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Abstract 
 
Social interaction is integral to animal behavior. However, we lack tools to describe it with 
quantitative rigor, limiting our understanding of its principles and neuropsychiatric disorders, like 
autism, that perturb it. Here, we present a technique for high-resolution 3D tracking of postural 
dynamics and social touch in freely interacting animals, solving the challenging subject 
occlusion and part assignment problems using 3D geometric reasoning, graph neural networks, 
and semi-supervised learning. We collected over 140 million 3D postures in interacting rodents, 
featuring new monogenic autism rat lines lacking reports of social behavioral phenotypes. Using 
a novel multi-scale embedding approach, we identified a rich landscape of stereotyped actions, 
interactions, synchrony, and body contact. This enhanced phenotyping revealed a spectrum of 
changes in autism models and in response to amphetamine that were inaccessible to 
conventional measurements. Our framework and large library of interactions will greatly facilitate 
studies of social behaviors and their neurobiological underpinnings. 
 
Introduction 
 
The study of social interactions is essential for understanding evolutionary, ecological, and 
neurobiological principles of animal behavior. While social behavior is multifaceted, much of it is 
expressed through body movements that reflect internal states, goals, and inter-animal 
communication. These gestures are often subtle, necessitating a method for capturing the 
precise 3D kinematics of interacting animals. Such measurements could then be analyzed to 
define and quantify social behaviors in rigorous and reproducible ways, enabling sophisticated 
interrogations of social dynamics and their biological underpinnings. Further, an automated and 
scalable method would permit comprehensive behavioral screens to characterize the full variety 
of social phenotypes, including those occurring in autism and other neurodevelopmental 
disorders. 
 
These goals have yet to be met. Today, social phenotyping is typically done by manually 
scoring video recordings or, increasingly, by automatically tracking the position and orientation 
of interacting animals. For instance, in studies of rodent models of autism, metrics of sociality 
are commonly derived from the fraction of time an animal spends in the proximity of a caged 
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conspecific1. While some studies expand these metrics to include the occurrence of a limited set 
of social action types2, the manual annotation that goes into this is laborious, inconsistent, and 
limited to predefined categories. For autism and other conditions diagnosed using only 
behavioral criteria, such coarseness makes it difficult to establish animal model face validity, 
and also to translate findings out of the lab3.  
 
To reliably discern and describe subtle variations in social phenotypes4, we need an approach 
that can capture the diversity and nuances of social behavior. That means precisely tracking 
how interacting animals move, synchronize, and make physical contact, plus analytics for 
classifying, interpreting, and comparing these elements of interaction. Capturing the nature of 
physical contact between social partners is particularly important given recent interest in social 
touch as a rewarding stimulus and its impairment in autism spectrum disorders (ASD)5,6. 
Further, these analytics must address multiple timescales of social interactions, from short, 
stereotyped movements and engagements to behavioral patterns that evolve over longer times, 
such as group coordination, instigation, communication, and arousal7.  
 
Recent advances in video-based behavioral quantification have enabled more granular and 
scalable measurements of social interactions, but these methods are still fundamentally limited 
in resolution. Instead of the coarse position and orientation tracking afforded by classical 
computer vision, convolutional neural networks (CNNs) can now track anatomical keypoints of 
interacting animals in 2D8,9. With these 2D kinematic descriptions, classifiers can be trained to 
detect different types of social interactions once they are enumerated and labeled by humans10. 
Tracked 2D kinematics can also be clustered without explicit human supervision, facilitating the 
discovery and annotation of novel social action patterns11–13. Nevertheless, 2D measurements 
are inherently limited in terms of the body parts that can be tracked, and perspective ambiguities 
make it difficult to derive reliable body kinematics from a single view. Thus, while these 2D 
innovations are significant, they are not yet precise enough to provide comprehensive 
descriptions of social behavior. 
  
Reliable quantitative descriptions of social interactions would be greatly facilitated by high-
resolution 3D tracking of animal pose – that is, the positions of actuatable body parts, including 
limbs – which would permit precise spatiotemporal profiling of coordinated kinematics and body 
contact. While such 3D pose tracking methods have been developed for single animals14–19, 
extending them to social contexts is far from trivial. Single-animal methods are not equipped to 
deal with the complexities of multi-animal environments, where animal identities must be 
tracked consistently and bodies are often hidden from view. Depth imaging has been used for 
social tracking but cannot faithfully track limb movement20–22. Tracking animals as single 3D 
points within groups has been foundational for studies of social and collective behavior23,24, but 
cannot and does not aim to measure detailed body movements25. 2D whole-body pose tracking 
methods could, in principle, be extended to 3D via triangulation across multiple camera 
viewpoints26, but inevitable and ubiquitous animal-animal occlusions make 2D-to-3D 
triangulation during interaction particularly challenging. Large marker-based 3D training 
datasets can be used to address occlusion difficulties, but markers themselves are often 
occluded on limbs and during close interaction, limiting these datasets to reduced keypoint sets 
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on the head and trunk27–29.  Thus, reliable whole-body 3D tracking of social behavior has yet to 
be achieved. 
 
To address these problems, we developed a method for tracking highly resolved 3D postural 
kinematics in interacting animals using commercially available video cameras. Our 3D tracking 
approach, social-DANNCE (s-DANNCE), builds off of DANNCE, a deep neural network for high-
resolution 3D markerless tracking in single animals17. s-DANNCE leverages semi-supervised 
learning, anatomical constraints, and a graph neural network to resolve animal-animal 
occlusions and reliably track pairs of interacting rats with performance surpassing previous 
approaches26,27 and rivaling that of human labelers. s-DANNCE is also flexible, supporting 
measurements across a range of experimental settings, including in larger groups of animals, 
and generalizes across species from rats to mice.  
 
To parse high-resolution tracking data into comprehensive and quantitative descriptions of 
social behavior across spatiotemporal scales, we developed a new suite of computational tools 
for analyzing dyadic interactions (Fig. 1a), including the automatic identification of recurring and 
stereotyped social interaction motifs. We further developed a method to automatically identify 
instances of social touch by fitting a volumetric body model to 3D poses, thus providing 
quantitative access to a salient mode of social exchange30.  
 
To validate whether our framework enhanced social phenotyping, we administered 
amphetamine, a drug with clear and demonstrable social effects in humans but not in rodent 
models, to rats. In addition to inducing overall hyperactivity as expected, drug administration 
disrupted behavioral synchrony, as well as other canonical interaction motifs, and changed the 
distributions of touch across the bodies of animal pairs. In mice, social behavior mapping 
identified new differences between mouse strains commonly used as models of low and high 
sociability. 
 
Our novel analysis approach also revealed subtle deviations from typical social behavior in 
seven rat models of autism. We found that rats from each of the models were impacted in 
distinct ways, with four of the seven demonstrating widespread shifts in social behavior. Indeed, 
our comprehensive behavioral phenotyping returned several phenotypically distinct candidate 
models of face-valid social phenotypes in rats. Beyond advancing the state-of-the art in social 
tracking, our study resulted in a large database of over 160 million rat 3D poses in lone and 
social contexts. We provide these data, together with our machine learning framework and 
detailed phenotyping results, as a new resource for the community to mine, model, and 
reference in the pursuit of a deeper understanding of social behavior.  
 
Results  
 
Animal-animal occlusions challenge 3D pose tracking during social behaviors 
The state of the art for tracking animal movement during social behaviors is to use CNNs to 
locate 2D anatomical features, or keypoints, on bodies of interacting subjects, typically from 
videos recorded by a single top-down or bottom-up camera8–10. However, quantifying behavior 
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in 2D pixel space, instead of descriptions of true 3D movements (in millimeters), introduces 
kinematic artifacts due to perspective and depth ambiguities15,31. Single camera measurements 
are sensitive to body occlusions, which increase in frequency during social interaction (Supp. 
Fig. 2a,b). In a top-down view, the animal’s own body occludes its appendages 76% of the time, 
while occluding the head and trunk for  5% and 10% of the time respectively (Supp. Fig. 2c). In 
a bottom-up view, the top of the body is always occluded, as are the forelimbs and head in 
elevated postures, such as rearing (Supp. Fig. 2d). Occlusions are even more pronounced 
during close social interaction, when one animal often obstructs the view of the other 
(approximately 3-fold and 1.5-fold more occlusions of the head and trunk, respectively, 
compared to when the animal is alone; Supp. Fig. 2c,d).  
 
In principle, such occlusions and kinematic artifacts can be addressed via 3D tracking of body 
keypoints in multi-camera videos, as done in single animals14–17,27. To test the feasibility of this, 
we built a setup consisting of six synchronized 50 Hz color video cameras for recording rat 
dyadic interactions in a circular arena (Fig. 1b, Supp. Fig. 1, Supp. Video 1). We previously 
applied DANNCE, a 3D tracking method built on volumetric neural networks, to multiple 
animals17,27. This multi-animal implementation exploited the “top down” structure of DANNCE in 
which animals are first identified and then compartmentalized into 3D bounding boxes to make 
3D pose estimates. While DANNCE reliably tracked 3D pose when animals were far apart, 
performance degraded significantly during close interactions. For example, we frequently 
observed ‘chimeric’ errors, where the inferred 3D pose incorrectly integrated body elements 
from its interaction partner (Supp. Fig. 3). This failure mode is due to animals being enclosed, 
at least partially, in the same 3D volume, leading to multiple candidate keypoint locations for 
individual body parts (Fig. 1b bottom). 
 
social-DANNCE enables 3D tracking of social behaviors 
To overcome the challenges of consistently and precisely tracking whole-body 3D kinematics 
during social behaviors, we developed s-DANNCE, which extends the precision of volumetric 
deep neural networks to closely interacting animals (Fig. 2a, Supp. Fig. 4). s-DANNCE 
combats pervasive chimeric prediction errors and other observed anatomical inconsistencies 
(collapsed poses and errant body segment lengths) by imposing explicit constraints on body 
anatomical structure during training, plus a graph neural network (GNN) module32 that enables 
skeleton-aware processing of extracted 3D image features. Further, s-DANNCE is able to 
leverage both labeled and unlabeled data during training, allowing the network to learn from 
large, diverse datasets that have not been annotated by users19,33.  
 
To test whether s-DANNCE mitigated naive DANNCE baseline tracking issues, we trained both 
on the same set of 6-camera video frames of freely interacting rat pairs (n = 423 manually 
annotated 23-keypoint 3D poses and n = 910 unlabeled frames) and tested the models on 
videos of animals not used for training. We found that s-DANNCE, in contrast to baseline 
DANNCE, produced robust tracking without chimeric errors (Fig. 2b, Supp. Fig. 3b-e, Supp. 
Fig. 5). Baseline DANNCE exhibited large fluctuations in keypoint velocities (Fig. 2c,d) and 
body segment lengths (Fig. 2e) when animals were close to each other (a threshold of 150 mm 
inter-animal distance, or approximately 2/3 of rat body length), indicating frequent social tracking 
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errors. These errors were resolved by s-DANNCE (65% improvement to head velocity stability 
and 60% improvement in limb segment length stability for s-DANNCE over DANNCE, Fig. 
2d,e).  
 
To more directly assess s-DANNCE performance, we quantified how close tracked 3D 
keypoints were to human annotations on a test set of close social interaction frames. We had 
three different labelers annotate the same test set for these comparisons (n = 80 3D poses, with 
poses annotated twice by each labeler for measuring intra-labeler consistency), allowing us to 
account for human labeling biases when interpreting model performance metrics (Fig. 2f). We 
found s-DANNCE rivaled human labeler precision, with s-DANNCE placing keypoints closer to 
human annotations than one of the labelers in the group (relative to Labeler 1 and Labeler 3, s-
DANNCE 12.56 mm vs. Labeler 2 13.33 mm discrepancy) and nearing inter-labeler precision on 
average (Fig. 2g; s-DANNCE 13.20 ± 0.19 mm discrepancy relative to all labelers; inter-labeler 
11.95 ± 0.16 mm discrepancy over all labeler pairs; mean ± 95% CI). In contrast, baseline 
DANNCE, as well as a recent image masking approach for 3D social tracking26, yielded 
consistently larger discrepancies relative to human annotators (baseline DANNCE 16.34 ± 0.29 
mm, Fig. 2g; image masking 18.88 ± 0.24 mm, Supp. Fig. 7). s-DANNCE also produced 3D 
pose estimates that were more anatomically plausible, evidenced by consistent body segment 
lengths across postures (s-DANNCE 0.14 ± 0.022, human labeler 0.17 ± 0.019, baseline 
DANNCE 0.30 ± 0.057, coefficient of variation ± 95% CI, Fig. 2h). We further examined the 
performance of s-DANNCE over a broader variety of social interactions in a larger test recording 
(n = 2746 3D postures in one pair of rats, annotated by Labeler 1). As anticipated, the largest 
improvements were found when animals were close and occluding each other during the most 
interactive social behaviors; specifically, s-DANNCE yielded 6.7-fold better precision relative to 
baseline DANNCE, when adjusting for human inter-labeling uncertainty (0.72 ± 0.20 mm vs. 
4.84 ± 0.36 mm, Fig. 2i; 12.67 ± 0.19 mm vs. 16.80 ± 0.35 mm without adjustments). s-
DANNCE outperformed baseline in 94% of the test frames with the remaining 6% within the 
inter-labeler margin of error (Fig. 2j).  
 
s-DANNCE extended to a wide range of experimental contexts, including to recordings of 
interacting mice. While training frames came from just one strain of rats recorded in one arena, 
s-DANNCE generalized immediately to new arenas, rat strains, and larger social groups without 
additional training (Fig. 2k, Supp. Fig. 5). s-DANNCE also accurately tracked social behavior in 
recordings with bedding when a small number of bedding frames were added for training (Fig. 
2l). Given a small number of labeled frames for fine-tuning, s-DANNCE could track two different 
and visually distinct strains of freely interacting mice (Fig. 2m, Supp. Fig. 6). Our approach thus 
broadly supports high-resolution quantification of social behavior without introducing heavy 
annotation burdens. 
 
