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Abstract: Visual inspection is an important task in manufacturing industries in order to evaluate
the completeness and quality of manufactured products. An autonomous robot-guided inspection
system was recently developed based on an offline programming (OLP) and RGB-D model system.
This system allows a non-expert automatic optical inspection (AOI) engineer to easily perform
inspections using scanned data. However, if there is a positioning error due to displacement or
rotation of the object, this system cannot be used on a production line. In this study, we developed
an automated position correction module to locate an object’s position and correct the robot’s pose
and position based on the detected error values in terms of displacement or rotation. The proposed
module comprised an automatic hand–eye calibration and the PnP algorithm. The automatic hand–
eye calibration was performed using a calibration board to reduce manual error. After calibration, the
PnP algorithm calculates the object position error using artificial marker images and compensates for
the error to a new object on the production line. The position correction module then automatically
maps the defined AOI target positions onto a new object, unless the target position changes. We
performed experiments that showed that the robot-guided inspection system with the position
correction module effectively performed the desired task. This smart innovative system provides a
novel advancement by automating the AOI process on a production line to increase productivity.

Keywords: automatic optical inspection (AOI); offline programming; position correction; image
processing; production line; manipulator; camera-based system

1. Introduction

The development of industrial automation became quite mature by the 1970s, and
many companies have been gradually introducing automated production technology
to assist production lines since [1]. The automation of the production line has enabled
the manufacturing process to be more efficient, data-based, and unified. Automation
technologies have heavily influenced many processes, from loading and unloading objects
to sorting, assembly, and packaging [2].

In 2012, the German government proposed the concept of Industry 4.0 [3]. Many
companies have started to develop automation technologies, from upper layer software
or hardware providers and middle layer companies that store, analyze, manage, and
provide solutions, to lower layer companies, so that they can apply these technologies
in their factories [4]. In addition, a smarter integrated sensing and control system based
on existing automation technologies has begun to evolve as part of the development of a
highly automated or even fully automated production model [5].
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In modern automation technology, development is mainly based on a variety of
algorithms and robot arm control systems [6]. The robotic arm has the advantages of
high precision, fast-moving speed, and versatile motion. In advanced applications, ex-
tended sensing modules, such as vision modules, distance sensors, or force sensors, can be
integrated with the robotic arm to give human sense to robotic systems [7].

Robot systems in general have the ability to “see” things through various vision
systems [8]. These help robots to detect and locate objects, which speeds up the technical
process. In addition, they improve the processing accuracy and expand the range of
applications for automated systems. The type of data obtained can be approximately
divided into a 2D vision system (RGB/Mono Camera system), which receives planar
images [9], and a 3D vision system (RGB-D Camera system), which receives depth images
in the form of vision modules [10]. These two systems have their own advantages and
disadvantages and suitable application scenarios. In the field of industrial manufacturing
automation, the 2D vision system is commonly used to meet the needs of high precision,
ease of installation, and use.

The robotic arm with a 2D vision camera is the most commonly used setup in today’s
industrial automation applications. Pick and place [11] and random bin picking [12] are
among the most frequent applications that use an industrial camera with a manipulator.
Several open-source and commercial toolboxes, such as OpenCV [13] and Halcon [14],
are already available for use in vision systems. However, regardless of how mature
the software support is, a lot of hardware is still needed with human intervention to
complete the process. Camera calibration is needed before operation and is applied to
various image processing algorithms so that important parameters, such as focal length,
center of image, intrinsic parameter, extrinsic parameter, and lens distortion [15,16], can
be learnt. Furthermore, camera calibration is a challenging and time-consuming process
for an operator unfamiliar with the characteristics of the camera on the production line.
Camera calibration is a major issue that is not easily solved in the automation industry
and complicates the introduction of production line automation. Traditional vision-based
methods [17–20] require 3D fixtures corresponding to a reference coordinate system to
calibrate a robot. These methods are time-consuming, inconvenient, and may not be
feasible in some applications.

