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Abstract
The	estimation	of	demographic	parameters	is	a	key	component	of	evolutionary	de-
mography	and	conservation	biology.	Capture–	mark–	recapture	methods	have	served	
as	a	fundamental	tool	for	estimating	demographic	parameters.	The	accurate	estima-
tion	of	demographic	parameters	in	capture–	mark–	recapture	studies	depends	on	ac-
curate	modeling	of	the	observation	process.	Classic	capture–	mark–	recapture	models	
typically	model	the	observation	process	as	a	Bernoulli	or	categorical	trial	with	detec-
tion	 probability	 conditional	 on	 a	marked	 individual's	 availability	 for	 detection	 (e.g.,	
alive,	or	alive	and	present	 in	a	study	area).	Alternatives	to	this	approach	are	under-
used,	but	may	have	great	utility	in	capture–	recapture	studies.	In	this	paper,	we	explore	
a	simple	concept:	in the same way that counts contain more information about abundance 
than simple detection/non- detection data, the number of encounters of individuals during 
observation occasions contains more information about the observation process than de-
tection/non- detection data for individuals during the same occasion.	Rather	than	using	
Bernoulli	 or	 categorical	 distributions	 to	 estimate	detection	probability,	we	demon-
strate	the	application	of	zero-	inflated	Poisson	and	gamma-	Poisson	distributions.	The	
use	of	count	distributions	allows	for	inference	on	availability	for	encounter,	as	well	as	
a	wide	variety	of	parameterizations	for	heterogeneity	in	the	observation	process.	We	
demonstrate	that	this	approach	can	accurately	recover	demographic	and	observation	
parameters	in	the	presence	of	individual	heterogeneity	in	detection	probability	and	
discuss	some	potential	future	extensions	of	this	method.
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1  |  INTRODUC TION

The	estimation	of	demographic	parameters	 is	 fundamental	 to	suc-
cessful	 conservation	 and	 evolutionary	 ecology.	 Since	 their	 initial	
development,	 capture–	mark–	recapture	 (hereafter,	 CMR)	 models	
have	been	used	to	estimate	demographic	parameters	such	as	appar-
ent	survival	(Cormack,	1964;	Jolly,	1965;	Seber,	1965),	true	survival	
and	site	fidelity	(Burnham,	1993),	transitions	among	discrete	strata	
(Brownie	et	al.,	1993),	temporary	emigration	or	breeding	probability	
(Kendall	et	al.,	1995, 1997),	recruitment	(Pradel,	1996),	and	the	spatial	
distribution	of	organisms	(Royle	et	al.,	2013;	Royle	&	Young,	2008).	
Parameter	estimates	from	CMR	models	are	often	used	as	vital	com-
ponents	of	population	models	(Caswell,	2000;	Schaub	&	Kéry,	2021)	
and	to	develop	a	more	complete	understanding	of	individual	fitness	
(Cam	et	al.,	2002;	Stearns,	1992).	CMR	models	typically	consist	of	
two	primary	components:	(1)	a	model	of	latent	biological	processes	
(i.e.,	survival,	movement	among	populations,	emigration,	disease	dy-
namics),	and	(2)	a	model	of	the	observation	of	uniquely	identifiable	
individuals.	Models	 of	 both	 latent	 biological	 and	 observation	 pro-
cesses	 typically	 take	 the	 form	of	 categorical	 or	Bernoulli	 distribu-
tions,	and	individuals	are	grouped	into	discrete	groups	or	states	(e.g.,	
alive	or	dead,	observed	or	not	observed).

