most influenced by argi-
nine metabolism and present different phenotypes, M1 or M2, depending on how the
arginine is metabolized [137]. TAMs which metabolize arginine via iNOS express the
M1 phenotype/anti-tumor and, conversely, TAMs which use ARG1 have a more anti-
inflammatory/M2 phenotype.

Adenosine has been identified as a potent anti-inflammatory. Different roles in neu-
trophils, lymphocytes, and macrophages have been described. One mechanism is its
interaction between regulatory and effector T cells. Adenosine binds the adenosine recep-
tor, which is upregulated in activated effector T cells, causing immunosuppression [138].
The main role is to stimulate the proliferation and migration of endothelial cells and
vascular endothelial growth factor-mediated angiogenesis [139].

The overaccumulation of 2HG can inhibit anti-tumor immunity and promote tumor
growth. 2HG inhibits T cell activity by inhibiting enzymes such as ornithine decarboxylase.
Furthermore, it directly stops T cell activation by inhibiting calcium influx [140]. The
suppression effect is most considerable in CD4+ T cells.

5.3. Lipids

Altered phospholipid metabolism induces tumor proliferation, sequestering T cell
populations away from the tumor microenvironment. GBM causes sequestration of T
cells in bone marrow via T-cell internalization of the sphingosine-1-phosphate receptor 1
(S1PR1). S1P acts as a chemotaxis inductor for innate and adaptative immune cells [141]
and increased GBM-derived S1P promotes the formation of TAMs. In turn, TAMs increase
SK1 activity [103].

6. Therapeutic Opportunities

In recent years, advances in immunotherapy have revolutionized the treatment of
cancers such as non-small cell lung cancer and melanoma, but not glioblastoma [142]. One
of the difficulties encountered in glioblastoma immunotherapy is its own TME. The differ-
ent metabolic pathways involved in maintaining immunosuppression and glioblastoma
outgrowth in TME and immunometabolism represent a unique opportunity to develop
therapeutic strategies.

6.1. IDO Inhibitors

One of the most advanced strategies involving tryptophan metabolism is the IDO
inhibitors. Currently, several IDO inhibitors are undergoing clinical evaluation.

PF-06840003 is a highly selective IDO1 inhibitor with single-dose daily administration.
In preclinical studies with mice carrying tumor grafts, PF-06840003 reduced intratumoral
kynurenic levels and inhibited tumor growth in both monotherapy and, with increased effi-
cacy, in combination with antibodies blocking PDL-1 [143]. Supported by these preclinical
data, a phase I open-label, multicenter clinical study (NCT02764151) on recurrent malignant
GBM enrolled seventeen patients. The disease control rate occurred in eight patients (47%)
with a mean duration of the stable disease being 32.1 weeks. Four patients experienced
serious adverse events, one with treatment-related severe adverse events (AEs) (grade 4 ala-
nine and aspartate aminotransferase elevations) [144]. Other molecules are being studied in
monotherapy or in combination with other treatments. Indoximod or 1-methyl-tryptophan
was described as an inhibitor of the IDO1 enzyme in the early 1990s [145]. Currently, a
phase II study in combination with chemo-radiation is recruiting (NCT04049669). BMS is
an oral irreversible inhibitor that reduces kynurenic levels even at low concentrations. A
phase I (NCT04047706) study with nivolumab and chemo-radiation in newly diagnosed
GBM is recruiting. Epacadostat, a reversible competitive IDO1 inhibitor, is also under
study, alone or in combination (NCT03532295).
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6.2. IDH Mutation Inhibitors

Another of the most investigated strategies is IDH inhibitors. Although the IDH
mutation is mostly found in low-grade gliomas, up to 5% of GBM have it. For this reason,
GBM is under-represented in clinical trials with these IDH inhibitors, nevertheless, they
represent a great opportunity for the treatment of GBM.

Both IDH1 and IDH2 inhibitors have been developed in different types of tumors:
Ivosidenib, BAY-1436032, and AG-5198 for IDH1 mutations, and Enasidenib, AGI-6780
and GI-6780 for IDH2 mutations [146]. Vorasidenib (AG-881) is a pan-inhibitor of both
IDH1/2 mutants. Results from a phase 1 (NCT02481154) safety and dose-escalation trial of
Vorasidenib on a non-enhancing cohort were updated at ESMO 2020. 22 gliomas received
treatment with AG-881 (dose range: 10–200 mg daily). The most frequently observed AE
was the elevation of transaminases, reversible with drug interruption and dose modification.
The overall response rates (ORR) were 18.2% (one patient achieved a partial response and
three patients achieved a minor response). 72.2% of patients had stable disease as their best
response. The median progression-free survival (PFS) was 31.4 months (95% CI, 11.2,40.8)
with 59.1% events reported. A Vorasidenib dose of 50 mg QD was selected and is under
evaluation in the ongoing INDIGO study, randomized phase 3 in grade 2 non-enhancing
IDH1/2 mutant glioma patients who have undergone surgery only (NCT04164901).