A camera installed in the working environment or mounted on a robotic arm can be
categorized as an eye-to-hand (camera-in-hand) calibration or stand-alone calibration [21].
The purpose of the hand–eye correction is similar to that of the robot arm end-point tool
calibration (TCP calibration), which obtains a convergence homogeneous matrix between
the robot end-effector and the tool end-point [22]. However, unlike TCP calibration, it can
be corrected by using tools to touch fixed points in different positions. To obtain a hand–eye
conversion matrix, the visual systems use different methods, such as the parametrization
of a stochastic mode [23] and dual-quaternion parameterization [24], since the actual image
center cannot be used. For self-calibration methods, the camera is rigidly linked to the
robot end-effector [25]. A vision-based measurement device and a posture measuring
device have been used in a system that captures robot position data to model manipulator
stiffness [26] and estimate kinematic parameters [27–29]. The optimization technique is
based on the end-effector’s measured positions. However, these methods require offline
calibration, which is a limitation. In such systems, accurate camera model calibration
and robot kinematics model calibration are required for accurate positioning. The camera
calibration procedure required to achieve high accuracy is, therefore, time-consuming and
expensive [30].

Positioning of the manufactured object is an important factor in industrial arm appli-
cations. If the object is not correctly positioned, it may cause assembly failure or destroy
the object. Consequently, the accuracy of object positioning often indirectly influences
the processing accuracy of the automated system. Although numerous studies have been
conducted to define object positioning accurately based on vision systems [31–33], no
system has been found with an offline programing platform to perform AOI inspection
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on a production line. Table 1 shows a comparison between the system we propose here
and to existing vision-based position correction systems in terms of performance. The
proposed system expedites the development of a vision-based object position correction
module for a robot-guided inspection system. This allows the robot-guided inspection
system to complete AOI tasks automatically in a production line regardless of the object’s
position. In the proposed system, the AOI targets can be automatically mapped onto a
new object for the inspection task, whereas existing vision systems have been developed to
locate the object’s position but not for the production line. To operate these systems, the
operator needs to be skillful, and integration with the other system is a tedious process.
Furthermore, user-defined robot target positions cannot be updated for inspection if there
is a change in the object’s position, which makes it more challenging to perform tasks on
the production line. The proposed position correction system is capable of self-calibration
and can update the object position and AOI targets automatically in the production line.

Table 1. Comparison between existing vision-based position correction systems and the proposed system.

Features Vision-Based Systems [31–33] Proposed System

Self-calibration Yes Yes
Errors and failures High Low

Online position correction in a production line No Yes
Setup complexity with OLP High Low
Auto correct robot targets No Yes

Here, we propose a novel approach to automate manufacturing systems for various
applications in order to solve the object position error encountered on the production line.
We developed an automated position correction module to locate an object’s position and
adjust the robot pose and position in relation to the detected error values on displacement
or rotation. The proposed position correction module is based on an automatic hand–eye
calibration and the PnP algorithm. The automatic hand–eye calibration was performed
using a calibration board to reduce manual error, whereas the PnP algorithm calculates
the object position error using artificial marker images. The position correction module
identifies the object’s current position and then measures and adjusts the robot work
points for a defined task. This developed module was integrated with the autonomous
robot-guided inspection system to build a smart system to perform AOI tasks on the
production line. The robot-guided inspection system based on the offline programming
(OLP) platform was developed by integrating a 2D/3D vision module [34]. In addition, the
position correction module maps the defined AOI target positions to a new object unless
they are changed. The effectiveness and robustness of the proposed system was indicated
by conducting two tests and comparing captured images with sets of standard images.
This innovative system minimizes human effort and time consumption to expedite the
AOI setup process in the production line, thereby increasing productivity.

The remainder of this paper is organized as follows: in Section 2, we give an overview
of the position correction system integration with robot-guided inspection architecture;
in Section 3, we provide an overview of the position correction system and introduce the
proposed method; in Section 4, we detail the integration of the position correction module
with the OLP platform and report the system performance; in Section 5, we report the
conclusions of the proposed system.