Heterogeneity	among	“uniquely	identifiable”	(hereafter,	marked)	
organisms	in	both	biological	processes	(e.g.,	Cam	et	al.,	2002;	Pledger	
&	Schwarz,	2002)	and	observation	probability	 (e.g.,	Pledger,	2005; 
Pollock,	 1982)	 has	 long	 been	 recognized	 as	 a	 central	 challenge	 in	
CMR	modeling	(Otis	et	al.,	1978).	In	a	seminal	paper,	Pollock	(1982)	
proposed	 that	 heterogeneity	 in	 detection	might	 be	 accounted	 for	
by	subdividing	primary	occasions	into	multiple	secondary	occasions.	
Similarly,	 Fletcher	 (1994)	 developed	 a	 method	 for	 modeling	 the	
probability	of	encounter	of	individuals	as	a	function	of	the	number	
of	unique	 resights	of	 that	 individual	during	 the	previous	occasion.	
Shortly	 thereafter,	 Kendall	 and	 others	 (Kendall	 et	 al.,	1995, 1997)	
expanded	the	method	developed	by	Pollock	(1982)	to	estimate	avail-
ability	for	encounter	(i.e.,	zero-	inflation)	by	partitioning	primary	oc-
casions	into	shorter	secondary	occasions,	assuming	closure	among	
secondary	 occasions	 within	 a	 primary	 occasion,	 and	 estimating	
probabilities	 of	 temporary	 emigration	 from	 the	 study	 area.	 Since	
that	time,	methods	have	been	developed	to	estimate	individual	de-
tection	probabilities	using	random	effects	(Clark	et	al.,	2005;	Royle	
&	Dorazio,	2008)	or	mixtures	(Pledger,	2000;	Pledger	et	al.,	2003).	
More	 recent	 efforts	 have	 simultaneously	 used	 information	 about	
marked	organism	location	and	the	 locations	of	sampling	efforts	to	
model	spatial	variation	in	reencounter	probability	(Royle	et	al.,	2013; 
Royle	&	Young,	2008).	However,	the	estimation	of	heterogeneity	in	
the	observation	process	remains	a	key	challenge	in	CMR	studies,	and	
the	continued	development	of	alternative	approaches	is	critical	for	
improved	parameter	estimation.

Heterogeneity	 in	 the	 detection	 of	 marked	 organisms	 is	 often	
driven	by	two	primary	processes.	The	first	is	whether	or	not	an	indi-
vidual	is	even	present	within	the	bounds	of	the	study	area	(i.e.,	tem-
porary	emigration	as	a	source	of	zero-	inflation;	Kendall	et	al.,	1995; 
Schaub	 et	 al.,	 2004).	 The	 second	 is	 variation	 among	 the	 latent	

encounter	 probabilities	 of	 individuals	 that	 are	 present.	 This	 latent	
heterogeneity	can	be	affected	by	factors	such	as	variation	 in	 indi-
vidual	behavior,	 life	 stage,	 and	 location	 relative	 to	 sampling	effort	
(Royle	&	Young,	2008).	When	primary	occasions	extend	over	multi-
ple	days,	weeks,	or	months,	this	can	lead	to	some	individuals	being	
encountered	many	times	while	others	are	 rarely,	 if	ever,	detected.	
The	key	concept	in	this	paper	is	that	in the same way that counts con-
tain more information about the abundance of a population than sim-
ple detection/non- detection data, the number of encounters of marked 
individuals may contain more information about the observation pro-
cess than detection/non- detection data	(e.g.,	McClintock	et	al.,	2009, 
2019;	McClintock	&	White,	2009).	 Thus,	 rather	 than	 summarizing	
capture–	reencounter	data	using	ones	(encountered)	and	zeroes	(not	
encountered)	during	a	primary	occasion	or	multiple	secondary	occa-
sions,	capture–	reencounter	data	can	also	be	summarized	as	counts	
of	 the	 number	 of	 times	 each	marked	 individual	 was	 encountered	
during	 a	 primary	 occasion	 (McClintock	 et	 al.,	2019;	McClintock	&	
White,	2009).	The	number	of	encounters	can	then	be	modeled	using	
a	variety	of	discrete	distributions,	such	as	the	Poisson	or	negative	
binomial	distributions.	If	model	assumptions	are	met,	this	approach	
provides	a	flexible	and	useful	approach	to	modeling	the	observation	
process	and	may	improve	upon	existing	tools	to	estimate	heteroge-
neity	in	encounter	probability	among	individuals.	Notably,	improved	
estimates	of	heterogeneity	 in	 the	observation	process	 lead	 to	 im-
proved	estimates	of	demographic	parameters.	 In	this	paper,	we	(1)	
demonstrate	 the	use	of	 this	approach	with	simulated	data,	 (2)	de-
scribe	potential	benefits	relative	to	more	traditional	approaches,	(3)	
demonstrate	several	approaches	for	modeling	individual	heteroge-
neity	in	encounter	probability,	and	(4)	discuss	possible	future	exten-
sions	and	uses	of	this	parameterization.