3D kinematic profiling reveals novel social phenotypes 
High-resolution and continuous whole-body 3D kinematic measurements provide an opportunity 
to quantitatively map social behavioral repertoires across animals and experimental conditions. 
To characterize social behavior, we first examined how individual repertoires changed in lone 
vs. social contexts using a method that clusters behavior into stereotyped motifs based on an 
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individual subject’s 3D postural dynamics, similar to previous works34–36. Briefly, for each movie 
we derived a time series of high-dimensional features from 3D pose dynamics and applied 
nonlinear dimensionality reduction to generate a 2D behavior map. We performed spatial 
clustering of this map to identify stereotyped action classes which were used to assign a 
behavioral label at each time point of tracked movement (Fig. 3a,e). We manually reviewed and 
annotated behavioral snippets sampled from each cluster on the behavior map, revealing an 
action space organized into regions representing 9 human-annotated high-level action classes 
(HLACs) and 162 low-level action clusters (LLACs) distinguishable by 3D kinematics (Supp. 
Fig. 9, Supp. Table 2, Supp. Videos 3-4, Methods). This allowed us to compare behavior at 
the level of fine stereotyped actions (LLACs) or with coarser, more interpretable operational 
definitions (HLACs). When we mapped full-body 3D kinematics from both single- and multi-
animal recordings from wild-type Long Evans male rats (N = 6 animals, N = 24 pairings, N=24 
lone recordings) into the behavioral space, we captured the behavioral shift associated with 
social context, revealing 116 LLACs (of 162 total) that exhibited significant changes in how often 
they were expressed (their behavioral ‘occupancies’) during social sessions (Fig. 3a, right).  
 
These quantitative descriptions enable new, comprehensive, and automated ways of 
characterizing how drugs and diseases affect social behavior. To demonstrate the the power of 
this approach, we tracked and profiled rat behavior in lone and social contexts with and without 
the administration of amphetamine (n = 75 recordings across social pairings and experimental 
conditions from N = 6 animals; total tracked 3D poses used for analysis n = 10.8 million) (Fig. 
3b, Supp. Video 2). While it has been shown that amphetamine affects rodent social behavior, 
these studies relied on manual scoring of a limited set of behavioral categories (e.g., grooming, 
fighting, overall movement speed) and did not dissociate social effects from amphetamine’s 
general effects on behavior37,38, which are substantial (cf. Fig. 3a, Supp. Fig. 18). Our 
quantitative profiling automatically identified a variety of behavioral changes in response to 
amphetamine that were specific to social contexts and not readily detectable using coarser 
measures (Fig. 3c,d). For instance, while amphetamine did not affect rearing behaviors in lone 
recordings, in social recordings it produced a pronounced decrease in frequency of rearing 
relative to WT controls (lone .04 fold increase from controls, social .6 fold decrease from 
controls, Fig. 3c). Overall, large shifts in the behavioral repertoire were induced by the social 
context and further modulated by amphetamine. These shifts were consistent across both 
animals and experimental sessions (Fig. 3d, Supp. Fig. 18). In contrast, conventional 
measures, such as distance traveled, were too coarse to distinguish between experimental 
groups (Fig. 3c).  
 
Labeling the HLACs expressed simultaneously by social partners allowed us to analyze 
behavioral synchrony (Fig. 3f), a hallmark of social behavior that has been difficult to 
characterize or quantify without manual human annotation39,40. Paired animals have been 
shown to display behavioral alignment at short time scales as well as in their behavioral usage 
across the length of interactions11. We calculated how likely each combination of HLACs was to 
co-occur between partners above what was expected by chance given each individual’s 
occupancy across HLACs (Fig. 3f, Methods). In wild-type pairings, the highest synchrony 
values were observed between behavioral classes of the same type (particularly simultaneous 
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sniffing and locomotion), providing new insights into how rats synchronize their actions during 
social engagement.  
 
In addition to altering the frequency of behavior expression in individual animals within social 
contexts (cf Fig. 3c), amphetamine administered to one animal in a social pairing reduced 
overall behavioral synchrony, although simultaneous locomotion was preserved. The HLACs 
paired animals used simultaneously when an amphetamine animal was present were often from 
different high-level classes (Fig. 3f). While these asymmetries could reflect one-sided 
aggressive behaviors, which are common human responses to the drug41, disambiguating these 
from less assertive one-sided interactions requires analysis of additional behavioral variables.   
 
Dyadic embedding identifies stereotyped motifs of social interaction across species 
While revealing, the kinematic profiles of individual animals do not capture the coordination of 
body movements unique to social interaction. To identify recurring and stereotyped social action 
motifs, we developed dyadic embedding, a novel classification method based on shared inter-
animal features (Fig. 4a, Supp. Fig. 9). Broadly, our method uses the posture, dynamics, and 
inter-animal features from 3D kinematic tracking of two animals to produce a behavioral map 
that can parse social behavior into stereotyped joint classes or motifs. The method effectively 
treats the two animals as a single system and exploits the fact that distinct social motifs 
manifest as identifiable patterns in the relative positions and orientations of 3D poses between 
animals. For example, when one animal is sniffing and following the other from behind, the 
animals are consistently oriented in the same direction with heads maintained at a characteristic 
distance. Alternatively, when animals are investigating each other nose-to-nose, they are 
oriented in opposite directions with heads close together. We automatically discover each of 
these and numerous other social motifs from the joint embedding as in the single animal case 
(see Methods). Crucially, social motifs should be sensitive to the egocentric perspectives of 
individual animals, preserving each individual’s identity and context, as the meaning of an 
interaction is actor-dependent (Supp. Fig. 9). 
 
Inspecting and annotating the classes that resulted from mapping and clustering multi-animal 
trajectories revealed a range of highly specific stereotyped and recurring social interactions 
defined by shared spatiotemporal properties (Fig. 4a, Supp. Video 4). We found two axes of 
description particularly informative in interpreting these clusters: the strength of interaction and 
the symmetry of the interaction, i.e. how much each animal appeared to be engaged in or 
driving the interaction (Fig. 4b). Based on manual review of movies sampled randomly from the 
156 low-level joint behavior clusters (LLJCs), each cluster was assigned a descriptive label 
(e.g., ‘rat1 following rat2, body length apart’ or ‘both rearing, rat2 oriented towards rat1’) (Supp. 
Table 3). We then assigned each of the 156 low-level joint behavior classes (LLJCs) to one of 
seven high-level joint behavior classes (HLJCs): no interaction, lightly engaged, engaged, 
partner lightly engaged, light mutual interaction, and mutual interaction. Together with the action 
clustering, this process yielded a rich annotated social dataset where at each timepoint an 
individual is assigned to both an individual (animal-autonomous LLAC) behavioral class and a 
joint (social interaction LLJC) class (Supp. Fig. 11, Supp. Video 5). Each of these low-level 
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classes also belongs to one of a smaller set of high-level classes (HLACs and HLJCs, 
respectively), providing multiple levels of description. 
 
Using the dyadic embedding, we were able to resolve several novel aspects of how acute 
amphetamine affects social behavior in rats (Fig. 4b-e). Past studies, relying on human 
annotation of broad behavioral categories, have been inconsistent, with some reporting no 
effect or effects specific to social play in juveniles42,43. Our method revealed statistically 
significant effects that were undetectable using coarse metrics, such as center-of-mass 
movement or the distance between interacting animals (Fig. 3c, Fig. 4c). For instance, variance 
in the inter-animal distance after drug administration increased, but the mean across animals 
remained unchanged from controls (Fig. 2c). However, when we compared the HLACs between 
amphetamine and control conditions, we could identify social behavioral types that were 
consistently modulated across the cohort (Fig 4e). Specifically, amphetamine increased social 
engagement and investigatory behaviors while undosed social partners showed less of these 
behaviors compared to control experiments in which neither animal had received amphetamine 
(.68  and -.46 fold change in engagement behaviors relative to baseline controls, for 
amphetamine dosed and undosed partners, respectively, Fig. 4c bottom). Further, this finding 
belied a more complex set of changes at the finer descriptive level of LLJCs, with, for example, 
different classes of engagement-related behaviors not being uniformly upregulated. For 
instance, the LLJCs which capture an animal touching a rearing partner from the front or side 
exhibited a several-fold increase after amphetamine administration (2.7-fold and 2.2-fold, 
respectively, Fig. 4d,e). On the other hand, investigation and grooming of a partner from above 
exhibited the largest decrease (2.0-fold, Fig. 4d,e). Some HLJCs such as mutual interaction 
appeared unaffected as a whole, but we found that this was due to divergent responses across 
the LLJCs comprising this high-level class (10 mutual interaction LLJCs were significantly 
upregulated and 5 downregulated (Fig. 4d, Supp. Table 4), reiterating the value of our high-
resolution, multilevel analysis.  
 
To validate the general, multi-species utility of dyadic embedding, we applied the same 
framework to two common laboratory strains of mice. We compared BALB/c to C57BL/6, two 
inbred laboratory strains that have been proposed as models of low and high sociability, 
respectively44,45. Understanding the nature of social behavioral differences in these strains is 
particularly important for ASD research, as ASD mouse models developed on different 
backgrounds show pronounced phenotypic differences 46,47. When analyzing LLACs, we found 
behavior in social contexts to be highly consistent across animals of the same strain but 
observed extensive differences between strains, with C57BL/6 expressing a broader suite of 
higher velocity behaviors (Supp. Fig. 13). These differences persisted regardless of partner 
animal background, with LLAC usage remaining unchanged between same-strain and mixed-
strain pairings. Dyadic embedding, however, revealed phenotypic differences missed when 
analyzing individual animals. In mixed-strain pairings, asymmetric engagement LLJCs were 
upregulated relative to same-strain pairings, with BALB/c mice approaching and inspecting 
C57BL/6 more often than BALB/c partners, agreeing with older results from three-chamber tests 
showing BALB/c mice prefer social novelty48. These results demonstrate how our system 
enables granular investigation of social behavior across species and genetic backgrounds. 
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Tactograms capture body-wide patterns of social touch 
In addition to behavioral classification, multi-animal pose estimation also facilitates the 
quantification of social touch, an important facet of social interaction often affected in autism49. 
Despite its clinical and behavioral relevance, social touch is relatively understudied, as doing so 
traditionally requires subjective and laborious manual annotation. To quantify social touch, we fit 
a previously developed volumetric model of a rat50 to the 3D keypoints of socially interacting 
animals and automatically identified points of contact between volumetric models (Fig. 5a-c, 
Methods). Each volumetric model represented the rat body surface as a deformable triangular 
mesh (6880 vertices) whose pose and shape were determined by the keypoint-derived rat body 
structure in each frame. To quantify body contacts, we counted the number and locations of 
mesh intersections between social partners for a given recording, producing a ‘tactogram’, or 
the distribution of observed social touches over the entire body over time (Fig. 5d). To aid 
visualization and analysis, we also computed coarser tactogram summaries by binning contact 
counts over the mesh faces comprising 7 gross body regions (Fig. 5d, inset).  We validated 
social contact detection by comparing mesh-derived contacts to three human annotators on 
1100 frames chosen randomly from timepoints where animals were closely interacting. This 
pipeline achieved human-level accuracy when validated against manual annotations (Supp. 
Fig. 14).  
 
We calculated tactograms for each LLJC to examine touch profiles across social motifs. Social 
touch patterns differed across LLJCs in both fraction of time spent touching and the patterns of 
body contact (Fig. 5c,d). Classes within the mutual interaction LLJC displayed a particularly 
diverse array of touch patterns, from nose-to-nose touching to widespread body contact, each of 
which could relay a distinct, ethologically-relevant social signal during interaction4,51,52. While 
touch profiles were diverse, they typically fell somewhere along two principal axes capturing 
(PC1) the symmetry of contact between social partners and (PC2) the anterior-posterior contact 
location (Fig. 5e, Supp. Fig. 15b,c). Fraction of time spent touching was also variable across 
LLJCs, ranging from short touches as animals brushed against each other, to prolonged contact 
when they were investigating (nose-to-body), allogrooming (head and upper limbs to nape), or 
huddling (sides of body or heads in contact). Engagement and partner engagement classes 
tended to cluster at opposite ends of the partner symmetry axis, with mutual interaction in 
between, serving as an independent validation of our HLJC annotations from touch profiling (cf 
Fig. 4a).  
 
Tactograms capture dimensions of social interaction not resolved by 3D pose tracking alone, 
enabling deeper phenotyping in terms of a principal, yet historically understudied, social 
modality30,53. For instance, amphetamine had a spatially localized effect on social touch 
patterns, with dosed animals displaying a preference for touching the limbs and underside of 
their undosed social partners (Fig. 5f). These touch patterns could reflect the observed 
upregulation, in dosed animals, of social interaction types characterized by engagement with the 
front and underside of the undosed partner (Fig. 4e, Supp. Table 3). 
 
Multi-scale embedding reveals patterns of behavior across ASD models 
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Given that our methods identified novel amphetamine-induced changes to individual and social 
behavioral phenotypes, we asked whether they could also shed new light on how genes affect 
social behavior by profiling seven rat genetic models of autism: loss of function knockouts (KOs) 
of ARID1B, CHD8, CNTNAP2, FMR1, GRIN2B, NRXN1 and SCN2A54 (Fig. 6a). While these 
ASD models have been behaviorally phenotyped in mice, their social behavior has either not yet 
been studied (ARID1B, CHD8, GRIN2B, SCN2A) or not yet studied comprehensively 
(CNTNAP255, FMR156, NRXN157) in rats, which are far more social animals58,59. Furthermore, 
reported mouse behavioral phenotypes have been inconsistent and often fail to recapitulate 
social effects observed in human autism60–62, casting doubt on the utility and validity of mice as 
ASD models. To probe for social phenotypes in rats and test their validity as models with 
consistent and relevant social deficits, we recorded and analyzed movies from 154.5 hours 
(27.8 million frames) of lone behavior and 304 hours (54.7 million frames; 109.4 million total 3D 
poses across both animals in a dyad) of social interaction across experimental groups (ARID1B 
N = 4 KOs, 4 WT littermates; CHD8 N = 8,8; CNTNAP N=2,3; FMR1 N = 5,3; GRIN2B N = 3,3; 
NRXN1 N = 4,4; SCN2A N = 3,3). Social behavior was recorded in rat dyads in 30-minute 
sessions, with animals paired within experimental groups in an all-to-all round-robin design 
(Supp. Table 1, Methods). 
 