2. System Overview

The robot-guided inspection system was designed and developed with the vision
module by Amit et al. [34]. The robot-guided inspection system, shown in the blue dashed
boxes in Figure 1, consists of an OLP platform and vision module. The OLP platform was
designed and developed using OCC open source libraries to generate a robot trajectory for
3D scanning and to define AOI target positions using CAD information [35]. The robot-
guided inspection efficiently performs AOI planning tasks using only scanned data and
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does not require a physical object or an industrial manipulator. This developed system can
also be used in different production lines based on robot-guided inspection. However, the
developed system is not comprehensive enough to be used in an assembly line to perform
reliable AOI tasks. Therefore, the robot-guided inspection system was integrated with the
position correction module (red dashed boxes in Figure 1) to resolve issues related to object
displacement or rotation errors in a production line for AOI tasks. Figure 1 presents a
complete overview of the proposed system architecture, which includes the OLP platform,
vision module, and position correction module. In this study, the primary objective of the
position correction system was to calculate the rotation and translation of the new object
over the production line using artificial markers on the object. Moreover, the proposed
system was developed to minimize the complexity of hand–eye calibration and position
correction within the production line. In addition, we aimed for the user of the integrated
autonomous robot-guided system to not have to define the AOI target positions unless
they are changed. This would not only save time and effort, but increase productivity. The
proposed position correction system consisted of a simple hand–eye calibration method for
the development of the position correction method.
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Figure 1. Overview of the position correction module integration with the robot-guided inspection system architecture.

The flowchart shown in Figure 2 explains the automatic hand–eye calibration method,
which is part of the position correction system. The calibration method was divided into
three main stages: “environment setup and initial settings”, “robot scan and trajectory
planning”, and “image capture based on the scan trajectory”. In the environment setup and
initialization phase, the user must prepare the environment for calibration by measuring
the position of the calibration board in the workspace, helping the arm see the calibration
board and providing other simple basic settings. The robot scan and trajectory planning
stage recorded the optimal end-effector position, while capturing the calibration board
image at each position during the image captures based on the scan trajectory stage.
The environment setup and initial settings is the only part of the system that requires
manual operation (Figure 2). The proposed calibration method was implemented to initiate
the position correction module to measure and compensate for the position error before
defining the AOI target positions on new objects.
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The flowchart of the proposed object correction methodology is presented in Figure 3
and is divided into the offline registration process and the real-time online object posi-
tioning. In the offline process, the user can specify the robot’s artificial marker detection
position, design the marker pattern, and work points. In the online process, the system
takes a picture of the artificial marker at the specific position based on the user’s offline
settings. Subsequently, the system identifies the current object position and autonomously
measures and adjusts the robot work points for the AOI inspection task. The position
correction system is then integrated with the autonomous robot-guided optical inspection
system to demonstrate the performance of the proposed system.
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3. Overview of the Position Correction System

In this study, an image-based object position correction system was designed and
developed. Object positioning has always been a key component of the automated man-
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ufacturing process. The proposed position correction system was developed based on a
calibration and a position correction methodology. The calibrated camera, with a specific
artificial marker on the object for PnP image processing, identifies and defines the posi-
tion [36,37], as shown in Figure 4. A transformation matrix T is then obtained from the
marker coordinate (Pmarker) to the camera coordinate (PCamera). The displacement error of
the work point is determined by the difference between the object before and after the
transformation matrix. The system must then compensate for the position error before
defining the AOI target positions on the new object. The system simulation results were
evaluated before being integrated with the robot-guided inspection system. This system
assists the OLP platform with performing robot-guided AOI applications to automatically
inspect misplaced components of manufactured objects on a production line.
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3.1. Automatic Robot Hand–Eye Calibration Methodology

We evaluated the performance of the proposed automatic hand–eye calibration process
shown in Figure 2. The first step of this process was to measure the position of the
calibration board in the work space. The calibration board (an 8 × 6 chess board) was fixed
on the robot arm and moved closer to the second calibration board on the table [38,39],
as shown in Figure 5. We then adjusted the robot arm and camera position so that both
calibration boards were visible simultaneously. Two transformation matrices, A and B,
were used to calculate the relationship between the calibration boards. Transformation
matrix A was obtained using the robot arm controller to record the end-effector coordinates.
Transformation matrix B was calculated by solving the camera image PnP equations. The
transformation matrix between the robot arm and calibration board 2 was calculated after
determining the relationship between A and B, as shown in Figure 5.