2  |  METHODS

We	simulated	250	CMR	datasets,	each	with	10	primary	occasions	
(T = 10).	 For	 each	 simulation,	 we	 released	 25	 marked	 individu-
als	 in	 the	 first	 through	ninth	primary	occasions,	 for	a	 total	of	225	
released	 individuals	 (I = 225).	 We	 simulated	 the	 latent	 state	 of	
each	individual	 (zi,t;	1:	alive,	0:	dead)	from	occasion	to	occasion	as,	
zi,t ∼ Bernoulli

(
zi,t−1�

)
,	given	a	survival	probability	generated	from	a	

beta	distribution,	� ∼ beta(40, 10).	If	an	individual	was	alive	in	occa-
sion t,	we	simulated	its	availability	for	encounter	(ai,t;	1:	available,	0:	
unavailable)	given	simulated	Markovian	(Kendall	et	al.,	1997)	prob-
abilities	of	availability	for	encounter	(�),

These	 probabilities	 are	 directly	 analogous	 to	 parameters	 de-
scribed	by	Kendall	et	al.	 (2013),	 such	 that	�2	 in	 this	 study	 is	equal	
to	 the	probability	 of	 availability	 given	 availability	 in	t − 1, or a′′ as 
defined	by	Kendall	et	al.	(2013),	and	�1	in	this	study	is	equal	to	the	

(1)

ai,t ∼Bernoulli
(
zi,t ×�1×

(
1−ai,t−1

)
+zi,t ×�2×ai,t−1

)
,

�1∼beta(10, 20),

�2∼beta(20, 10).
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probability	of	availability	given	absence	in	t − 1, or a′	as	defined	by	
Kendall	et	al.	(2013).	During	each	primary	occasion,	we	sampled	in-
dividuals	that	were	available	for	detection	for	21	consecutive	days	
(J = 21,	 that	 is,	 3 weeks)	 given	 simulated	 individual	 random	 varia-
tion	 in	daily	detection	probability	 (di;	Dorazio	 et	 al.,	2013;	Gomez	
et al., 2018).	 Thus,	 the	 simulated	 capture–	recapture	 data	 form	 a	
3-	dimensional	array	(Y)	with	dimensions	I × T × J,

where ��	is	the	simulated	mean	daily	detection	probability	of	an	aver-
age	individual,	and	��	is	the	amount	of	among-	individual	heterogeneity	
in	detection.	We	then	summarized	the	daily	CMR	data	for	analysis	with	
four	different	model	 types:	 (1)	 a	Cormack–	Jolly–	Seber	model	where	
the	secondary	captures	are	ignored	(CJS;	Cormack,	1964;	Jolly,	1965; 
Seber,	1965),	(2)	a	robust	design	model	(RD;	Kendall	et	al.,	1995, 1997),	
and	 two	 capture–	recapture	 models	 with	 count-	based	 observation	
likelihoods,	 (3)	 a	 zero-	inflated	 Poisson	 (ZIP),	 and	 (4)	 a	 zero-	inflated	
gamma-	Poisson	with	heterogeneity	in	the	number	of	encounters	per	
individual	 (ZIGP).	To	 summarize	 the	CMR	data	 (M)	 for	 a	CJS	model,	
we	constructed	an	I × T	matrix	and	filled	the	matrix	as	a	function	of	
whether	or	not	an	individual	was	observed	on	any	day	during	a	primary	
occasion,

To	summarize	 the	 robust	design	encounter	data	 (R)	 for	 the	 ro-
bust	design	capture–	reencounter	model,	we	subdivided	each	21-	day	
long	 primary	 occasion	 into	 three	 one-	week	 long	 secondary	 occa-
sions	(K = 3).	If	an	individual	was	observed	on	any	day	of	a	week	in	
a	 secondary	occasion,	 then	 that	 secondary	occasion	 (ri,t,k)	 equaled	
one.	If	an	individual	was	not	observed	on	any	day	during	a	specific	
secondary	occasion,	then	ri,t,k = 0.	Finally,	we	summarized	the	counts	
of	reencounters	by	individual	and	primary	occasion	by	simply	sum-
ming	the	total	number	of	encounters	of	each	individual	during	each	
primary	occasion,	ci,t =

∑21

j=1
yi,t,j.