To map changes in social behavior across rat models of ASD, we quantified and cataloged 
behavior from tracked 3D kinematics using our multi-scale embedding approach. Additionally, 
we used our system to probe for and quantify irregularities in social touch, a core symptom of 
human ASD63 that, due to methodological limitations, is rarely studied in animal models64. 
Together, these revealed rich animal-autonomous and joint social behavioral repertoires that 
were largely consistent within genotypes but distinct across them, with KOs distinguishable from 
their littermates in their unique patterns of LLAC, LLJC, and touch usage (Fig. 6, Supp. Fig. 19-
25). Animal-autonomous behavioral profiling of interacting KO animals recapitulated several 
published mouse phenotypes while revealing novel characteristics not resolved by coarse 
metrics. For instance, while SCN2A KO rats exhibited an increase in rearing behaviors, as in 
mice65, we found that these increases were specific to low-velocity rearing types. Additionally, 
SCN2A KO rats were more likely than wild-types to perform synchronized rears (Fig. 6c-e). In 
contrast, the ARID1B KOs presented with a decrease in rearing, but particularly high-velocity 
rears, effects not previously reported. Using dyadic embedding, we found that paired animals 
across all groups engaged in many distinct interactions (e.g., allogrooming, chasing, mutual 
sniffing, or non-interactive idling) and overlapping but distinct subsets of these interactions were 
differentially impacted by genotype (Fig. 6c-d, Supp. Table 3). As each social motif is 
associated with a type of body contact (e.g., nose-to-nose sniffing results in head contact), 
differences in body-wide touch patterns covaried with strain-specific usage of social clusters 
(Fig. 6f,g).  
 
The heterogeneity of autism was reflected in rat phenotypes. ARID1B, CNTNAP2, and GRIN2B 
KOs showed a tendency for reduced contact, driven by a reduction in close interactions. On the 
other hand, NRXN1 and SCN2A KOs were highly interactive and touch-seeking, resulting in 
increased contact. FMR1 KOs had a unique presentation, with robust differences from wild 
types in the usage of a majority of behavioral clusters where animals were not engaged in 
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interaction. CHD8 KOs were unique in having particularly high inter-animal variability, a hallmark 
of autism. These outcomes offer a choice of potential models for studying social deficits, 
sensory differences, variable penetrance, and non-convergent phenotypes66. Together, our 
analyses demonstrate an extension of ASD model phenotyping far beyond the status quo and 
provide a catalog of behaviors across models that can inform mechanistic models of social 
behavior and help formulate hypotheses about the neural mechanisms that underlie model-
dependent differences. 
 
Discussion 
 
We present s-DANNCE, a video-based technology for precise whole-body 3D tracking of 
interacting animals together with novel analytics for describing structure in social behavior. The 
platform captures behavior on multiple scales, spanning detailed, precise kinematics, individual 
and joint action expression, and body contact patterns, delivering a new and comprehensive 
approach for studying social interactions. To illustrate the power of our platform, we profiled 
interactions in rodents, uncovering novel effects of drugs, genes, and disease, including a 
spectrum of social changes across seven monogenic rat models of autism.  
 
s-DANNCE accelerates research and enables new lines of inquiry 
By enabling more objective and sensitive studies of social behavior that scale to capture millions 
of behavioral events, s-DANNCE can accelerate research into the neural, genetic, 
developmental, and environmental underpinnings of the social brain and its disorders, as well as 
screen for novel therapeutics. Because our platform provides automated and quantitative 
measurements, which we showed were robust across animals, arenas, and sessions, it also 
lays a foundation for reproducible social behavioral studies across labs. To facilitate 
reproducibility and large-scale community collaborations, future work will need to explore the 
question of behavioral re-identification in other labs and explicitly establish standard behavioral 
definitions and quantitative metrics. To fully capture the complex and multi-modal nature of 
social behavior, s-DANNCE will need to integrate additional measurement modalities, including 
vocalizations7 and relevant physiological variables, such as heart rate and breathing rate. 
Similarly, to investigate neural underpinnings of social behavior, s-DANNCE must have the 
capability to synchronize with chronic neural recordings. Relationships between neural, 
physiological, and behavioral variables could then be probed via recent techniques that map 
neural activity onto 3D movement features67,68, or, more flexibly, via methods that associate 
brain and behavioral variables via multimodal fusion69–71. 
  
A better understanding of autism through animal models 
Rodent models have delivered key mechanistic and therapeutic insights for many human 
diseases, but a glaring lack of face validity has muted their impact on autism research. At issue 
is whether rodent autism models exhibit social deficits, the defining symptom of human autism. 
In mice, the readouts from social assays have been inconsistent3, potentially reflecting the stark 
differences between mouse and human social repertoires. In contrast, rats readily and robustly 
express many behaviors affected in human ASD, including pro-sociality, cooperaction, and age-
specific play72,73. High-resolution behavioral assessments will allow us to further probe the utility 
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and face validity of both rat and mouse models. As evidence, we used our precise social 
phenotyping method to highlight specific social behavioral differences in genetic rat models of 
ASD and showed that several of the ASD genotypes are associated with strong and consistent 
deviations from their wild-type littermates. Importantly, we found evidence of ASD models with 
both increases and decreases in sociality, as well as genotype-specific differences in social 
variability across individuals, emphasizing the heterogeneous presentation of these models and 
the importance of deep phenotyping. In addition, we found divergent body-wide touch patterns 
across ASD strains, indicating that social deficits can present as both touch avoidance as well 
as touch-seeking behaviors, raising questions about whether social motivation can explain 
autism phenotypes74. Our approach also extended to mouse social behavior, and allowed us to 
identify consistent social differences between WT strains, including an inbred ASD model 
(BALB/c)75, and capturing shifts in mouse sociality induced by experimental context. Developing 
these methods further promises a standardized way to probe the landscape of social 
interactions, how this is shifted in ASD and other neurodevelopmental disorders, and which 
interventions may affect these shifts. 
 
Strategies to further enhance 3D social tracking 
In the future, s-DANNCE’s 3D pose tracking precision and efficiency could be further refined by 
incorporating recent advances in machine learning and computer vision. For example, s-
DANNCE could utilize temporal information, which promotes occlusion robustness in single-
animal recordings16,19,33,76, although new temporal modeling strategies with reduced 
computational costs will likely be needed for multi-animal contexts. Tracking might also be 
refined by modeling animal pairs jointly, for instance by sharing network-extracted features 
between subjects77–80 or discouraging keypoint overlap81,82. A more comprehensive, physics-
guided approach to tracking, for instance via integration of the biomechanical model supporting 
touch quantification83,84, might also better resolve the most occlusive behaviors, such as rapid 
tumbling. 
 
Further development of behavioral analyses and feature sets 
To explore complex phenotypes with unknown types and degrees of behavioral presentation, 
we characterized interaction using a large set of 3D kinematic features spanning a wide range 
of possible behavior-defining movements. However, not all studies necessarily require the same 
resolution or feature sets. What is best for a specific social analysis will depend on a range of 
factors, including the behavioral types of interest, dataset size, and experimenter resources. For 
example, the relative simplicity of traditional approaches that measure a small number of social 
variables using either manual annotation or sensor-equipped behavioral chambers makes them 
an appealing choice when tracking a small number of known and pre-prescribed behaviors at 
coarser resolution. Features derived from fewer keypoints in reduced tracking configurations, 
such 2D poses or 3D poses without limbs, could also be used when coarser resolution is 
sufficient and when social gesturing or contact with limbs is not a primary research focus. 
Conversely, studies interested in subtle body language may require keypoint and feature sets 
expanded from what we present here. While we utilized an unsupervised wavelet-derived 
feature embedding to flexibly capture behaviors on different timescales, there are several 
alternative unsupervised behavioral identification approaches that are effective on single-animal 
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pose datasets85,86. Our dataset offers a testbed for adapting these approaches, which might 
capture different aspects of social behavior, to 3D multi-animal data.    
  
In the future, we envision bolstering our method’s flexibility and interpretability via support for a 
broader range of resolutions and the detection of predefined social behaviors. Predefined 
behavior detectors and their quantitative feature formulations could be shared with the 
community and applied to track these specific behaviors in new studies, including in real-time 
and in closed loop with behavior or neural manipulations. In parallel, unsupervised analysis will 
continue to drive discovery of new phenotypic descriptions using expanded datasets from new 
experimental contexts, postural tracking resolutions, and measurement modalities.  
 