Once the transformation matrix was obtained, the initial position of the robot was
adjusted to perform automatic hand–eye calibration, as shown in Figure 6. The proposed
system enabled the robot to follow the hand–eye calibration trajectory and take pictures of
the calibration board at different robot positions, as shown in the Figure 7. Table 2 presents
each position of the robot end-effector relative to the robot arm’s initial position and the
hand–eye calibration results are shown in Table 3. Using these results, the conversion
matrix between the robot arm end-effector and the camera connector was calculated and
compared with the conversion matrix derived from the original connector design. The
proposed calibration method had an error on the z-axis of around 2 mm and a greater error
of nearly 9 mm on the x-axis. The results obtained from the hand–eye correction were
sufficiently similar to the designed connector results. Further analysis was performed to
identify potential causes of calibration error in order to make further improvements. During
this process, errors may have occurred at the 3D printed connector, and the connector
center to place the camera was difficult to estimate. In addition, the hand–eye calibration
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itself is a complex process, and the proposed approach uses the simple AX = ZB closed
conversion relationship for inference, so there is a possibility of error. The calibration
results obtained were used in the proposed position correction methodology to compute
and compensate for the position error on a new object in a production line.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 19 
 

 

performed to identify potential causes of calibration error in order to make further 
improvements. During this process, errors may have occurred at the 3D printed 
connector, and the connector center to place the camera was difficult to estimate. In 
addition, the hand–eye calibration itself is a complex process, and the proposed approach 
uses the simple AX = ZB closed conversion relationship for inference, so there is a 
possibility of error. The calibration results obtained were used in the proposed position 
correction methodology to compute and compensate for the position error on a new object 
in a production line. 

 
Figure 5. The relationship between robot and two calibration boards. 

 
Figure 6. Initial steps of the calibration process. (a) Initial robot arm position, (b) image captured 
w.r.t. initial position, (c) robot arm position after being manually adjusted, (d) image captured 
after manual adjustment. 

 

Figure 5. The relationship between robot and two calibration boards.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 19 
 

 

performed to identify potential causes of calibration error in order to make further 
improvements. During this process, errors may have occurred at the 3D printed 
connector, and the connector center to place the camera was difficult to estimate. In 
addition, the hand–eye calibration itself is a complex process, and the proposed approach 
uses the simple AX = ZB closed conversion relationship for inference, so there is a 
possibility of error. The calibration results obtained were used in the proposed position 
correction methodology to compute and compensate for the position error on a new object 
in a production line. 

 
Figure 5. The relationship between robot and two calibration boards. 

 
Figure 6. Initial steps of the calibration process. (a) Initial robot arm position, (b) image captured 
w.r.t. initial position, (c) robot arm position after being manually adjusted, (d) image captured 
after manual adjustment. 

 

Figure 6. Initial steps of the calibration process. (a) Initial robot arm position, (b) image captured
w.r.t. initial position, (c) robot arm position after being manually adjusted, (d) image captured after
manual adjustment.
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Figure 7. Six different robot positions for automatic hand–eye calibration. (a) 1st robot position,
(b) image w.r.t. 1st position, (c) 2nd robot position, (d) image w.r.t. 2nd position, (e) 3rd robot position,
(f) image w.r.t. 3rd position, (g) 4th robot position, (h) image w.r.t. 4th position, (i) 5th robot position,
(j) image w.r.t. 5th position, (k) 6th robot position, (l) image w.r.t. 6th position.

Table 2. The six different positions of the robot end-effector relative to the initial position.