In	the	same	way	that	the	data	were	generated,	all	four	capture–	
recapture	models	share	a	common	likelihood	for	the	survival	process.	
The	latent	state	of	each	individual	during	each	occasion	(zi,t)	was	mod-
eled	as	a	function	of	the	individual's	latent	state	in	the	previous	occa-
sion	(zi,t−1)	and	a	survival	probability	(�),	zi,t ∼ Bernoulli

(
zi,t−1 × �

)
 .	A	

vague	prior	was	used	for	survival,	� ∼ beta(1, 1).	For	the	CJS	model,	
we	then	simply	modeled	the	primary	occasions	encounter	data	(M)	
as	a	function	of	the	individual's	latent	state	and	a	detection	probabil-
ity	(p),	mi,t ∼ Bernoulli

(
zi,t × p

)
.	We	specified	a	vague	prior	for	detec-

tion	probability	p ∼ Beta(1, 1).	For	 the	 remaining	 three	models,	we	
also	estimated	whether	an	individual	was	available	for	detection	(ai,t)	

given	its	previous	state	(ai,t−1)	and	vague	priors	for	Markovian	proba-
bilities	of	availability	for	encounter	(�;	Kendall	et	al.,	1997).

For	the	robust	design	model,	we	modeled	whether	or	not	each	
individual	was	detected	during	each	secondary	occasion	as	a	func-
tion	of	its	latent	availability	for	detection	during	the	primary	occa-
sion	(ai,t)	and	a	secondary	occasion	detection	probability	(p).	We	then	
derived	primary	occasion	detection	probability	(p*)	from	the	second-
ary	occasion	detection	probabilities	for	comparison	of	parameter	es-
timates	among	models,

For	the	zero-	inflated	Poisson	model,	we	model	the	total	number	
of	encounters	of	each	individual	during	each	primary	occasion	(ci,t )	
given	availability	for	detection	(ai,t)	an	expected	mean	number	of	en-
counters	per	individual	per	primary	occasion	(�),

For	the	zero-	inflated	Gamma-	Poisson	model	with	heterogeneity	
in	the	number	of	expected	observations	per	individual,	we	modeled	
the	 number	 of	 encounters	 of	 each	 individual	 during	 each	 primary	
occasion	(ci,t)	given	availability	for	detection	(ai,t),	the	mean	expected	
number	 of	 encounters	 per	 individual	 (�),	 and	 individual	 encounter	
heterogeneity	(hi)	estimated	using	an	overdispersion	parameter	(�),

This	 parameterization	 is	 similar	 to	 Gamma-	Poisson	 formula-
tions	of	the	negative	binomial	distribution	(Greene,	2008);	however,	
here	 we	 assume	 heterogeneity	 among	 individuals,	 not	 observa-
tions.	 Fitting	 these	models	 in	 a	 Bayesian	 framework	 allows	 users	
to	easily	customize	existing	described	count	distributions	for	use	in	
these	model	types.	We	called	JAGS	(Plummer,	2003)	from	R	(R	Core	
Team,	 2018)	 using	 the	 jagsUI	 package	 (Kellner,	 2016).	 For	 each	
simulated	dataset,	we	sampled	three	MCMC	chains	of	50,000	iter-
ations	with	an	adaptive	phase	of	1000	iterations.	We	discarded	the	
first	10,000	iterations	and	retained	every	tenth	saved	iteration.	We	
assessed	 convergence	 visually,	 and	 chains	 converged	 acceptably.	
We	calculated	mean	signed	difference	(MSD)	as	the	mean	of	the	dif-
ferences	between	the	median	of	the	posterior	distribution	and	the	
true	parameter	value	used	to	simulate	the	data,	and	we	calculated	

(2)

yi,t,j ∼Bernoulli
(
ai,t ×di

)
,

di ∼beta

(
�� ×

(
1

�2
�

)
,
(
1−��

)
×

(
1

�2
�

))
,

�� ∼beta(10, 90),

�� ∼gamma(5, 50),

(3)mi,t ∼

⎧
⎪⎨⎪⎩

1, if
�21

j=1
yi,t,j ≥1

0, otherwise
.

(4)

ai,t ∼Bernoulli
(
zi,t ×�1×

(
1−ai,t−1

)
+zi,t ×�2×ai,t−1

)
,

�1∼beta(1, 1),

�2∼beta(1, 1).

(5)

ri,t,j ∼Bernoulli
(
ai,t ×p

)
,

p∼Beta(1, 1),

p∗ =1−(1−p)
3.

(6)
ci,t ∼Poisson

(
ai,t ×�

)
,

�∼Gamma(1, 1).