A foundational repository for high-resolution behavioral analysis 
To facilitate continued development of social behavioral quantification and analysis approaches, 
we are making s-DANNCE available to the community as an open-source python package and 
will publicly release our dataset and behavioral maps from over 500 million frames of 6-camera 
lone and social recordings collected over 80 animals. As a large repository of rich, high-
resolution social behavior which includes wild-type rats and mice, rat amphetamine dosing 
experiments, and a comprehensive within-litter comparison of multiple rat ASD genotypes, we 
expect that this resource will foster discovery of new properties of neurodevelopmental 
disorders, stimulate new hypotheses of genotype-phenotype mechanisms testable in 
subsequent experiments, and serve as a reference behavioral atlas to which future quantitative 
behavioral studies can be compared.  
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Figure 1: High-resolution 3D kinematic tracking enables fine-grained quantification of social 
behaviors. a, We introduce three levels of behavioral profiling based on the tracked 3D 
keypoints: individual behaviors (top left), social interaction behaviors which occur in dyads (top 
middle), and a method to profile how animals touch during interaction by using a 3D volumetric 
body representation (top right). Together, these levels of behavioral classification allow fine-
grained curation and quantification of social behaviors in freely interacting animals (bottom). b, 
Schematic of the recording arena and the baseline DANNCE implementation, in which single 
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animal pose estimation is separately performed within 3D volumes encapsulating different 
individuals. Top, six synchronized camera views capture behaviors of animals freely interacting 
in the circular arena. 3D volumetric inputs are constructed from simultaneously recorded multi-
view images via projective geometry (Method) and processed by a 3D CNN to directly infer the 
3D landmark positions. Bottom, failure cases for tracking social animals in close proximity, in 
which landmarks associated with different animals give rise to multimodal activations in the 
predicted 3D heatmaps and thus result in chimeric associations in the estimated 3D social 
postures. The usage of rat illustrations in b is under an MIT license.  
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Figure 2: s-DANNCE improves 3D tracking of freely interacting animals. a, Schematic of the s-
DANNCE pipeline, in which 3D volumes were separately constructed around each animal’s 
centroid from multi-camera (n = 6) images via the unprojection operation and then jointly 
processed by a 3D CNN and a graph neural network-based (GNN) refinement module (see 
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model architecture details in Supp. Fig. 4a). b, Qualitative visualization of how chimeric errors 
during close animal interaction present in baseline (“multi-animal DANNCE”) predictions are 
resolved by s-DANNCE. c-e provide an examination of s-DANNCE’s tracking performance over 
an unannotated test video sequence (n = 90000 frames) in one rat engaging in dyadic 
interactions. c, Kinematic traces (t = 80 seconds) showing oscillations in the velocity of the 
animal snout, as derived from both models’ predictions (bottom). The top trace denotes 
distances between the paired animals. The same color scheme for the indicated methods is 
used in the remaining subplots. d, Head movement velocity as a function of inter-animal 
distance on 95% outliers, with a bin size of 50 mm. e, Scatter plots of body segment lengths as 
a function of inter-animal distance. f-h, Three human labelers independently annotated the 
same set of frames (n = 40 frames, 4 animals) with close animal social interactions twice to test 
inter-labeler variability. f, Violin plots of the intra-labeler annotation discrepancies, showing the 
means with minimum and maximum extrema. g, Bar plots of inter-labeling discrepancies (both 
human and machine annotations) against different sets of human ground truth (Labeler 1, 2, 3). 
Discrepancies for human annotations are merged for simplicity in each group. Error bars are 
95% confidence intervals (CIs). h, Right, distributions of body segment lengths derived from 
different model predictions. Laterally symmetric body segments are merged for conciseness. 
Left, standard deviation (STD) of segment lengths derived from model predictions (baseline 
DANNCE, s-DANNCE) and average human annotations (Labeler 1-3). i, Bar plots of landmark 
localization discrepancy over a larger annotated dataset (n = 1373 frames, 2 animals, ground 
truth annotated by Labeler 1) withheld from model training and validation. Frames are grouped 
by the inter-animal distances (0-100, 100-150, 150-200, >=200 mm). Error bars are 95% CIs. 
The average intra- and inter- discrepancies of the three human labelers (light blue and purple 
bars, respectively), as computed from f and g, are included for comparison. j, Bottom, scatter 
plot of localization discrepancy as a function of inter-animal distance over the same set of 
samples in i. Top, discrepancy reduction achieved by s-DANNCE, for frames where the 
baseline predictions yielded Euclidean errors greater than 15 mm (n = 261 samples in the 
dashed box region). k-m, Demonstration of s-DANNCE’s generalization capacities to diverse 
tracking scenarios, respectively in triplets of rats, in arenas with bedding, and in two strains of 
mice. Top row, examples of s-DANNCE predictions. Bottom row, coefficients of variation of 
segment lengths derived from different model predictions across n = 12 tracked instances (n = 4 
triplet recordings or n = 6 dyad recordings). Segments specified in h are further grouped by their 
underlying body regions (head, trunk, forelimbs, hindlimbs) for conciseness.  
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Figure 3: Spatio-temporal clustering demonstrates kinematic changes in response to social 
context and administration of a stimulant. a, Kinematic data from s-DANNCE is transformed to a 
high-dimensional signal which captures postural and movement features (wavelet 
decomposition of 15 postural PCs at 25 dyadically spaced frequencies .5-20 Hz, keypoint 
height, and keypoint speed), and then clustered to reveal a 2D behavioral map where 
behavioral clusters are organized into nine high-level hand-annotated behavioral descriptions. 
On the right, each low-level action cluster (LLAC) is outlined in the color representing the 
corresponding high-level action cluster (HLAC), and the fill color corresponds to how frequently 
the behavior occurred in the social context. b, Experimental setup: behavioral contexts tested 
here are WT-lone, WT-social, AMPH-lone, AMPH-social, and the social partner to the 
amphetamine-dosed animal (WT-partner) c, Coarse metrics of distance traveled over each 30-
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minute recording (top left) and the fraction of time spent in the center of the arena (top right) 
derived from the animal’s center of mass are shown for each experimental group. Coarse label 
behavioral shifts across experimental groups are shown in comparison to the WT-lone condition 
(bottom left) and the WT-social condition (bottom right), d, PCA reveals context-specific 
clustering across individual experiments. e, Time series traces of kinematics (z-axis only) and 
the assigned behavior classes over time show temporal structure in paired behavior. Bottom, 
snapshots of synchronized moments from analyzed data. f, Synchrony of paired behavioral time 
series, calculated as the likelihood of a pair of behaviors occurring together above chance, 
reveals asymmetry in paired behavior when one animal is administered amphetamine prior to 
social interaction.  
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Figure 4: Dyadic feature embedding reveals social differences when amphetamine is 
administered to an animal before social interaction. a, Social embedding incorporates kinematic 
time-series from interacting animals, and features derived from these (wavelet decomposition of 
six PCs describing the shared configuration of both animals at 25 dyadically spaced 
frequencies .5-20 Hz, inter-animal distances and heading deflections from the snout and two 
points along the spine), to produce social interaction clusters in an unsupervised manner. b, 
Snapshots from representative behaviors from each of the seven high-level social interaction 
categories (HLJCs) which emerge from dyadic feature embedding are placed along axes 
describing which rat is engaged in an interaction, and the perceived vigor or intensity of the 
interaction. c, Probability density of inter-animal distance during social recordings for the WT-
WT and AMPH-PART pairs (top left) and fraction of time spent within a body length for each 
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individual rat with and without amphetamine given an AMPH-WT interaction (top right). The 
change in HLJC usage for animals in the AMPH or PART condition as compared to their usage 
when part of a WT-WT dyad (bottom). d, Average difference in occupancy in each of the 156 
low-level states for each rat depending on whether it has received amphetamine in a given 
session. Clusters are sorted by interaction type and distance between animals. At bottom, the 
average fold change between WT-social and AMPH-social conditions is shown, with dots 
indicating p < 0.05 (hierarchical mixed effects) Benjamini-Hochberg False Discovery Rate 
(BHFDR) correction for multiple comparisons (Methods). e, Four example social classes 
(LLJCs) demonstrating behavioral differences induced by amphetamine in the social context.  
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Figure 5: Volumetric body modeling from keypoints enables social touch profiling. a, 3D 
keypoints for each timepoint are used to fit a skin mesh model. b, Example of touch detection in 
a single frame, black fill indicates mesh faces that touch  c, Fraction of time spent touching is 
shown for each high-level joint social behavior class (HLJC). d, Top, time series of keypoint z-
axis coordinates for each animal in a representative recording and, underneath, the associated 
social class (HLJC) at each time point (blue, Rat 1 engaged; red, Rat 2 engaged; purple, mutual 
interaction; gray, no interaction). HLJCs were assigned using 3D keypoint analysis only (c.f. Fig. 
4).  Below, a raster plot showing contact events for the simplified tactogram where contacts are 
binned into seven major body regions (Reduced body map inset). The raster plot contains 49 
rows, with each contiguous set of seven rows corresponding to one specific Rat 1 body region 
and the seven possible Rat 2 body regions it could contact.  Body meshes are plotted for seven 
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timepoints (dashed lines) when animals do not touch (1) and when they are touching in different 
configurations (2-7). Colors of example meshes denote animal identity, not HLJC. e, Scatter plot 
showing of PC scores for the mean touch profile within each low-level joint social behavior class 
(LLJC) for n = 396 paired recordings, 42 animals. Each dot represents a different LLJC, colored 
according to its associated HLJC (blue, Rat 1 engaged; red, Rat 2 engaged; purple, mutual 
interaction; gray, no interaction). All LLJCs and HLJC data groupings are derived from 3D 
keypoints only, not touch data, as described previously (c.f. Fig. 4). Below, example touch 
profiles are shown for the six LLJCs marked (A-F) in the PC scatter plot. Touch profiles are 
shown as densities over the mesh model. Hues of touch profiles denote animal identity, not 
HLJC.  f, Touch profiles for WT, AMPH, and AMPH partner animals. g, Touch profile differences 
between the indicated experimental conditions. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
Figure 6: A comparison of social behavior across seven ASD model strains. a, Comparisons 
between knockout rats and their wildtype littermates are performed on the lone-individual, 
social-individual, and social-joint class occupancy vectors. Comparisons are always between 
animals from the same cohort to control for background, age, and environmental differences. 
Right, PCA of the combined individual and joint embedding vector difference from controls 
during social interaction reveals distinct clusters by knockout.  b, Shifts in LLAC usage during 
social interaction are visualized for each knockout strain as a log fold change from the behavior 
in the respective wild-type littermate controls. Clusters that withstand a test of significance and 
FDR correction at p<.05 are marked with dots. c, Shifts in the knockout LLJC usage are 
visualized as in b. d, Individual occupancy shifts for each KO-KO social recording are plotted as 
a fold change from the respective wild-type controls for several example social clusters where at 
least two strains show a significant difference (indicated under strain name). Left, a non-
interactive behavior where animals sit far apart was elevated in ARID1B knockouts and reduced 
in SCN2A knockouts in comparison to their respective controls. Middle, simultaneous rearing 
was elevated in SCN2A knockouts and reduced in ARID1B and NRXN1 models relative to their 
controls. Right, close head and body contact was increased in NRXN1 and SCN2A knockouts 
and reduced in ARID1B knockouts with respect to their controls. e, Partial mutual information 
was calculated for instantaneous usage of LLACs of paired animals in WT-WT and KO-KO 
pairings. The average difference between the two is shown, with dots indicating paired 
behaviors that withstand a test of significance and FDR correction at p<.05. f, Shifts in social 
clusters (as in c) are shown only for clusters where touching was detected for at least 10% of 
total frames, and on the same axes that delineate type of touch (as in Fig. 5e). g, Total touch 
over KO-KO experiments for each model strain was compared to the respective WT-WT control 
group, with asterisks indicating model strains where touch in at least one body part (as defined 
in Fig. 5d) was significantly different. 
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Methods 
 
Animals and husbandry  
The care and experimental manipulations of all animals were reviewed and approved by 
Harvard University Faculty of Arts and Sciences Animal Care and Use Committee. We used 6 
male Long-Evans rats (Charles-Rivers, strain 006), aged 9-14 weeks for the wild-type and 
amphetamine dosing experiments. Monogenic rat autism models were ordered from The 
Medical College of Wisconsin in litter- and age-matched cohorts of 6-8 male rats and recorded 
between 12 and 20 weeks of age. Ear punches were genotyped after birth and experimenters 
were not blinded to genotype. All knockout animals and littermates were genotyped from tail 
clippings after all experiments were concluded. Animals were kept on a normal 12/12 light/dark 
cycle at a temperature of 22°C and humidity of 30-70% and were housed in ventilated cages 
with ad libitum food and water. Animals were housed with littermates and isolated at least 48 
hours prior to social experiments.  
 
Recording apparatus 
All recordings were performed in a custom-built elevated cylindrical arena of 1 meter diameter, 
where animals could move freely. The circular arena base was water-cut from green HDPE 
(high-density polyethylene) and the arena wall was constructed from 1mm-thick 60 cm-tall clear 
polycarbonate sheet to contain animals and prevent escape. The arena was illuminated from 
above by two white LED arrays (Genaray SP-E-500B, Impact LS-6B stands) and surrounded by 
a commercial fabric green screen for background consistency and contrast to animals. Six high-
speed 2MP Basler Ace-2 Basic cameras equipped with 8mm lenses were synchronized with an 
Arduino IDE 50 Hz hardware trigger called using campy 
(https://github.com/ksseverson57/campy). A windows PC with 64 GB of RAM equipped with two 
GPUs (NVIDIA Quadro P4000, NVIDIA GeForce GTX 1660 SUPER, and NVIDIA Quadro RTX 
4000 were tested) enabled acquisition from six cameras simultaneously.  
 
Camera calibration 
Intrinsic calibration was performed using the built-in matlab Camera Calibration app. Extrinsic 
calibration was performed with openCV. Calibration parameters were saved in each experiment 
folder. The entire arena was surrounded with six cameras on tripods which were calibrated prior 
to experimental recordings. Each day, the current calibration parameters were checked using 
Label3D (https://github.com/diegoaldarondo/Label3D) prior to performing any recordings. In 
order to check calibration, a short video with a stationary object was captured from all six 
cameras using campy (https://github.com/ksseverson57/campy) and the six views from a single 
frame were loaded into Label3D. Triangulation from two views was performed for a single point 
on the object and, if the calibration was still accurate, would correctly identify the chosen point 
from all remaining views. The calibration was stable enough such that videos could be recorded 
using the same calibration for weeks, and a new calibration was saved whenever a camera was 
moved. The pixel resolution is approximately 0.5 mm per pixel on average across camera 
views.  
 
Behavioral recordings 
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Experimental protocol details 
Before social recordings, all rats were recorded individually in the arena for five consecutive 
days (except in the case of the FMR1 cohort, where there were only 3 lone recordings per rat). 
Animals were then separated into individual housing and kept isolated for at least 48 hours 
before the start of social recordings. All experiments were completed between 9am and 6pm, 
however each individual cohort was recorded during the same four-hour time window across 
days. The arena was cleaned with 70% ethanol each night after recordings were completed and 
left to dry. Between recordings, a small amount of 70% ethanol was used to wipe the floor and 
walls of the arena and allowed to dry before the next recording. Rats were randomly paired in 
an all-to-all round robin format within each experimental cohort. After the complete round robin, 
additional recordings were performed of rats in random pairings (see Supp. Table 1 for a list of 
each pairing for each rat in every cohort). Animals were all housed and maintained in a facility 
where they were given food and water ad libitum and monitored by veterinary staff. Cages were 
cleaned and bedding was replaced each week or as needed. Lights were on from 6am to 6pm. 
 
Lone Recordings 
Animals were placed directly from the home cage into the acquisition rig for 30 minutes (1800 
seconds) on each of five consecutive days with recording starting immediately. The arena was 
ethanol-wiped and allowed to evaporate dry between recording sessions. All animals from the 
same cohort were recorded across the same days and each animal was recorded within a 
consistent 4-hour window across days.  
 
Social Recordings 
Prior to social recordings, all animals underwent lone recordings in the acquisition rig as 
described above. Animals were then separated into individual lone cages for at least 48 hours. 
Animals were recorded in all possible pairs across the given cohort (with their littermates and 
possibly other animals from the age-matched cohort in cases of small litters). For each social 
recording, the selected pair of animals were marked with diluted food coloring in order to 
simplify center-of-mass (COM) tracking during post processing steps. Animals were placed in 
the arena in quick succession with allowance for less than 5 seconds of interaction before 
recording began. Each animal was only recorded in one social session per day except in the 
case of CNTNAP2 and FMR1 cohorts, where multiple recordings could occur in a single day.     
 
Pharmacology Recordings 
Prior to lone and social experiments with amphetamine administration, animals were briefly 
anesthetized using isoflurane, weighed, and injected with 1.25mg/kg amphetamine. After 
waiting 20 minutes for recovery and acclimation to the injection animals were recorded as 
previously described. Animals were never dosed with amphetamine or paired with an 
amphetamine partner in consecutive recordings.  
 
Long Evans rat cohort  
We ordered six Long Evans males from Charles River (Strain Code: 006) to be used for wild-
type and amphetamine behavioral recordings. Animals were group-housed upon arrival to our 
animal facilities. 
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ASD model rat cohorts 
We ordered Arid1b, Chd8, cntnap2, Grin2b, Fmr1, Nrxn1 and Scn2a knockouts (only 
heterozygous except for cntnap2 and Fmr1) from the Medical College of Wisconsin (MCW) 
which produced and maintains these strains in order to facilitate study of rat models of autism 
(https://www.sfari.org/resource/rat-models/). All knockouts are maintained on a Long-Evans 
background. Animals arrived housed in groups of 3 or 4 and were allowed to acclimate in home 
cages for at least 72 hours after arrival. Animals were handled after arrival for weighing and 
exposure to experimenters. The first set of behavioral recordings for each animal was a set of 
daily 30-minute lone recordings for five consecutive days (3 in the case of FMR1) in the 
behavioral arena. Each day, animals were removed from the home-cage and placed in the rig 
by hand after which the experimenter left the room until the recording was complete. Animals 
were given no prior exposures to the arena for habituation, opting instead to capture the 
habituation across days. Following the lone recordings, animals were separated into lone 
housing in home cages and after at least 48 hours social recordings would commence. Each 
animal was only exposed to one social interaction recording per day (except in the case of 
FMR1, where multiple recordings could be performed on any given day) and all possible 
pairings within a cohort were completed before any repeated pairings.  
 
Rat triad recordings 
To test the extension of s-DANNCE to >2 animals, we recorded six additional movies of tryads 
from the CHD8 group several days after all lone and dyadic interaction recordings were 
complete. The three animals were marked using small patches of different colors of food 
coloring (blue, green, and red) prior to recording and placed into the arena from separate cages 
immediately prior to the start of recording.  
 