Position X Y Z RX(α) RY(β) RZ(γ)

A 0 0 0 0 0 0

B 0 +30 cm +10 cm +30◦ 0 0

C 0 –30 cm –10 cm –30◦ 0 0

D –30 cm 0 0 0 +30◦ 0

E +30 cm 0 0 0 –30◦ 0

F 0 0 0 0 0 +30◦
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Table 3. Hand–eye calibration results and error.

Position Connector Design
Size

Hand–Eye
Calibration Results Error

dX (mm) 0 −8.559 8.559

dY (mm) 0 −0.227 0.227

dZ (mm) 190 189.387 1.613

Rx (degrees) 0 −0.079 0.079

Ry (degrees) 0 −0.868 0.868

Rz (degrees) 0 −0.874 0.874

3.2. Object Position Correction Methodolgy

After obtaining the calibration results, the user must set the checkpoint position
(PCheck) for the robot arm with the camera in the initial “template login phase” to capture
the full artificial marker image. The robot arm moves to the (PCheck) position and uses the
camera to detect the artificial marker and solve the PnP image problem. Therefore, the
transformation matrix T of the artificial marker coordinate (Pmarker) and camera coordinate
(PCamera) was obtained using Equation (1).

PCamera = [T]PMarker (1)

where T is a standard position (TS) and is used as a standard sample to verify and measure
the change in object position.

Once the standard position has been obtained, it undergoes the “error compensation
phase”, which compensates for the object’s position error during various manufacturing
applications. In practice, there are several different work points for various processes of
AOI tasks, machining, and assembly applications. The positions of these work points are
recorded and are collectively known as P. If the object shifts during the process, the robot
arm moves to the checkpoint position (PCheck) to detect and resolve the image PnP problem
and obtain a new marker position (Pmarker). This will calculate a new transformation matrix
TN between the new marker coordinate Pmarker and camera coordinate PCamera.

The offset transformation matrix TD shown in Equation (2) shows the displacement
and rotation of the manual markers and is calculated using the standard transformation
matrix TS and the new transformation matrix TN.

PCamera = [TN ] PMarker2 = [TS] PMarker1

PMarker2 = [TN ]
−1[TS] PMarker1 = [TD] PMarker1

[TD] = [TN ]
−1[TS]

(2)

The rotation and translation error for defining new work points, PNew, were calculated
using the offset transformation matrix, artificial marker center point offset (S), and the
robot arm’s original coordinates.

Following this, the work point P is translated back to the origin of the robot arm
coordinate system with the artificial marker center point, as shown in Equation (3):

PNew =

[
O −S
O 1

]
P (3)

Work point P is then rotated with reference to the artificial marker rotation:

PNew =

[
R3×3 0

O 1

][
O −S
O 1

]
P (4)
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Work point P is translated back to the original artificial coordinate, as shown in
Equation (5):

PNew =

[
O S
O 1

][
R3×3 0

O 1

][
O −S
O 1

]
P (5)

Using Equation (6), a new work point (PNew) is defined for the AOI task after er-
ror compensation:

PNew =

[
O t3×1
O 1

][
O S
O 1

][
R3×3 0

O 1

][
O −S
O 1

]
P (6)

In summary, translation and rotation error are computed once the object positioning
system recognizes and evaluates the artificial marker in the actual application. Based on
the proposed approach, this position correction system successfully adjusts and generates
new work point coordinates for AOI inspection tasks.

The schematic diagram shown in Figure 8 was generated using MATLAB software
and was based on the proposed position correction system. In the simulation, the com-
puter server board (object) was moved to an unknown position, after which the position
correction system identified the AOI camera target point based on the artificial marker.
The performance of the position correction system was high for the AOI target point and
object position, regardless of the error caused by the hardware device. The system suc-
cessfully found the position error and compensated for it to calculate the robot’s new AOI
target point, irrespective of the object position. Thus, the object positioning correction
system effectively utilized the automatic hand–eye calibration method and simple artificial
markers to detect the object’s current position prior to any shifting. Section 4 discusses the
integration and implementation of the proposed method in the AOI application, as well as
the experimental results.
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4. Integration of Position Correction Module with OLP Platform