(7)

ci,t ∼Poisson
(
ai,t ×�×hi

)
,

�∼gamma(1, 1),

hi ∼gamma(�, �),

�∼uniform(0, 250).
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coverage	 as	 the	proportion	of	 simulations	 in	which	 the	95%	 sym-
metric	credible	intervals	included	the	true	parameter	value	used	to	
simulate	the	data.

3  |  RESULTS

Estimates	of	survival	 (�)	were	 low	relative	to	truth	for	CJS	models	
(MSD	=	−0.047;	Coverage	=	0.464),	but	constant	(i.e.,	equivalent	to	
truth)	and	calibrated	(i.e.,	exhibited	appropriate	coverage	near	0.95)	
for	 RD	 (MSD	=	 −0.003;	 Coverage	=	 0.940),	 ZIP	 (MSD	=	 −0.002;	
Coverage =	0.948),	and	ZIGP	(MSD	= 0.001; Coverage =	0.948)	CMR	
models	 (Figure 1; Table 2).	 Estimates	 of	 availability	 for	 encounter	
given	previous	availability	for	encounter	(�2 ∣ ai,t−1 = 1)	were	slightly	
underestimated	 by	 RD	 (MSD	 =	 −0.020;	 Coverage	 =	 0.892)	 and	
ZIP	(MSD	=	−0.013;	Coverage	=	0.896)	models,	but	near	truth	for	
the	ZIGP	(MSD	=	0.006;	Coverage	=	0.936)	CMR	model	(Figure 2; 
Table 2).	 Estimates	 of	 availability	 for	 encounter	 given	 previous	
unavailability	 for	 encounter	 (�1 ∣ ai,t−1 = 0)	 were	 slightly	 overesti-
mated	by	RD	(MSD	=	0.018;	Coverage	=	0.956),	ZIP	(MSD	= 0.015; 
Coverage =	0.964),	and	ZIGP	(MSD	= 0.019; Coverage =	0.976)	CMR	
models,	 but	 coverage	was	adequate.	Estimates	of	detection	prob-
ability	 (p)	 exhibited	 poor	 coverage	 (Figure 3; Table 2)	 for	 the	 RD	
(MSD	= 0.009; Coverage =	0.832)	CMR	model.	Estimates	of	the	av-
erage	number	of	reencounters	per	individual	(�)	were	overestimated	
with	poor	coverage	with	the	ZIP	(MSD	=	0.078;	Coverage	=	0.764)	

CMR	 model,	 and	 near	 truth	 with	 the	 ZIGP	 (MSD	 = 0.002; 
Coverage =	 0.928)	 CMR	 model.	 The	 simulated	 individual	 het-
erogeneity	 in	 encounter	 probability	 (��)	 in	 the	data	was	positively	
correlated	with	dispersion	in	the	count	data	(D; Figure 4).	The	over-
dispersion	parameter	 (�)	 in	the	ZIGP	model	accounted	for	some	of	
this	overdispersion	(Figure 4),	improving	coverage	and	constancy	for	
ZIGP	models	 relative	 to	 other	model	 types.	 ZIP	 and	ZIGP	models	
were	computationally	 less	expensive	than	RD	models	 (Figure 4)	 to	
sample	the	same	number	of	iterations.

4  |  DISCUSSION

We	demonstrate	that	CMR	models	parameterized	with	zero-	inflated	
count	distributions	can	function	much	like	robust	design	CMR	mod-
els.	Estimates	of	survival	probability	from	RD,	ZIP,	and	ZIGP	mod-
els	 were	 centered	 around	 truth,	 while	 estimates	 of	 survival	 from	
the	CJS	model	were	consistently	low	relative	to	truth.	Further,	the	
use	 of	 these	 model	 types	 may	 allow	 for	 improved	 estimation	 of	
heterogeneity	 in	 encounter	 probability	 among	 individuals	 and	 im-
prove	computational	efficiency	(Figure 4).	We	see	substantial	utility	
for	these	parameterizations	 in	a	variety	of	scenarios.	For	 instance,	
non-	breeding	 resights	of	 individuals	at	wintering	or	 stopover	 sites	
may	provide	an	excellent	system	to	model	the	total	number	of	en-
counters	rather	than	simple	detection/non-	detection	data.	Further,	
existing	 and	 emerging	 data	 types	 such	 as	 camera	 traps,	 PIT	 tags,	
and	automated	telemetry	may	provide	 large	number	of	detections	
in	discrete	time	blocks,	providing	excellent	data	for	the	models	we	
describe	in	this	paper.