Bedding recordings 
To test the extension of s-DANNCE to an arena with bedding, we recorded six additional movies 
of pairs of Long Evans female rats for 30 minutes each. The animals were marked using small 
patches of blue and red food coloring prior to recording and placed into the arena, which 
contained a layer of bedding approximately 1 cm thick.  
 
Mouse cohorts 
While we developed our method in rats to study their complex social behavior, mice are 
commonly used in studies of social behavior and as models for ASD symptoms. We compared 
the lone and social behavior of males from two commonly used lab strains, C57BL/6 and 
BALB/c, as well as recorded mixed social dyads composed of one mouse from each 
strain.BALB/c mice are an albino strain often used for immunology research, and have been 
described as a model of low sociability75,87.  
 
We obtained eight C57BL/6 (Strain Code: 027) and eight BALB/c (Strain Code: 028) male mice 
from Charles River and allowed mice to remain group-housed for the duration of behavioral 
experiments. Mice were housed in cages of four same-strain animals. Each mouse underwent 
two days of lone recording (10 minute experiments) in the behavioral arena after acclimation to 
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the animal facility. Following lone recordings, animals were recorded in pairs for ten minutes 
each, with each mouse appearing in several recordings in a given day. The white BALB/c 
animals were marked with a small patch of food coloring on their sides as with the rats to track 
animal identity. The black C57BL/6 animals required lightening of the fur so half of the animals 
had small patches of fur on their sides bleached using commercial hair bleach. Bleaching was 
performed by swabbing a small amount of bleach mixture onto the fur while gently holding the 
mouse. The bleach was then wiped off and mice were returned to their home cages. This 
process was repeated across two days for a stronger bleaching effect. 
 
Estimating 2D top-down and bottom-up occlusion 
Three sets of social recordings (“SCN2A”) and the corresponding s-DANNCE predictions were 
used for estimating the average occlusion from the top-down and bottom-up view. All 3D points 
were rotated into the camera coordinate system of the virtual top-down/bottom-up camera and 
were sorted by their distances to the camera center in descending/ascending order within each 
separate frame. To account for occlusion by body soft tissue, we made a simplification that a 
keypoint is considered as occluded if it falls within the occlusion region formed by all keypoints 
above it in a top-down camera view and vice versa for a bottom-up camera view (Supp. Fig. 
1a). We qualitatively and quantitatively examined the changes in occlusion rates with different 
occlusion thresholds around each keypoint (5, 10, 15, 20, 25 mm) (Supp. Fig. 1b-d). For all 
numbers reported in Results, we adopted a threshold of 15 mm.  
 
Posture annotation 
To acquire 3D posture labels for model training, one human labeler (‘Labeler 1’, Fig. 2f) 
selectively annotated n = 423 unpaired 3D poses from n = 7 social recordings of CNTNAP rats 
and annotated one social recording held out from the training set solely for model performance 
benchmarking purpose (n = 1373 frames, both animals, Fig. 2i, j). To validate the model’s 
generalizability to different rat strains, another social recording of rats with FragileX syndrome 
was similarly annotated (n = 1058 frames, both animals, Supp. Fig. 5e-h). For the inter- and 
intra-observer error analysis (Fig. 2f-h), n = 40 frames with close interaction were evenly drawn 
from two SCN2A social recordings, where three human labelers annotated both animals in 
these frames for two rounds with permuted frame orders. The total number of 3D poses 
annotated by each human labeler was n = 160. All 3D pose annotation was performed using 
Label3D which triangulates multi-view 2D annotations into 3D. We annotated with a skeleton 
consisting of 23 body keypoints, as coarsely grouped into 4 body part regions: head (Snout, 
EarL, EarR, SpineF), trunk (SpineM, SpineL, TailBase, ShoulderL, ShoulderR, HipL, HipR), 
forelimbs (ElbowL, WristL, HandL,ElbowR, WristR, HandR) and forelimbs (KneeL, AnkleL, 
FootL, KneeR, AnkleR, FootR).  
 
Multi-animal 3D centroid localization 
We tracked 3D kinematics in interacting animals by first training a multi-instance COM network 
to roughly locate different individuals and then applying s-DANNCE to infer a keypoint-based 
skeleton per instance in each frame. Specifically, we construct volumetric representations from 
multi-camera images, which are anchored at each animal’s estimated 3D centroid in the world 
coordinate system for maximizing the estimation resolution. To determine the animals’ center-
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of-mass (COM) positions, we used a 2D U-Net architecture similar to Dunn et al. 17. We 
configured and trained different COM networks for lone and social recordings by setting the 
number of output channels as the number of animals present in the scene. For training, model 
outputs were optimized against 2D Gaussian-shaped heat maps generated from human 
annotations of COM positions using a mean-squared Euclidean loss. The 2D COM positions 
were extracted as the maximally activated position in the 2D heat maps during inference in each 
camera view and the corresponding 3D COM position was reconstructed as the median across 
all possible camera pairs.  
 
For each set of experiments, for example, all lone or social recordings from a specific cohort of 
animals, we trained a separate COM network. We labeled approximately 200-500 frames for 
training each network, making sure to include samples from each animal that appeared in the 
set of recordings. For social recordings, training frames always included multiple COM labels 
which were ordered by color (blue, green, red) in order to preserve animal identity. If different 
sets of colors were used in the same dataset, a separate COM network would be trained for 
each color pairing.  
 
Graph neural network pose refinement module 
For the first stage, we adopted a 3D encoder-decoder architecture to process the 3D volumetric 
inputs and output the initial estimation of probability distributions for each body marker. For each 
3D heatmap associated with a specific keypoint, we performed a differentiable integration trick88 
to locate the maximally activated location, or center of mass of this 3D volume, as the predicted 
position of that keypoint. With the initial 3D poses obtained from the regression stage, we 
defined an undirected graph  where the nodes were associated with the relative 
voxel coordinates of body markers  and the edges  
linked  pairs of keypoints based on anatomical connectivity of the animal. Accordingly, we 
defined a  adjacency matrix  where  if  else 1. We refer to this graphical 
representation as a skeletal graph. 
 
We sampled using bilinear interpolation at the maximal activation positions from features maps 
of the three deconvolution layers. The multi-scale features were concatenated with each 
keypoint’s predicted positions to form each graph node’s input features. We then adopted a 
graph neural network (GNN) to further refine the initial marker localization results. The basic 
building block of the GNN is a graph convolution module (Supp. Fig. 4a). Given a generalized 
graph based input defined as above, each graph convolution block outputs 

 where  acts as an additional weighting parameter that 
adjusts the contribution of neighboring nodes. The GNN module generates spatial offsets to the 
initial marker positions in the voxel space. The final marker locations in the world coordinate 
system were obtained after being scaled by the voxel resolution and translated by the world 
coordinates of the volume center.  
 
Physical body constraint 
We leveraged prior knowledge of rodent body anatomy to constrain the posture solution space. 
Given all sets of connected markers  and , the lower and upper bound of their expected 
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spatial distance , we defined the corresponding anatomical plausible range for the lengths 
of 23 body segments. For better scalability to variably sized animals within and across different 
rat strains, we reformulated the bone constraints from absolute distances to relative ratios 
across different segments. In practice, we scaled each segment with the distance between the 
animal’s left ear and right ear landmark. The expected ratios of body parts were pre-computed 
from ground-truth pose labels and imposed on both male and female individuals as 
regularization. We imposed body constraints in the form of L2 loss during training.  
 
Semi-supervised learning scheme 
The previously described body constraint loss was applied on a mixture of labeled and 
unlabeled timestamps (n = 423 labeled, n = 910 unlabeled). To alleviate the tracked marker 
ambiguity in occluded social scenarios, we further adopted a strong data augmentation scheme 
that captured the spatial invariability in 3D metric space. During training, we formed each 
training data batch with augmented copies of one single input volume and imposed batch-wise 
consistency over all marker location predictions, using a L2 loss .  
 
The overall optimization objective is given by , where we define  as 
L1 distance between model keypoint predictions and ground truth 3D positions, if available for 
the current frames, and ,   are hyperparameters that balance different loss components 
during training, which are subject to tuning in finding the best-performing combinations. 
 
Model implementation and training procedure 
The s-DANNCE framework is implemented in PyTorch. The GitHub repository is made available 
at https://github.com/tqxli/sdannce with codes and detailed instructions for model training, 
inference and visualization of the tracking results.  
 
For estimating the animals’ 2D centroids as the prior step for pose estimation, we trained 2D U-
Net COM networks with skip connections. The numbers of channels used in each layer are [32, 
32, 64, 64, 128, 128, 256, 256, 512, 512, 256, 256, 128, 128, 64, 64, 32, 32, c = the number of 
animals present in the scene], where c = 1, 2 or 3. We did not explore more sophisticated 
tracking strategies as we only focused on animal interactions in dyads and triplets, but 
anticipate that this step can be conveniently replaced with other existing centroid/identity 
tracking methods.  
 
For estimating the 3D poses in rats using s-DANNCE, we adopted the same 3D U-Net 
architecture as Dunn et al. except that we halved the numbers of feature channels in each layer 
to reduce the model memory footprint. We pretrained the 3D encoder-decoder (i.e., baseline 
DANNCE) on a subset of the RAT7M motion capture dataset (n = 88194) for 20 epochs with an 
initial learning rate of 0.0001, which was decayed at epoch 10 and 15 by a factor of 10. To 
compensate for the fine-scale body markers at limb ends missing from the RAT7M dataset, we 
fine-tuned the 3D encoder-decoder backbone with n = 1009 labels with 23 body markers 
selected from lone rat recordings. The training was done for 450 epochs with a constant 
learning rate of 0.0001. Note that this adaptation step can be removed without significantly 
affecting the final performance except for slower convergence. Lastly, we included the GNN 
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module (Supp. Fig. 4a) and trained the full s-DANNCE model using n = 423 3D poses collected 
from social recordings, together with n = 910 unlabeled frames for semi-supervised learning as 
previously described. The model was trained for 100 epochs, with an initial learning rate of 
0.0001 decayed at epoch 50, 70 and 80 with a factor of 5, and optimized using the objective 
function described above, where hyperparameters  and . The comparison 
baseline DANNCE model was trained following the same schedule except for the differences in 
architecture and optimization objective. All 3D rat pose predictions used for analyses in this 
paper were obtained from the same s-DANNCE model, including all lone, dyad and triplet 
recordings.  
 
For generalizing to paired mice and to rats in arenas with bedding, we respectively finetuned the 
primary rat s-DANNCE model using n = 111 3D mouse pose labels and n = 211 3D rat labels in 
bedding frames, combining with equal amount of unlabeled samples randomly sampled from 
frames with inter-animal distances no greater than 120 mm. We did not freeze model 
parameters during the finetuning and retained the s-DANNCE optimization objective described 
in section “Semi-supervised learning scheme”. Each model was trained for 40 epochs, with an 
initial learning rate of 0.0001 decayed at epoch 20 and 35 with a factor of 5.  
 
Comparison with Han et al. 2024 
Han et al. described a multi-animal 2D tracking method, which performs 2D pose estimation 
(DeepLabCut, or DLC) on masked frames from video instance segmentation. To obtain the 
instance masks required by training and inference of the image masking method, a human 
labeler annotated n = 3912 identity-preserving instance masks in n = 1980 frames (severely 
occluded instances were not annotated), including the entire dyad dataset used for training the 
baseline DANNCE and s-DANNCE model. These ground-truth (GT) instance masks and 
corresponding frames were used to train a 2D DLC pose estimation model used for quantitative 
analyses in Supp. Fig. 7. The DLC model was trained following the default training settings for 
a ResNet50 backbone for 50 epochs until convergence. The 2D pose predictions yielded by the 
DLC model were triangulated into 3D after taking the median among all possible camera 
pairings for each timestamp. For the evaluation, we separately evaluated the image masking 
method’s performance (1) with “GT masks”, where the same human annotator annotated animal 
masks in all test frames, and (2) with “predicted masks”, where the training GT masks were 
used to train a Roboflow 3.0 Instance Segmentation model on the Roboflow platform (starting 
from the v12 public checkpoint pretrained on MS COCO) and the instance segmentation model 
was used to annotate the test set.  
 
Individual (animal-autonomous) behavioral mapping 
The inferred 3D landmark position trajectories for each recording were used to create a 
behavioral map which could be used to assign a behavioral label at each time point for each 
animal across all recordings. We used methods described in several previous works34,35 and 
altered preprocessing, feature selection, and clustering metrics for better performance on the 
specific data used. All code for deriving the classifications used throughout the results, as well 
as other examples, will be shared in the s-DANNCE GitHub repository upon publication. Here 
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we briefly describe the method to transform a large dataset of kinematic recordings to 
behavioral timeseries or ethograms.  
 
All keypoint data were inferred from movies taken at 50 Hz using the same base skeleton (23 
keypoints, detailed information saved in ‘skeletons/rat23.mat’) using s-DANNCE, and 
preprocessed by median filtering with a 3-frame window followed by a smoothing with a 3-frame 
window in order to reduce any tracking jitter. First, to normalize for the varying animal sizes 
across cohorts, the size of each animal was estimated by sampling the distance between two 
virtual markers (the snout and the tail base) and finding the 97.5th percentile. Inferred points 
were scaled by this scalar value. Each time point was represented as an all-to-all distance of 23 
body marker positions, producing a rotationally and translationally invariant description of the 
posture of the animal. We performed PCA decomposition on this representation across all 
recordings to find the top 15 postural principal components which represent the instantaneous 
posture.  To incorporate multi-scale temporal information, we computed the power of each of 25 
dyadically spaced frequencies for each of these postural projections. The final representative 
high-dimensional dataset for each movie incorporated a wavelet decomposition of the PCs (15 
modes, 25 frequencies each) as previously described as well as a scaled representation of the 
height of each joint relative to the arena floor (23 keypoints, scaled by 1/10), and speed for each 
keypoint (23 keypoints, scaled by 1/2). We found that introducing these features was especially 
helpful in distinguishing rears (as egocentric alignment removed raw height data) and small 
movements. The final high-dimensional representation consisted of a 421-dimensional vector at 
each timepoint for each individual animal, whether in a lone or social context.  
 