The position correction system we developed was integrated with the autonomous
robot-guided optical inspection system to build a smart system for the production line.
Prior to performing position correction, a path for real-time scanning and target positions
for AOI tasks was generated and visualized graphically in the OLP platform, as shown
in Figure 9 [34]. Furthermore, the generated robot program was sent to the HIWIN-620
industrial robot to capture AOI images, which were compared to virtual images. However,
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the developed system was still unable to reliably perform AOI tasks in a production line.
Therefore, the robot-guided inspection system was integrated with the position correction
module to resolve the issues related to object displacement or rotation errors in a production
line for AOI tasks.
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Figure 9. Robot-guided AOI inspection system.

Here, we report and discuss experiments performed using the proposed position
correction module for robot-guided inspection. On a production line, the robot arm
employs the object position correction module to perform an AOI operation autonomously.
To execute an AOI inspection, the robot arm gathers photos of the target object from
various angles. If the object shifts, the proposed system detects this and adjusts the robot’s
AOI image shooting position. Once positional changes are made, the system captures the
defined AOI target images. The object used in this experiment was a large computer server
with four artificial markers, as shown in Figure 10.
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Figure 10. Object positioning system’s target object with artificial markers. The red circle shows the
artificial marker (square containing four crosses) used for positioning. The remaining three markers
were used to analyze positional errors after camera shooting.

During the system execution process, we first manually guided the robot arm to shoot
the positioning marker image, as shown in Figure 11. We obtained the sample image of the
positioning marker as a reference for the position correction system, as shown in Figure 12,
and recorded the positioning marker position and its transformation matrix relative to
the camera.
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Figure 12. Sample image of the positioning marker w.r.t. the robot pose shown in Figure 11.

Once the sample image of the positioning marker was captured, the robot’s target
positions were selected for the AOI inspection task before any displacement or rotation. In
the experiment, four different robot shooting positions were selected at different heights
and angles, as shown in Figure 13, and the images captured at these positions are shown in
Figure 14. These were the target points used to perform the position correction procedure.
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Figure 14. Standard AOI images captured at the four target positions. (a) Standard image captured
w.r.t Figure 13a, (b) Standard image captured w.r.t Figure 13b, (c) Standard image captured w.r.t
Figure 13c, (d) Standard image captured w.r.t Figure 13d.

Following this preparatory procedure, the system already had all of the parameters
and specification data required to perform object image repositioning. Figure 14 shows
the original standard image without displacement. Two experiments with random manual
displacement were conducted to evaluate the performance of the proposed position correc-
tion module, as shown in Figure 15. Once the manual displacement was carried out, the
proposed position correction modules calculated the new AOI position to capture images,
as shown in Figures 16–19. These were then compared with the standard images shown in
Figure 14.
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Two experiments were conducted to measure the performance of the position cor-
rection system. In test 1, the object was moved by 49.1 mm, with a final average residual
error of 5.15 mm, and the proposed system compensated for 91.5% of the position error.
In test 2, the object was moved 50.6 mm, with a final average residual error of 3.80 mm,
and the proposed system compensated for 92.5% of the position error. New images were
captured and compared with the standard images for the two random object positions.
The captured images differed slightly from the standard image. These results demonstrate
that the proposed system efficiently compensates for most of the error caused by object
displacement. Table 4 presents the error analysis of the object position correction system, in
which new images have a distance error (norm) of 10–40 pixels compared to the standard
image (Figure 20), with an average of 21.09 pixels. The errors measured in pixels were
then converted to mm (Table 5). The distance error was between 6 and 2 mm (Figure 21)
and the mean error was 3.97 mm. The proposed method’s efficiency could be improved
by accurately positioning the camera and replacing the 3D print camera holder, as well as
minimizing calibration error, which may improve system accuracy by up to 95.3%. The
developed system resolved the issues associated with the object translation or rotation
error in the production line. The robot-guided inspection system with position correction
module enhanced the ability to perform user-defined AOI tasks autonomously on any
production line.

Table 4. Error analysis of the object position correction system (measured in pixels).