As	 we	 demonstrate,	 this	 approach	 may	 be	 particularly	 useful	
when	 unobservable	 states	 exist,	 as	 counts	 of	 reencounters	 allow	
for	the	estimation	of	a	zero-	inflation	parameter	(i.e.,	availability	for	
detection),	which	may	be	biologically	analogous	 to	breeding	prob-
ability	or	presence	at	a	 stopover	or	wintering	site.	Count	parame-
terizations	might	also	be	used	to	model	secondary	occasions	within	
a	 robust	 design	model;	 one	 or	more	 secondary	 occasions	may	 be	
estimated	 from	 some	 count	 distribution	 and	 others	 from	 a	 more	
typical	 Bernoulli	 distribution.	 The	 inherent	 flexibility	 of	 programs	
such	 as	 JAGS	 (Plummer,	2003),	 NIMBLE	 (de	 Valpine	 et	 al.,	2017),	
and	Stan	(Carpenter	et	al.,	2017),	and	ample	literature	on	capture–	
reencounter	 parameterizations	 should	 lead	 to	 a	wide	 array	 of	 ex-
tensions	 of	 these	 model	 types,	 and	 their	 incorporation	 into	 joint	
likelihood	models,	such	as	integrated	population	models	(Schaub	&	
Kéry,	2021).

Critically,	the	use	of	these	model	types	also	has	advantages	for	
estimating	heterogeneity	in	detection	probability	among	individuals	
that	are	observable,	as	some	individuals	may	be	seen	more	often	than	
others.	Estimating	heterogeneity	in	probabilities	from	a	small	number	
of	Bernoulli	trials	can	be	challenging	(Fay	et	al.,	2022).	Summarizing	
mark–	reencounter	 data	 as	 counts	 of	 encounters	 may	 provide	 ad-
ditional	 information	 for	 estimating	 latent	 heterogeneity	 among	
individuals	or	estimating	mixtures	(e.g.,	Pledger	et	al.,	2003).	For	ex-
ample,	rather	than	the	heterogeneity	parameterization	explored	in	

F I G U R E  1 Scatter	and	density	plots	of	the	medians	of	posterior	
distributions	for	apparent	survival	relative	to	truth	(�)	from	
Cormack–	Jolly–	Seber	(CJS;	upper	left),	robust	design	(RD;	upper	
right),	zero-	inflated	Poisson	(ZIP,	lower	left),	and	zero-	inflated	
gamma-	Poisson	with	individual	heterogeneity	(ZIGP;	lower	right),	
capture–	mark–	reencounter	models	used	to	analyze	250	simulated	
capture–	mark–	reencounter	datasets.
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this	paper,	one	might	specify	a	mixture	distribution	for	the	number	
of	encounters	per	 individual.	 Individual	covariates	can	be	 incorpo-
rated	simply	by	modeling	the	expected	number	of	encounters	with	a	
log-	link	function.	We	anticipate	a	variety	of	other	parameterizations	
might	be	useful	as	well	 (Table 1)	and	that	simulation	work	may	re-
veal	more	effective	parameterizations	than	those	described	herein.	
For	instance,	recent	research	has	demonstrated	that	a	count-	based	

observation	 likelihood	can	be	useful	 for	helping	 to	address	 “false-	
positives”	in	reencounter	data	(Rakhimberdiev	et	al.,	2022).	Thus,	we	
suggest	that	continued	extension	of	these	methods	may	have	broad	
utility	moving	forward	for	capture–	reencounter	modeling.

As	with	the	use	of	any	model,	violations	of	model	assumptions	
will	lead	to	inaccurate	parameter	estimates.	We	caution	against	the	
use	of	 these	models	when	encounters	are	conditional	on	previous	
encounters	within	 a	 season	 (i.e.,	 trap	 happiness).	As	 a	 particularly	
problematic	example,	 if	 the	nest	of	a	marked	animal	 is	discovered	
and	the	animal	is	then	observed	repeatedly	while	visiting	the	nest,	
this	would	 serve	 as	 an	 additional	 type	 of	 zero-	inflation	 (i.e.,	 nest-
ing	in	the	study	area	is	a	Bernoulli	trial,	the	discovery	of	the	nest	is	
a	Bernoulli	 trial,	 and	 the	 subsequent	 visits	 are	 a	product	of	 study	
design	and	nest	monitoring	protocols,	not	a	random	encounter	pro-
cess).	We	expect	that	other	types	of	heterogeneity	are	common	in	
CMR	data.	For	example,	 the	number	of	encounters	might	be	 right	
truncated	 if	 observers	 cease	 recording	 reencounters	 of	 individu-
als	 that	 have	 already	 been	 encountered	multiple	 times.	 Thus,	 we	
strongly	encourage	careful	thought	about	how	previous	monitoring	
protocols	might	affect	 the	distribution	of	encounters	of	each	 indi-
vidual	when	applying	these	models	to	data	and	discourage	using	this	
approach	without	explicit	information	about	monitoring	protocols.