In order to enable behavioral comparisons across all conditions and experimental cohorts, a 
subset of high-dimensional postural-temporal representations was used to generate a 
behavioral map which was then used to re-embed each kinematic trajectory. We sampled 
frames uniformly in time and performed a t-distributed stochastic neighbor embedding (tSNE) 
for each movie and sampled temples from these initial embeddings to build the final training 
subspace. The final set of training samples (~45,000 samples) was embedded into a 2D space 
using tSNE, and each frame from all movies was then embedded into this space to create a 
density map of behavior across all experiments. Applying a watershed transformation to this 
space (sigma = 1) resulted in 163 spatial clusters along this 2D density which represent fine-
grained behavioral clusters which we refer to as LLACs (low-level action clusters). These 
clusters were further grouped into nine coarse categories which we refer to as HLACs or high 
level action clusters (idle, sniff, groom, scrunched, reared, active crouch, explore, locomotion, 
and fast). The fine- and coarse-grained cluster labels were applied to behavioral recordings 
taken from both lone and paired animals.   
 
Behavioral synchrony calculation 
Synchrony analysis was performed by considering the HLACs assigned simultaneously to 
paired animals across each recording as described in 11. To identify co-occurrence patterns of 
HLACs in interacting animals, we calculated a 9x9 synchrony matrix (S) for each paired time-
series using the equation 
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where HLAC1 and HLAC2 refer to the fractional occupancies of each of the nine HLACs (high-
level action clusters) for animal 1 and animal 2. Each entry in S captures how likely the pair of 
behaviors are to occur together above chance. The underlying behavioral distributions were 
calculated independently for each recording. We report the average for S across experimental 
groups (Fig. 3f, Supp. Figs. 18-25).  
 
Social behavior mapping and perspective embedding 
We extended the previously described methods for unsupervised individual behavioral mapping 
to produce behavioral clusters capturing the postures of two interacting animals, where features 
capture the relative posture and dynamics. Several changes were necessary to perform multi-
animal social embedding and capture social motifs. First, since the identity of an animal matters 
within a social context, each social cluster is from the perspective of one of the animals. In 
practice, this means that features are calculated twice for each interaction recording, with the 
ordering of keypoints flipped for capturing the perspective of the second rat. We used fewer 
principal components (6) to describe the shared posture and positioning of interacting animals 
than in the single animal case, as the emphasis was in capturing stereotyped instances of 
shared movement instead of a combinatorial description of the movements of each animal. The 
time scale used for the joint wavelet decomposition was also slower in order to accommodate 
slower and less precisely coupled movements than in the case of single-animal limb 
coordination. Shared and individual-animal features were combined to produce the final high-
dimensional representation. This combination of features capture aspects of the posture and 
movement of each animal and emphasizes the shared measures such as distance and 
orientation between animals as well as the dynamics of shared movement.  
 
To perform the joint embedding, wee first calculated the all-to-all distances between selected 3D 
keypoints (snout, spineF, spineM, spineL, tailBase, shoulderL, shoulderR, handL, shoulderR, 
handR, hipL, footL, hipR, footR) on each animal and performed online-PCA to determine six 
basis vectors to capture the shared postural representation across all movies. Wavelet 
decomposition at dyadically spaced frequencies ranging from .2-5Hz was performed on the 
resulting projections obtained from representation for each social recording. Additional features 
including distances between specific body parts and angles of heading deflection between 
animals in 3D were derived from the inferred keypoints and added to the high-dimensional time-
series describing the shared dynamics. 
 
In order to sample across all contexts and balance the final embedding in consideration for rare 
motifs, templates were retrieved from each social recording and pooled to form a training set for 
embedding using t-SNE, as described for the animal-autonomous mapping. The resulting 
training set and 2D t-SNE map were then used to re-embed each recording, resulting in a final 
representation that was clustered using the watershed algorithm. The corresponding embedded 
values were used to assign each frame a cluster number. These social clusters capture possible 
animal configurations incorporating not only static features such as distance and orientation, but 
also properties of these shared features across a span of time scales. Each of the resulting 156 
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clusters (five clusters could be eliminated because of a lack of samples) was assigned a low-
level description based on viewing randomly selected snippets of frames which were assigned 
the given label (Supp. Video 4). The movies contained both animals but were described from 
the perspective of the focal animal, giving rise to categories that aim to capture how engaged 
the focal rat and partner are, leading to a description of how engaged each animal is and how 
symmetric this engagement appears to the human eye. While many clusters (76 of 156 total) 
were classified as ‘No Interaction’, these clusters still contain valuable information about the 
interaction between animals and range from low-level descriptions like ‘laying on opposite sides 
of the arena with little to no activity’ to ‘both performing active rears while less than one animal-
length apart’. While there does not appear to be active inter-animal engagement in case of the 
latter description, this cluster captures a synchronized movement. 
 
Importantly, each animal within a social pairing is assigned its own social cluster label at every 
frame, as the social embedding retains the identity and perspective of the given animal. For 
example, one animal may correspond to a cluster where, from that animal’s perspective, it is 
“chasing” the other animal, whereas the partner will instead correspond to a cluster that 
captures “being chased”. These ‘perspectives’ can be resolved to a single interaction-level 
annotation based on an agreement matrix derived from the human-annotated descriptions. This 
intermediate description can be used to evaluate how much one-sided or mutual interaction 
occurs throughout a social recording and how interaction progresses over time (Supp. Video 5).  
 
Manual annotation of clusters 
Two human annotators independently viewed movies of reconstructed 3D skeletons randomly 
sampled from each behavioral cluster from individual and joint mapping. Sampled clips were 
picked at random from all experimental movies, from time points where the given label was 
assigned for at least 25 subsequent frames or 500ms of consecutive kinematics. For individual 
(animal-autonomous) clustering, each cluster was assigned a short description and a coarse 
category (Supp. Table 2, Supp. Movie 3). For joint clustering, each cluster was assigned a 
description and the interaction was given a coarse social category (no interaction, lightly 
engaged, engaged, partner lightly engaged, light mutual interaction, and mutual interaction) 
intended to capture the level of asymmetry and intensity of the sample movies (Supp. Table 3, 
Supp. Movie 3). Any clusters where annotators were in disagreement were reviewed together 
until a consensus was reached to produce the final set of coarse behavioral cluster descriptions 
presented here.  
 
Estimating social contact with deformable mesh models 
To estimate points of contact between socially interacting rats, we registered a biomechanical 
model paired with a deformable mesh model to s-DANNCE keypoints and quantified 
intersections between meshes. Here, we will describe the biomechanical model and 
accompanying deformable mesh model, the registration process, and the algorithms used to 
determine contacts. 
 
Biomechanical model 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

We used a biomechanical model paired with a deformable mesh model as a tool to estimate the 
volumes of interacting animals at each frame by registering the biomechanical model to the 
keypoints inferred with s-DANNCE. The biomechanical model of the rat was developed as part 
of a previous study50 to resemble the bone length and body mass distribution of Long Evans 
rats in the laboratory and work with the MuJoCo physics simulator. The pose of the 
biomechanical model has 74 degrees of freedom (DoF). These include the global Cartesian 
position of the model’s root (3 DoF), the quaternion defining the orientation of the root (4 DoF), 
and a set of transformations denoting the joint angles of each body part relative to its parent in 
an acyclic tree that denotes the relationships between connected body parts (67 DoF).  
 
To account for differences in animal sizes, we isometrically scaled the biomechanical model 
according to the segment lengths estimated with s-DANNCE. For every session, we calculated 
the median segment length for each animal and each session, , and computed the median 
segment length across all sessions, . The scaling factor for a particular animal and 

session, , was then defined as the ratio .  
 
Deformable Mesh  
The biomechanical model described above includes a deformable mesh model that was created 
to approximate the shape of a rat. The deformable mesh model is implemented using the 
MuJoCo skin asset. Briefly, the deformable mesh is composed of a set of 6880 vertices 
connected to form a set of triangular 10752 faces that together approximate the shape of a rat. 
The position of each vertex and the orientation of its normal is influenced by the positions of one 
or more bones in the biomechanical model. Each bone contributes to the position of a set of 
vertices with a weight that specifies how much the position and orientation of the bone 
contribute to the position of the vertices. The 3D position of each vertex is calculated by 
weighting the influence of its corresponding bones. Normal vectors for the mesh are computed 
from the 3D vertex positions and the faces derived from connections of vertices.  
 
To better approximate the volume of animals of different sizes, we specify an inflation parameter 
for each animal which expands or contracts the deformable mesh along the normal vectors by a 
given distance. Similar to the scaling of the biomechanical model, we used the distribution of 
bone segment lengths estimated from s-DANNCE to determine the inflation parameter. The 
inflation parameter for a particular animal and session, , was calculated as follows 

   
The value of .003 m was determined through visual inspection by overlaying the deformable 
mesh models of different inflation parameters atop the multicamera images of the animal with 
the median segment length. The inflation parameter allowed us to scale the size of the 
deformable mesh model to account for variability in the animal sizes, or growth that occurred 
throughout the collection of the dataset.  
 
Registration 
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Our biomechanical model was designed to approximate the general skeletal structure of the rat, 
and not skin, fat, muscle or cartilaginous tissue. This presented a problem when trying to 
register the biomechanical model to s-DANNCE keypoints, as several keypoints correspond to 
bodily landmarks that were not present in our biomechanical model. To address this problem 
and register the biomechanical model to the s-DANNCE keypoints, we used a custom 
implementation of simultaneous tracking and calibration (STAC)89. STAC iteratively optimizes 
two quantities in an alternating fashion to calculate the biomechanical model poses that best 
explain the keypoint positions: a set of learned offsets that relate points on the biomechanical 
model to s-DANNCE keypoints (m-phase) and the joint angles of the biomechanical model (q-
phase) (Supp. Fig. 14).  
 
In the m-phase, STAC optimizes a set of offsets that each relate a reference point on the 
biomechanical model to an s-DANNCE keypoint. Specifically, the m-phase uses L-BFGS-B to 
minimize the mean squared error between s-DANNCE keypoints and ‘fictive keypoints’ defined 
by applying the set of offsets to the set of reference points. The reference point for a given s-
DANNCE keypoint was defined as the location of the parent of the body closest to the keypoint. 
The offset was defined as a 3D vector extending from the reference point in the reference frame 
of the parent body. This optimization occurs over a small training dataset that will be described 
in greater detail below. At each step of the optimization, we adjust the set of offsets by an 
epsilon step, compute the new fictive keypoints using MuJoCo’s forward kinematics, and 
compute the empirical gradient to determine the direction of the offset update.  
 
In the q-phase, STAC optimizes the joint angles (expressed as a set of quaternions) via least 
squares optimization to minimize the mean squared error between the s-DANNCE keypoints 
and the fictive keypoints. At each step of the optimization, we adjusted the joint angles by an 
epsilon step, computed the new fictive keypoints using MuJoCo’s forward kinematics, and 
computed the empirical gradient to determine the direction of joint angle updates. Importantly, 
the offsets were fixed during the q-phase, enabling the optimization of joint angles for a given 
set of offsets and frames. We applied this procedure to each frame serially, and initialized the 
pose of the biomechanical model using the pose from the previous contiguous frame. In the first 
frame, the biomechanical model’s base pose was used to initialize the optimization.  
 
Applying STAC involves two steps: calibrating the biomechanical model to s-DANNCE 
keypoints, and registering the calibrated biomechanical model to new data. To calibrate the 
biomechanical model for a given animal and session, we created a training dataset from the 
initial 10 seconds of data (500 frames) and optimized the offsets and joint angles through three 
alternating iterations of the q- and m-phases. For each q-phase, we optimized each frame in the 
500-frame trajectory, while for each m-phase, we randomly selected 50 frames from the 500 
frame training set. To register the calibrated biomechanical model to all of the data from a given 
session, we reused the offsets from the calibration step and performed a single q-phase 
optimization over all frames.  
 
Contact determination 
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To estimate the points of contact between two animals, we automatically identified frames in 
which the mesh models for two interacting animals intersected. For every frame, we posed the 
biomechanical models representing both animals in MuJoCo according to the poses registered 
with STAC and logged the positions of the vertices comprising the mesh models. To detect 
intersections between meshes, we constructed a bounded volume hierarchy from the vertices 
and faces comprising one animal’s mesh and queried whether any vertices comprising the other 
animal’s mesh were contained within the volume. When a vertex was found to be inside of the 
volume, we logged the identity of the penetrating vertex, the identity of the face closest to the 
penetrating vertex, the identity of the vertex on that face closest to the point that was the 
shortest distance between the face and the penetrating vertex, and the frame number. For the 
purposes of analyses, contacts were defined by these pairs of vertices and the frame number.  
 
In general, the procedure described above is asymmetric such that the contacts estimated by 
constructing a bounded volume hierarchy from one animal of a pair does not equal the contacts 
estimated by constructing a bounded volume hierarchy from the other animal. We symmetrized 
it by performing the procedure twice, swapping the identity of the animal used to construct the 
bounded volume hierarchy, and combining the collection contacts resulting from both iterations. 
When applied over a recording, this process generates a collection of vertex-vertex pairs 
encoding the spatial location of contacts on both animals and the times at which they occurred.    