Error
(in Pixel)

First Displacement Second Displacement

X Y Norm X Y Norm

AOI position 1

P1 1.11 24.39 24.41 −7.29 −18.92 20.28

P2 0.26 23.89 23.89 −4.26 −17.44 17.95

P3 0.32 23.69 23.69 −4.52 −13.72 14.45

P4 1.46 25.02 25.06 −7.50 −13.87 15.77

AOI position 2

P1 0.44 19.16 19.16 −14.16 −9.02 17.04

P2 −3.52 18.91 19.23 −10.49 −9.60 14.22

P3 −3.50 14.05 14.48 −10.59 −5.62 11.99

P4 0.87 14.31 14.34 −14.40 −4.59 15.11

AOI position 3

P1 −25.55 15.93 29.83 0.64 −26.58 26.59

P2 −31.64 15.09 35.06 0.01 −27.12 27.12

P3 −32.66 8.48 33.74 0.01 −26.13 26.13

P4 −26.29 8.76 27.71 0.56 −25.08 25.08

AOI position 4

P1 16.36 8.34 18.36 −25.67 4.65 26.08

P2 12.36 10.61 16.28 −21.25 1.20 21.28

P3 10.16 5.75 11.67 −18.65 5.03 19.31

P4 14.52 3.36 14.90 −22.78 8.97 24.49
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Table 5. Error analysis of object position correction system (in mm).

Error
(in mm)

First Displacement Second Displacement

X Y Norm X Y Norm

AOI position 1

P1 0.22 4.79 4.80 −1.43 −3.72 3.98

P2 0.05 4.69 4.69 −0.83 −3.43 3.53

P3 0.06 4.65 4.65 −0.89 −2.70 2.84

P4 0.29 4.92 4.92 −1.47 −2.73 3.10

AOI position 2

P1 0.09 3.79 3.79 −2.86 −1.79 3.37

P2 −0.70 3.74 3.80 −2.08 −1.90 2.81

P3 −0.69 2.78 2.86 −2.10 −1.11 2.37

P4 0.17 2.83 2.84 −2.85 −0.91 2.99

AOI position 3

P1 −4.57 2.75 5.33 0.11 −4.76 4.76

P2 −5.65 2.70 6.26 0.00 −4.85 4.85

P3 −5.84 1.52 6.03 0.00 −4.68 4.68

P4 −4.70 1.57 4.95 0.10 −4.49 4.49

AOI position 4

P1 3.05 1.55 3.43 −4.79 0.87 4.87

P2 2.31 1.98 3.04 −3.96 0.22 3.97

P3 1.90 1.07 2.18 −3.48 0.94 3.60

P4 2.71 0.63 2.78 −4.25 1.67 4.57
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5. Conclusions

In this study, a novel position correction module was developed and integrated with
an autonomous robot-guided optical inspection system to perform AOI tasks on production
lines and correct for object displacement and rotation. The robot-guided system assisted
the user to select the AOI targets and capture target images in the virtual environment.
Real-time images were captured using the industrial manipulator for the corresponding
positions. However, this system was still not reliable enough to be used in an assembly line
to perform AOI tasks. Therefore, the robot-guided inspection system was integrated with
a position correction module to resolve object displacement or rotation error issues in a
production line for AOI tasks. The position correction system calculates and compensates
for the position error of the new object on the production line using artificial markers.
We performed two tests to evaluate the effectiveness of the proposed position correction
module. The proposed system had a mean error of 3.97 mm or 21.09 pixels. These results
indicated that the robot-guided system with a position correction module was capable
of performing AOI tasks on a production line. In addition, the user of the integrated
autonomous robot-guided system is not required to define the AOI target on a new object
position unless they are changed. This not only saves time and effort, but also increases
productivity. The integration of the position correction module with the robot-guided
system led to the development of a smart system, which enables inspection tasks on the
production line without prior knowledge of the object’s position. However, the proposed
method is currently limited to using artificial markers and the simple AX = ZB closed
conversion for hand–eye calibration.
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