The	 use	 of	 the	 Poisson	 distribution	 requires	 the	 assumption	
that	 the	mean	 and	 the	 variance	 are	 equal.	When	 the	 encounter	
data	are	under	or	overdispersed,	this	can	lead	to	respective	under	
or	overestimation	of	the	expected	number	of	encounters	per	 in-
dividual.	 Similarly,	 the	 probability	 of	 availability	 for	 encounter	
will	be	over	or	underestimated	given	under	or	overdispersion	of	
the	encounter	data	(Figure 4).	While	overdispersion	can	be	mod-
eled	simply	using	gamma-	Poisson	mixture	 (demonstrated	herein)	
or	 negative	 binomial	 distributions	 (Table 1),	 underdispersion	 re-
quires	the	use	of	more	complex	distributions	such	as	the	Conway–	
Maxwell–	Poisson	 (Conway	&	Maxwell,	1962;	Lynch	et	al.,	2014).	
We	suggest	that	additional	simulation	work	is	required	to	fully	un-
derstand	the	benefits	and	costs	associated	with	using	alternative	

F I G U R E  2 Scatter	and	density	plots	of	
the	medians	of	posterior	distributions	for	
availability	for	encounter	relative	to	truth	
(�)	from	robust	design	(RD;	left),	zero-	
inflated	Poisson	(ZIP,	center),	and	zero-	
inflated	gamma-	Poisson	with	individual	
heterogeneity	(ZIGP;	right),	capture–	
mark–	reencounter	models	used	to	analyze	
250	simulated	capture–	mark–	reencounter	
datasets.
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F I G U R E  3 Scatter	and	density	plots	of	the	medians	of	posterior	
distributions	for	primary	occasion	detection	probability	(p)	or	the	
expected	number	of	encounters	per	individual	(� )	from	Cormack–	
Jolly–	Seber	(CJS;	upper	left),	robust	design	(RD;	upper	right),	
zero-	inflated	Poisson	(ZIP,	lower	left),	and	zero-	inflated	Poisson	
with	individual	heterogeneity	(ZIGP;	lower	right),	capture–	mark–	
reencounter	models	used	to	analyze	250	simulated	capture–	mark–	
reencounter	datasets.
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F I G U R E  4 Violin	plots	of	model	run	times	across	250	simulations	for	Cormack–	Jolly–	Seber	(CJS;	Cormack,	1964;	Jolly,	1965;	Seber,	1965),	
robust	design	(RD;	Kendall	et	al.,	1995, 1997),	zero-	inflated	Poisson	(ZIP;	this	study)	and	zero-	inflated	gamma-	Poisson	(ZIGP;	this	study)	
capture–	mark–	recapture	models	(left),	scatter	plots	of	the	index	of	dispersion	(D;	Var(C)/Mean(C))	for	the	capture–	mark–	reencounter	
count	data	relative	to	the	simulated	heterogeneity	in	detection	probability	among	individuals	(��),	and	scatterplots	of	the	mean	of	posterior	
distributions	of	the	overdispersion	parameter	(�)	regressed	against	the	index	of	dispersion	for	each	capture–	mark–	recapture	dataset.
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TA B L E  1 Potential	parameterizations	for	zero-	inflated	count	distribution-	based	capture–	reencounter	models,	where	ci,t	is	the	number	
of	encounters	of	individual	i	during	occasion	t, ai,t	is	an	individual's	availability	for	encounter	(ai,t = 1	indicates	available;	ai,t = 0 indicates 
unavailable),	and	�	is	the	number	of	expected	encounters	of	an	individual.