 
Contact validation 
To validate the performance of our automatic contact estimation method, we compared its 
predictions to those of human annotators on a set of frames in which two rats were in close 
proximity. Using a collection of six 30-minute sessions sampled evenly across the genetic 
models of ASD, we randomly sampled 1100 timepoints in which the centers of mass of both 
animals were less than 150 mm apart. We then used Label3D to view the animals from all six 
camera angles simultaneously. We defined seven regions on the rat’s body to consider in our 
contact validation (Head, Left forelimb, Left hindlimb, Right forelimb, Right hindlimb, Upper 
body, and Lower body). The boundaries between each of the body parts was defined by 
grouping bones of the biomechanical model into each of the seven categories, noting the bones 
with the highest weight for each vertex, and assigning each vertex to one of the seven 
categories according to the category of its maximum-weight bone. For each frame in the 
dataset, three human labelers manually labeled contacts between each of the body part pairs 
from which we estimated the interlabeler variability in manual annotation. To estimate the 
intralabeler variability, we had two labelers repeat their annotations for a subset of 500 
timepoints. 
 
To validate automated contact estimates, we applied the contact estimation method to the 
timepoints in the manually labeled dataset. For each timepoint, we organized the resulting 
contacts into the seven body part categories, denoting a body part contact pair if there existed a 
vertex contact pair with vertices corresponding to each body part. Because contact events are 
relatively sparse, we used balanced accuracy as a metric to quantify the performance of our 
contact estimation method, equally weighting the accuracy of touches and non-touches.  
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We considered three baselines against which to compare the deformable mesh model’s 
performance: a ‘keypoints’ baseline in which we derived a contact-detection model directly from 
s-DANNCE keypoints, the interlabeler variability, and the intralabeler variability. For the 
keypoints baseline, we aimed to estimate how well one could estimate social contacts by using 
only the pairwise distance between keypoints on social partners. We defined a contact as any 
time in which two keypoints were within a threshold of 30 mm apart, and assigned each 
keypoint to one of the seven coarse regions to compare to manually labeled contacts. We 
estimated the optimal threshold value with a line search. For the interlabeler variability, we 
compared the contact estimates across the three individuals, computing the average balanced 
accuracy across all labeler pairs. For the intralabeler variability, we compared the contact 
estimates from individuals on one day to those from the same individuals on the same data, 
labeled on a different day, and computed the average balanced accuracy across individuals. 
 
Touch PCA 
To produce a low-dimensional representation of touch within each low-level joint cluster (LLJC), 
we isolated frames when animals were in each LLJC and found the fraction of time each of the 
body zones (head, limbs, upper front, and upper rear) were in contact with the other animal for 
the focal rat and the partner rat (Fig. 6). We concatenated these profiles into one 14-
dimensional vector and normalized this representation to produce a touch profile for each LLJC 
where touch occurred for at least 10% of total frames (84 of 156 LLJCs). We performed PCA on 
the set of normalized touch profiles and found that the first two principal components captured 
over 75% of the variance (Supp. Fig. 12). We used this 2-dimensional space as a 
complementary way to visualize behavioral changes in ASD knockout models (Fig. 7).  
 
Statistical methods 
After reducing each behavioral experiment to a ‘behavioral profile’ or probability vector that 
captures the usage of each of the fine-grained behavioral clusters (only Action Clusters in the 
case of lone recordings, both Action and Joint Clusters in the case of social dyads), we 
compared these profiles between experimental groups. Because there are multiple observations 
from the same individual when they are paired with different partner subjects within an 
experimental group, we fit a hierarchical mixed model to perform statistical comparisons90,91. 
This prevented a false assumption of independence between samples from the same individual. 
Specifically, we fit a linear mixed effects model (LME, Matlab function fitlme()) to observations 
(e.g., the usage of a specific cluster in each recording session) given a fixed effect for 
experimental group (e.g., ASD KO vs. WT littermate) and a random effect for intercept grouped 
by subject identity. 
 
We performed statistical comparisons at two levels: one at the level of the behavioral profile for 
each group and another at the level of usage for each low-level behavioral cluster. In the first 
case, we compared a behavioral profile from two groups (for example an ASD knockout model 
and the corresponding WT littermates) by calculating the Jensen-Shannon Divergence (JSD) for 
profiles measured in each session to the average from one of the groups. These JSD values 
were the observations used to fit the LME model accounting for subject identity, as described 
above90. At the level of individual clusters between groups, for each cluster we performed the 
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same LME fit, with cluster usages as observations, and corrected the resulting p-values for 
multiple comparisons using the Benjamini-Hochberg False Discovery Rate (BHFDR) method 
(MATLAB function mafdr(..., 'BHFDR', 'true')). 
 
We reported the p-value and JSD between the mean of the two groups for each set of 
comparisons as well as the number of behavioral clusters from each coarse group (HLAC and 
HLJC) that was up- or down-regulated in the cohort of interest (Supp. Table 4, Supp. Fig. 16). 
We wrote Matlab wrapper functions testGroupLme and findSigBeh to identify the group and 
cluster level significance, respectively, and have included them in the SocialMotionMapper code 
repository.  
 
Data availability 
All of the kinematic tracks and clustering results presented in this work will be made publicly 
available for easy access upon publication. For each recording, we will provide the 6-camera 
video data, as well as the 3D keypoint predictions obtained using s-DANNCE, individual and 
social classes produced in our analysis (LLACs, HLACs, LLJCs, and HLJCs), and metadata 
describing the recording (experimental context, experimental group, date of recording, rat ID, 
amphetamine status, and partner genotype) detailed in Supplementary Table 1. 
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Supplementary Figure 1: Multi-camera behavioral arena. a, Circular behavioral arena 
surrounded by six synchronized 50 Hz color cameras for recording rat dyadic interactions. b, 
Single timepoint capture of six-camera acquisition from the behavioral arena. c, Corresponding 
3D social poses inferred by s-DANNCE from frames in b.  
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Supplementary Figure 2: Occlusion analysis in social animals. a, Schematic demonstrating 
how occlusion between keypoints was estimated in an imaginary top-down camera view. Blue 
color indicates the keypoint of interest and its affected region following the traversal order. 
Similar procedure was applied for estimating bottom-up occlusion. b, Qualitative examples of 
how occlusion varies with different occlusion radii. Red indicates that the keypoint is assumed to 
be occluded. c-d, Quantitative comparisons of the proportions of occluded keypoints in the 
animals’ head, trunk, forelimbs and hindlimbs, respectively from the top-down and bottom-up 
view. The occlusion rates are independently computed for different occlusion radii (5, 10, 15, 20, 
25 mm) and except for self-occlusion from the animal’s own body (blue), we optionally consider 
occlusion from social interactions (orange, purple).  
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Supplemental Figure 3. s-DANNCE corrects chimeric errors, driving improved anatomical 
stability. a, Failure cases of baseline DANNCE in interacting animals. Top, first-order velocity 
traces of 12 selected body markers in one animal engaging in social interactions (t = 20 seconds). 
Background colors indicate the dynamics in inter-animal distances (pink: < 150 mm). Bottom, 
qualitative examples sampled from timestamps with sudden velocity spikes.  Strong correlations 
between close inter-animal distances implying social activities and chimeric errors in DANNCE 
predictions are observed. b, Percentage of poses with chimeric errors in close interaction frames 
(inter-animal distance 150 mm or less), for both baseline DANNCE and s-DANNCE. The overall 
s-DANNCE chimera rate includes partially fixed chimeras (P; chimeras with fewer keypoints than 
baseline DANNCE) and all others (O). Error bars are 95% confidence intervals. c, Plot showing 
the rate of s-DANNCE chimeric error correction as a function of s-DANNCE segment length 
improvement magnitude (the amount of reduced segment length deviation from the mean). Larger 
s-DANNCE segment length improvements were predominantly from frames where s-DANNCE 
corrected chimeras, illustrating the impact of chimeric error correction on segment length stability 
metrics. d, Top, change in segment length variance (σ2) from baseline DANNCE to s-DANNCE 
for the indicated body segments, shown for all frames (n=6500) and frames with (n=1706) and 
without (n=4794) baseline DANNCE chimeras. s-DANNCE variance reduction (improved stability) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