6.3. Pyruvate and Lactate Antagonist. Regulation of Hexokinase 2

Pyruvate dehydrogenase (PDH) is an enzyme that metabolizes pyruvate to acetyl CoA
and its activity is regulated by reversible phosphorylation. 3-bromopyruvate (3BP) is an
organic compound similar in structure to pyruvate and lactate that may antagonize their
effects of producing H2O2 [147]. Furthermore, it is a potent antiglycolytic agent able to
inhibit glycolytic and mitochondrial ATP production, and it can inhibit hexokinase 2 [148].
Several studies observed that 3BP interferes with carbohydrate metabolism, depleting
ATP levels, causing mitochondrial dysfunction, degrading HK2, and inducing the appear-
ance of autophagic flux markers [147,149,150]. A regulation of HK2 levels has also been
described with the use of 5-aza-2-deoxy-cytidine [151]. These findings are important for
understanding the mechanisms of 3BP and thus furthering the role of glycolytic inhibitors
in the treatment of GB.

6.4. Targeting Phospholipids

Polymerase 1 and transcript release factor (PTRF), also known as Clavin-1, a plasma
membrane microdomain with several functions in signal transduction [152], has gained
relevance in recent years. Increased PTRF expression has been reported to correlate with
a worse prognosis in glioma patients and increased tumor cell proliferation and immune
suppression in GBM [153]. Yi et al., detected the relationship between PTRF and lipid
metabolism in GBM and observed a significant increase in the cytoplasmic phospholipase
A2 (cPLA2) protein in GBM cells with PTRF overexpression. In GBM xenografts and
intracranial tumor mouse models, they showed that inhibiting cPLA2 activity blocks tumor
proliferation and prevents PTRF-induced reduction in CD8 TILs, thus suggesting cPLA2 as
an attractive therapeutic target [154].

7. Discussion

The GBM TME is complex and consists of different cell types that interact with each
other to promote tumor growth. Other factors are involved in this process, such as several
metabolic pathways that contribute to maintaining an immunosuppressed environment
and regulate progression, treatment response, and disease recurrence. In addition, genetic
aberrations, fundamental drivers of GBM tumorigenesis, are associated with metabolic
adaptations. A better understanding of the interaction of all these factors is essential for the
development of new therapeutic modalities. In this review, we focus on the complexity of
the tumor microenvironment and the metabolic diversity in GBM, as well as on therapeutic
lines of research.
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Targeting metabolic pathways is providing an opportunity to extend the limited, cur-
rently approved, treatment options. While there are many ongoing clinical trials exploring
immunotherapies with checkpoint blockade in GBM, there are only a few investigating
immunometabolism treatments. The tryptophan metabolism pathway is the one of most
clinically explored IDO inhibitors with different phase I/II clinical trials, alone or in com-
bination, as well as IDH1/2 inhibitors in the glutamine pathway. However, many of the
other pathways analyzed in this review have not yet been explored or have been poorly
explored in the clinic.

The interaction between metabolic mechanisms and TME/immune cells is another
potential therapeutic target. The TME of glioma is characterized by a low percentage of
TILs and TAMs as the predominant cell providing an immunosuppressive environment,
so, to try and create a pro-inflammatory/antitumoral environment that is less permissive
for tumor progression is a good strategy.

An immunometabolism research line is difficult because it requires an in-depth un-
derstanding of the genetic alterations. The heterogeneity of genetic alterations in GBM
represents a major contribution to treatment resistance and promotes an altered metabolism,
but it is incompletely understood. Fortunately, over the last decade, technological advances
have led to the development of new tools, such as next-generation sequencing to study the
genomic landscape, functional models to explore molecular and metabolic pathways or
imaging tools to define a metabolic profile. The research focused on targeting metabolic
pathways allows the obtainment of more data to design strategies to treat patients with
GBM individually.

8. Conclusions

The role of the intimate interplay between tumor metabolism, tumor microenviron-
ment, and genetic alterations has received considerable attention over the last several years
and is recognized as an important factor involved in growth and progression in glioblas-
toma. Currently, different strategies are being tested in ongoing clinical trials with limited
results. More knowledge is required in order to transfer the benefit to the clinic setting.
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Killer; NLR: neutrophil-lymphocyte ratio; NO: Nitric oxide; PDGFRA: platelet derived growth factor
receptor alpha; PIK3CA: Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha
isoform; PN: Proneural; PTEN: Phosphatase and tensin homolog; PTRF: Polymerase 1 and transcript
release factor; PVN: Perivascular niche; RB1: Retinoblastoma-associated protein 1; S1P: Sphingosine-1-
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Interaction; STI1: Stress-inducible protein 1; ROS: Oxygen species; RTK: Receptor tyrosine kinase;
TAMs: Tumor-associated macrophages; TCA cycle: tricarboxylic acid cycle; TCGA: Cancer Genome
Atlas Research Network; TDO: tryptophan 2,3 dioxygenase; TERT: Telomerase reverse transcriptase;
TGF-β: Transforming growth factor-β; TILs: Tumor-infiltrating lymphocytes; TLR4: Toll-like receptor
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