Parameterization Model and priors

1.	Poisson cit ∼ Poisson
(
ait × �

)
� ∼ gamma(1, 1)

2.	Gamma-	Poisson	with	individual	heterogeneity cit ∼ Poisson
(
ait × � × hi

)
� ∼ gamma(1, 1)

hi ∼ gamma(�, �)

� ∼ uniform(0, 250)

3.	Poisson	with	two	categorical	mixtures	(�i) cit ∼ Poisson
(
ait × ��i

)
� ∼ gamma(1, 1)

�i ∼ categorical(�, 1 − �)

� ∼ beta(1, 1)

4.	Alternative	Gamma–	Poisson	with	individual	heterogeneity	(�i) cit ∼ Poisson
(
ait × �i

)
�i ∼ gamma(�, �)

� ∼ gamma(1, 1)

� ∼ gamma(1, 1)

5.	Lognormal	with	individual	covariates	(X)	and	heterogeneity	(�) cit ∼ Poisson
(
ait × �i

)
�i ∼ lognormal

(
�X, �2

)
� ∼ normal(0, 10)

� ∼ gamma(1, 1)

Note:	We	explicitly	test	parameterizations	1	and	2	in	this	paper.	Parameterization	3	allows	for	mixtures	in	encounter	probability,	where	� is the 
proportion	of	individuals	in	group	one,	and	�	is	an	categorical	variable	defining	the	mixture	of	each	individual.	Parameterization	4	is	similar	to	
parameterization	2,	but	with	a	slightly	different	model	for	each	individual's	encounter	probability	with	shape	(�)	and	rate	(�)	hyperpriors.	Finally,	
parameterization	5	allows	for	the	inclusion	of	individual	covariates	(X),	associated	regression	parameters	(�),	and	individual	heterogeneity	(�).	Please	
note	that	a	much	larger	number	of	potential	parameterizations	exists,	and	see	Pledger	et	al.	(2003),	Greene	(2008),	Lynch	et	al.	(2014),	Kéry	and	
Royle	(2015),	and	McClintock	et	al.	(2009, 2019)	for	further	reading.

TA B L E  2 Mean	difference	between	the	medians	of	the	posterior	distributions	and	truth	and	parameter	coverage	(in	parentheses)	
for	estimates	of	apparent	survival	(�),	availability	for	encounter	given	ai,t−1 = 0	(�1),	availability	for	encounter	given	ai,t−1 = 1	(�2),	primary	
occasion	detection	probability	(p	[CJS]	or	p*	[RD]),	and	the	expected	number	of	encounters	per	individual	(�)	from	250	simulated	capture–	
mark–	recapture	datasets	analyzed	using	Cormack–	Jolly–	Seber	(CJS;	Cormack,	1964;	Jolly,	1965;	Seber,	1965),	robust	design	(RD;	Kendall	
et al., 1997),	zero-	inflated	Poisson	(ZIP;	this	study),	and	zero-	inflated	Gamma-	Poisson	(ZIGP;	this	study)	capture–	recapture	models.

Parameter CJS RD ZIP ZIGP

� −0.047	(0.464) −0.003	(0.940) −0.002	(0.948) 0.001	(0.948)

�1 –	 0.018	(0.956) 0.015	(0.964) 0.019	(0.976)

�2 –	 −0.020	(0.892) −0.013	(0.896) 0.006	(0.936)

p	(CJS)	or	p*	(RD) −0.306	(0.004) 0.010	(0.832) –	 –	

� –	 –	 0.078	(0.764) 0.002	(0.928)
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distributions.	Notably,	while	the	authors	have	not	yet	developed	
goodness-	of-	fit	 tests	 for	 these	 model	 types,	 the	 use	 of	 these	
parameterizations	 might	 simplify	 goodness-	of-	fit	 testing	 for	
capture–	reencounter	models	due	to	the	use	of	counts	rather	than	
Bernoulli	trials.

While	 we	 have	 demonstrated	 in	 this	 paper	 that	 count-	based	
observation	 parameterizations	 can	 be	 useful	 for	 capture–	mark–	
reencounter	 studies,	 much	 remains	 to	 be	 learned.	 For	 example,	
careful	 thought	will	 be	 required	 for	 developing	 appropriate	 priors	
(e.g.,	Northrup	&	Gerber,	2018),	and	empirical	research	may	reveal	
unforeseen	problems.	Future	simulation	work	might	assess	the	im-
pacts	of	priors	on	 inference,	 further	examine	the	 impacts	of	over-		
and	under-	dispersion,	and	explore	various	other	capture–	recapture	
parameterizations	and	count	distributions.
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