was larger in frames with baseline DANNCE chimeric errors. Bottom, variance reduction in frames 
with and without baseline DANNCE chimeras, expressed as percentage of the variance reduction 
in all frames. e, Scatter plot showing the base rate-relative share of segment length variance 
reduction for frames with and without baseline DANNCE chimeras. Variance reduction in chimera 
frames has a disproportionately large effect on overall segment length stability.  
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Supplementary Figure 4: s-DANNCE model architecture. a. Detailed schematic of the s-
DANNCE neural network architecture, as supplement to Fig. 2a. b-c, Ablation studies of 
different modeling components in s-DANNCE. The (-) symbol refers to the ablation of that 
specific component from the best-performing s-DANNCE model. For the complete descriptions 
of each modeling component, refer to Methods. 
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Supplementary Figure 5: s-DANNCE tracks rats across strains and arena setups. a-d are 
reproduced from Fig. 2i-j for comparison: a, Bar plots of landmark localization discrepancy over 
a fully annotated dataset (CNTNAP, n = 1373 frames, 2 animals). Frames are grouped by the 
inter-animal distances (0-100, 100-150, 150-200, >=200 mm). Error bars are 95% CI. The 
average intra- and inter- discrepancies of the three human labelers (light blue and purple bars, 
respectively) are computed from Fig. 2f,g.  b, Mean errors with respect to different body 
landmark positions (n = 215 frames within 150 mm inter-animal distance). c, Scatter plot of 
landmark localization discrepancy as a function of inter-animal distance. d,  Distributions of 
body segment lengths as derived from different model predictions in each animal in the 
recording. Symmetric body segments are merged for conciseness. e-h, The same types of 
analyses as panels a-d but performed on a different recording of FMR1 KO (FragileX) rats  (n = 
1056 frames, 2 animals; n = 504 frames within 150mm inter-animal distance). The average 
intra- and inter- discrepancies of the three human labelers (light blue and purple bars, 
respectively) in panel e are computed from Fig. 2f,g. i-j, Visualization of two arenas with 
different camera orientations. Pose labels collected in Arena 1 were used to train the rat models 
and we examined the shifts in tracking performance when directly generalizing the model to the 
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unseen Arena 2. k, Standard deviations in segment length derived from predictions of s-
DANNCE and baseline DANNCE respectively in each arena. n = 6 social recordings of male 
Long Evans SCN2A knockouts were sampled to represent tracking performance in Arena 1 and 
n = 6 social recordings of male Long Evans with amphetamine injections were sampled for 
Arena 2. Frames were evenly balanced by the corresponding inter-animal distances with a bin 
size of 100 mm to accommodate for shifts in behavioral profiles. In contrast to baseline 
DANNCE, the s-DANNCE model demonstrated better robustness against shifts in camera 
positioning.  
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Supplementary Figure 6: s-DANNCE generalizes across species and experimental 
conditions. a-d, Generalization to mice: Using the pretrained rat models as initializations, we 
respectively trained baseline DANNCE and s-DANNCE models using n = 111 additional 3D 
pose labels collected in paired mice. a, Qualitative tracking performance comparison between 
baseline DANNCE and s-DANNCE in BALB/c mice. b, Coefficient of variation (%) in segment 
lengths derived from different model predictions in n = 6 dyad recordings, shown for all frames 
(n = 180,000) and for frames with inter-animal distance (“IAD”) no greater than 75 mm (n = 
39476). c,d, Same analyses repeated for C57BL/6 mice. Out of a total of n = 180,000 frames, n 
= 27052 frames have inter-animal distance no greater than 75 mm. e-f, Generalization to larger 
sized rat groups: e, Qualitative tracking examples from a triplet of Long Evans rats when directly 
applying the s-DANNCE rat model. f, Tracking stability in terms of coefficient of variation (%) in 
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segment lengths, as the number of simultaneously tracked animals in the arena scales (n = 2, 
3). For the n = 4 triplet recordings (each with n = 90000 frames), we sampled n = 6 dyad and n 
= 12 lone recordings of SCN2A knockouts, each with a total of n = 12 instances for comparison. 
g-h, Generalization to arena with bedding: All predictions were made by a model finetuned from 
the pretrained rat model using n = 211 additional 3D pose labels collected in an arena with 
bedding. g, Qualitative tracking examples of female Long Evans rats within an arena with 
additional bedding. h, Coefficient of variation (%) of segment lengths derived from model 
predictions and human annotations, with and without bedding in the arena. For model 
performance, we compared n = 6 dyad recordings of Long Evans female rats in the bedding 
arena with n = 6 dyad recordings of male SCN2A knockouts. For human performance, we 
compared the n = 211 pose labels used for training the bedding model to the n = 160 3D poses 
annotated by Labeler 1 as used in Fig. 2f-h.  
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Supplementary Figure 7: Comparison with 2D instance-masking pose estimation (Han et 
al. 2024). 3D pose estimation performance of 2D keypoint triangulation when animals are first 
segmented out of images with 2D instance masks, as proposed in Han et al. 2024. a, Bar plots 
of inter-labeling discrepancies between human and model annotations. Human, baseline 
DANNCE, and s-DANNCE data are reproduced here from Fig. 2g. For the 2D instance masks, 
we report results from using predicted masks and from using ground-truth (GT) masks. For GT 
masks, a human labeler annotated n = 3912 identity-preserving instance masks in n = 1980 
dyad images, inclusive on the entire dyad dataset used for training s-DANNCE. These GT 
masks and frames were used for training the 2D pose estimation model (DLC) used for all 
subsequent evaluations. The labeler also annotated GT masks in all test frames, which were 
used for the “GT masks” evaluation. For the “predicted masks” benchmark, the training GT 
masks were used to train a Roboflow 3.0 Instance Segmentation model on the Roboflow 
platform (starting from the v12 public checkpoint pretrained on MS COCO). This model was 
then used to predict masks on the test set. For the 2D pose predictions yielded by the Han et al. 
model, we adopted a triangulation protocol that took the median of 3D reconstruction among all 
possible camera pairings. b, Standard deviations in segment length. Human, baseline 
DANNCE, and s-DANNCE data are reproduced here from Fig. 2h. c, Qualitative comparison 
between human ground truth pose labels (“Labeler 1”), baseline DANNCE, s-DANNCE and 
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instance masking methods. GT instance masks were never used for baseline DANNCE and s-
DANNCE. Compared to s-DANNCE, the instance mask method exhibited reduced precision for 
landmark localization, despite having nearly perfect input masking for “GT masks”.  
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Supplementary Figure 8: Select features across action and joint clusters. The features 
used for action clustering (left) and joint clustering (right) are listed below cluster map 
summaries. The mean value computed across all movies for each action cluster (left) and joint 
cluster (right) is shown for select features. All mean feature values for action (left) and joint 
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(right) clusters are visualized below and reported in the individual cluster description table 
(Supp. Tables 2 and 3).  
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Supplementary Figure 9: Visualization of dyadic embedding. a, Each point in the social 
recording contains two animals with identities maintained. b, The shared postural and dynamic 
information are embedded into a joint map to parse joint behavior motifs. c, The embedding 
from the perspective of each animal is processed individually and the order of shared kinematic 
features maintains the ‘perspective’ for each individual. This results in a corresponding point in 
behavioral space to each animal at each point in time. Behavioral labels then describe the 
shared interaction from the perspective of that animal. d, Examples of features from the 
perspective of one animal (blue). e, Construction of the shared high-dimensional feature vector 
from the perspective of one animal includes information about both animals but maintains 
ordering with the focal animal first.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
Supplementary Figure 10: Assessing accuracy of dyadic embedding derived clusters. We 
compared manual annotation of 250 snippets of social data consisting of 50 snippets each from 
five low-level joint clusters derived from our unsupervised social clustering. Two annotators 
were given instructions to assign one of five behavioral groups to each cluster: no interaction 
(far apart, little movement), rat1 engaged (rat1 following rat2, rat2 avoiding), rat2 engaged (rat 2 
investigating rat1 from behind), mutual interaction (close head-to-head, allogrooming), and no 
interaction (mutual rearing). The annotators had 95.2% and 91.2% agreement with the original 
cluster labels, and there was 92.0% agreement between the labelers.  
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Supplementary Figure 11: Behavioral analysis of rat dyad recordings. a, Sample kinematic 
traces and distance between animals is plotted for a 60-second bout of social interaction. b, 
Classical embedding labels for each animal and the joint social embedding are plotted as time-
series ethograms with corresponding behavioral labels as defined in Figure 2. c, Snapshots 
from recorded sample interaction are shown for four different social behaviors overlaid with 
skeletons inferred from s-DANNCE. 
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Supplementary Figure 12: Behavioral analysis for rat triad recordings. s-DANNCE-inferred 
keypoint trajectories from rat triads were processed individually to produce individual level 
behavioral labels for each rat. A snapshot of postures (left), z-traces of select keypoints over 
one minute of recordings (top right), and ethograms representing high-level action clusters 
(HLACs) for the corresponding behaviors (bottom right) are shown.  
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Supplementary Figure 13:  Social phenotyping in C57BL/6 (Black6) and BALB/c mouse 
strains. a, An s-DANNCE model was used to track 3D keypoints in mouse pairs during social 
interaction. b, Black6+Black6, BALB/c+BALB/c, and mixed Black6+BALB/c pairs were recorded 
in a behavioral arena. c, Histograms of inter-animal distances across the three types of pairings. 
d, Postural and kinematic features were sampled from all recordings and used to generate a 
behavioral map, which was then split into clusters using a watershed transformation. Manual 
annotation of the map was performed by viewing movies corresponding to a given cluster 
randomly sampled from all recordings. Action class clustering applied to each mouse 
individually was used to generate behavioral profiles for each animal within each pairing. Below, 
differences between mean expressions of three pairs of groups is shown. G1 and G2 refer to 
the groups specified to the left of each row of the colored comparison heatmap at the bottom of 
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the panel. For example, in the first row, G1 is BALB/c+BALB/c pairings (symbolized by a red dot 
as in b) and G2 is C57BL/6+C57BL/6 (symbolized by a black dot as in b). e, PCA performed on 
individual action profiles during social interaction. f, Joint class clustering applied from the 
perspective of each mouse was used to generate joint behavioral profiles, with differences 
between groups presented as in d. g, PCA performed on joint profiles during social interaction. 
h, Individual occupancy differences across the four groups are shown for four example joint 
behaviors.   
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Supplementary Figure 14. Estimating social touch with skeletal registration and 
deformable mesh models. A) Schematic of skeletal registration. STAC iteratively 
optimizes a set of learned offsets that relate points on a skeletal model to keypoints and the 
joint angles of the skeletal model that best explain the keypoint positions. B) The distribution 
of average registration errors for all keypoints across sessions. Blue lines indicate the 
median, box limits indicate the 25th and 75th percentiles, whiskers indicate the maximal 
point up to 1.5 times the interquartile range from the nearest box limits. C) Schematic 
depicting the definitions of body parts used for manual contact labeling. D) Balanced 
accuracy of contacts estimated with the deformable mesh relative to manual contact 
labeling for all body part pairs. E) Average balanced accuracy of contact quantification 
methods and human labelers. Balanced accuracy is the average of the true positive rate 
(the fraction of contacts that were correctly identified) and the true negative rate (the fraction 
of non-contacts that were correctly identified). The keypoints method defined contacts as 
any time in which two keypoints on social partners were within 30 mm of one another (see 
methods). Interlabeler balanced accuracy was the average accuracy between all pairs of 
distinct human labelers. Intralabeler accuracy was the average balanced accuracy of 
human labelers labeling the same data on two different days. The skin model achieves a 
balanced accuracy greater than both the keypoints approach and the accuracy between 
labelers. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
Supplementary Figure 15: Touch profiles by social cluster. a, Joint clustering with high-level 
category labels. b, Variance explained per PC on 14-dimensional (coarse/reduced body map) 
normalized touch densities for animal1/animal2. c, Fraction of time touching for likely-touch 
(touching >= 10% of the time) clusters on PC axes (refer to Fig. 5). d, Loadings onto first 3 PC 
axes for social clusters (non-touch clusters outlined in gray).  
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Supplementary Figure 16: Summary of comparisons for ASD model rat cohorts. a, LME 
model fits were performed on condition- and identity- shuffled data from the WT and 
amphetamine social experiments. 10000 trials were run with different permutations of group 
assignment to action cluster usage profiles and the histogram of resulting p-values is reported.  
b, Individual behavior usage was calculated for data shuffled as in a and the pooled p-values 
across all behaviors are reported. c, p-values for b following a Benjamini-Hochberg False 
Discovery Rate (BHFDR) correction. d, p-value histogram for a single behavior from the shuffled 
comparison described in b is plotted. e, p-values for e following a BHFDR correction. f, 
Difference and fold change for action cluster usage for each ASD knockout model as compared 
to wild-type littermates for lone behavior. g, Difference and fold change for action cluster usage 
for each pair of knockout animals as compared to wild-type littermates during social interaction. 
h, Difference and fold change for joint cluster usage for each ASD knockout model as compared 
to wild-type littermates during social interaction. i, Fraction of time with any contact between 
fitted deformable mesh bodies during interaction across ASD model strains. Significance is 
indicated after fitting a LME model for each comparison, p < 0.05. 
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Supplementary Figure 17: Body-scaled embedding comparison. a, A dataset was 
constructed from all lone mouse recordings, plus a copy with the distance between keypoints 
scaled up by 15% to test the effect of un-normalized body scale differences on behavioral 
mapping. b, A single behavior map was produced using this dataset, and the total density (left) 
and difference between the unscaled and scaled densities is shown. c, Matrix quantifying the 
fraction of samples in the 1.15x dataset that are assigned to the same clusters as original 1x 
samples. Color bar represents the fraction of 1x cluster samples. d, Example traces of three 
different features, showing how they are affected by body scale. e, Cumulative distribution 
function of paired distances between each 1x sample and its 1.15x scaled version.    
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Supplementary Figure 18: Long Evans wild-type and amphetamine detailed behavior 
sheet. All raw usage for action and joint clusters is reported. Average differences from mean 
wild type behavior for each animal are shown for each context. Raw touch for wild-type (WT), 
amphetamine (AMPH), and partner (PART) are shown, along with differences from average 
wild-type usage along the body for AMPH and PART trials. The difference in total touch for 
amphetamine-dosed and wild-type recordings for each body part is shown and significance is 
indicated with an asterisk. Mutual information calculated for WT/WT and AMPH/PARTNER 
pairings and differences between the two are shown. Summary of findings is reported.  
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Supplementary Figure 19: ARID1B and wild-type littermate detailed behavior sheet. All 
raw usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.  
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Supplementary Figure 20: CHD8 and wild-type littermate detailed behavior sheet. All raw 
usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.   
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Supplementary Figure 21: CNTNAP and wild-type littermate detailed behavior sheet. All 
raw usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
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WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.  
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Supplementary Figure 22: FMR1 and wild-type littermate detailed behavior sheet. All raw 
usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.   
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Supplementary Figure 23: GRIN2B and wild-type littermate detailed behavior sheet. All 
raw usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
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WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.   
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Supplementary Figure 24: NRXN1 and wild-type littermate detailed behavior sheet. All raw 
usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.  
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2024. ; https://doi.org/10.1101/2024.09.27.615451doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.27.615451
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 
 
Supplementary Figure 25: SCN2A and wild-type littermate detailed behavior sheet. All raw 
usage for action and joint clusters is reported. Average differences from mean wild type 
behavior for each recording are shown. Raw touch and difference for wild-type (WT) and 
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knockout (KO) are shown. The difference in total touch for WT and KO recordings for each body 
part is shown and significance is indicated with an asterisk. Mutual information calculated for 
WT/WT and KO/KO pairings and differences between the two are shown. Summary of findings 
is reported.  
 
Supplementary Table 1: List of each animal from each cohort with number of experimental 
recordings summarized for each context. This table contains all ratID and genotype information, 
all dyad pairings for which data is available, and total time captured for each group and context. 
Mouse dyad information is summarized on a separate sheet.  
 
Supplementary Table 2: Manual annotation was performed on randomly sampled snippets of 
wire-frames from each class obtained by behavioral clustering. This resulted in a detailed 
description, as well as a one of 9 broader class labels. Here we provide each set of labels for all 
LLACs. Classes are sorted first by their high-level categories and then within each category by 
the median centroid velocity across classes. We report mean values for the select feature 
clusters shown in Supp. Fig. 8 for each action class. The mean value for each of 421 features 
used in the high-dimensional vector describing posture and movement used for clustering is 
recorded for each action cluster on a separate sheet. Additional sheets detail the descriptions 
used for manual annotation of clusters, the embedding parameters used for the action 
embedding, and the description of all features used in the action embedding.  
 
Supplementary Table 3: Manual annotation was performed on randomly sampled snippets of 
wire-frames from each joint class (LLJC). Each class was assigned a description as well as 
assigned to one of 7 broader class labels. Here we provide each set of labels for all LLJCs. 
Classes are sorted first by their high-level labels and then by the median inter-animal distance. 
We report mean values for the select feature clusters shown in Supp. Fig. 8 for each joint class. 
The mean value for each of 194 features used in the high-dimensional vector describing joint 
posture and movement of dyads used for clustering is recorded for each joint cluster on a 
separate sheet. Additional sheets detail the descriptions used for manual annotation of clusters, 
the embedding parameters used for the joint embedding, and the description of all features 
used in the joint embedding.  
 
Supplementary Table 4: All comparisons broken down by groups, context, type of clustering 
(individual or joint) with reported test statistics, p-values from FDR-corrected Linear mixed 
effects models, number of clusters significantly up- or down- regulated, and a summary of 
increases and decreases based on high-level annotations.  
 
Supplementary Video 1: s-DANNCE acquisition, tracking, and volumetric fitting. Top left, 
ample representative clip of social interaction in rat dyad recordings. Top right, 2D reprojection 
of s-DANNCE tracked keypoints on single-camera view. Bottom left, 3D keypoint representation 
for movie snippet. Bottom right, deformable mesh model overlay visualized for corresponding 
movie frames.  
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Supplementary Video 2: Tracked keypoints for animals from five sets of experimental 
recordings obtained using s-DANNCE. First, tracked keypoints from six lone wild-type Long 
Evans rats across five days, day 4 indicates acute dosing with 1.25mg/kg amphetamine twenty 
minutes prior to recording. Second, WT-WT social pairings across wild-type rats. Third, acute 
amphetamine dosing experiments from the same wild-type cohort where one animal was dosed 
with 1.25 mg/kg amphetamine twenty minutes prior to recording. Fourth, tracked keypoints from 
six littermates from the SCN2A cohort, where knockout animals are indicated. Fifth, SCN2A 
knockout and wild-type littermates during social interaction.  
 
Supplementary Video 3: Visualization of multi-scale behavioral mapping and clustering 
introduced in this manuscript. For a rat dyad recording, kinematic tracks from each individual 
are independently embedded into the individual or animal autonomous map to label each frame 
with an LLAC (low-level action class). Separately, the kinematics and shared features of the 
interacting animals are embedded from the perspective of each animal to label each interacting 
with a LLJC (low-level joint class).  
 
Supplementary Video 4: Examples from the catalog of low-level action classes (LLACs) and 
low-level joint classes (LLJCs). First, eight examples of individual LLACs are shown, along with 
their corresponding high-level labels (HLACs). 16 3D reconstructions of tracked rat skeletons 
are translationally and rotationally aligned to best show the movements captured by each class. 
Next, examples from seven LLJCs are shown, one example from each of the high-level joint 
classes (HLJCs). For each of the nine instances from each social class shown, the principal or 
‘perspective’ rat is shown with colored markers, and the partner with black markers.  
 
Supplementary Video 5: A sample clip of social interaction with corresponding behavioral 
labels for both individual animal action classes (HLACs) and the joint social interaction classes 
(HLJCs). 
 
Supplementary Video 6: Examples of the extension of 3D kinematics tracking by s-DANNCE 
to rat triplets, mouse dyads, and in dyads placed in an arena with bedding.   
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