
Submitted 26 March 2014
Accepted 15 May 2014
Published 29 May 2014

Corresponding author
Carlos Bustamante,
c.bustamantediaz@uq.edu.au

Academic editor
Gavin Stewart

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.416

Copyright
2014 Bustamante et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Biogeographic patterns in the
cartilaginous fauna (Pisces:
Elasmobranchii and Holocephali) in the
southeast Pacific Ocean
Carlos Bustamante1,2, Carolina Vargas-Caro1,2 and Michael B. Bennett1

1 School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
2 Programa de Conservación de Tiburones (Chile), Valdivia, Chile

ABSTRACT
The abundance and species richness of the cartilaginous fish community of the con-
tinental shelf and slope off central Chile is described, based on fishery-independent
trawl tows made in 2006 and 2007. A total of 194,705 specimens comprising 20
species (9 sharks, 10 skates, 1 chimaera) were caught at depths of 100–500 m along
a 1,000 km transect between 29.5◦S and 39◦S. Sample site locations were grouped
to represent eight geographical zones within this latitudinal range. Species richness
fluctuated from 1 to 6 species per zone. There was no significant latitudinal trend for
sharks, but skates showed an increased species richness with latitude. Standardised
catch per unit effort (CPUE) increased with increasing depth for sharks, but not for
skates, but the observed trend for increasing CPUE with latitude was not significant
for either sharks or skates. A change in community composition occurred along the
depth gradient with the skates, Psammobatis rudis, Zearaja chilensis and Dipturus
trachyderma dominating communities between 100 and 300 m, but small-sized,
deep-water dogfishes, such as Centroscyllium spp. dominated the catch between 300
and 500 m. Cluster and ordination analysis identified one widespread assemblage,
grouping 58% of sites, and three shallow-water assemblages. Assemblages with low
diversity (coldspots) coincided with highly productive fishing grounds for demersal
crustaceans and bony fishes. The community distribution suggested that the differ-
ences between assemblages may be due to compensatory changes in mesopredator
species abundance, as a consequence of continuous and unselective species removal.
Distribution patterns and the quantitative assessment of sharks, skates and chimaeras
presented here complement extant biogeographic knowledge and further the un-
derstanding of deep-water ecosystem dynamics in relation to fishing activity in the
south-east Pacific Ocean.

Subjects Aquaculture, Fisheries and Fish Science, Biodiversity, Biogeography, Ecology,
Marine Biology
Keywords Shark, Chimaera, Skate, Diversity, Trawling, CPUE, Chile, Chondrichthyes

INTRODUCTION
Cartilaginous fishes play an important role as top predators and have complex distribution

patterns (Wetherbee & Cortés, 2004), affecting the structure and function of marine

communities through interactions with other trophic links in food webs to which they
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belong (Ferretti et al., 2010). Spatial distribution patterns of marine fishes in the south-east

Pacific Ocean are poorly understood, and most studies of demersal communities have

focused on the ecology of continental shelf fauna at depths of between 20 and 150 m

(Brattström & Johanssen, 1983; Ojeda, 1983; Carrasco, 1997; Ojeda, Labra & Muñoz, 2000;

Camus, 2001; Sellanes et al., 2007). Descriptions of geographical patterns of marine fishes

have been restricted to littoral species (Mann, 1954; Pequeño, Rucabado & Lloris, 1990), and

based on regional inventories (Ojeda, Labra & Muñoz, 2000). A general lack of quantifi-

cation of species abundance limits our understanding of the functional biodiversity of the

continental shelf of Chile (Pequeño, 1989; Bustamante, Vargas-Caro & Bennett, in press).

Chile has a cartilaginous fish fauna that is relatively rich when compared with

warm-temperate countries in South America (Bustamante, Vargas-Caro & Bennett,

in press), but poor in the global context despite having one of the largest maritime

territories in the world (Cubillos, 2005). Species checklists and biological observations

constitute the first approaches in the study of the cartilaginous fish fauna in the Chilean

marine ecosystem and there are a number of studies that have reported on elasmobranch

species around the central and southern continental shelf, from both fishery-dependent

and -independent surveys (Meléndez & Meneses, 1989; Pequeño, 1989; Pequeño, Rucabado

& Lloris, 1990; Pequeño & Lamilla, 1993). In northern Chile, bycatch analysis of the

crustacean trawl fishery has contributed to knowledge of the continental slope ecosystem

through the description of biological diversity, composition and structure of the demersal

fish fauna over a wide depth range (Sielfeld & Vargas, 1999; Acuña et al., 2005; Menares

& Sepúlveda, 2005). While fishery-dependent studies offer a description of diversity

and species assemblages of cartilaginous fishes, using catch per unit effort (CPUE) as a

proxy for abundance (Acuña et al., 2005), they generally lack the ability to adequately

identify or provide quantitative information on species richness, abundance hotspots and

conspecific assemblages that are required for a better understanding of marine ecosystem

interrelationships (Kyne & Simpfendorfer, 2007).

The aim of the present study is to analyse abundance and species richness of

cartilaginous fishes of the continental shelf and slope in Chile to identify patterns in

the geographical and bathymetric distribution of sharks, skates and chimaeras in the

south-east Pacific Ocean to complement existing biogeographic models, and improve the

understanding of deep-water ecosystem dynamics in the context of fishing activities.

MATERIAL AND METHODS
Data were collected through direct observation of total catch on fishery-independent

surveys made along the Chilean continental slope and shelf as part of a broader project

to assess the biological and oceanographical characteristics of the Chilean seafloor (Melo

et al., 2007). Surveys were carried out on-board two fishing vessels, “Crusoe I” and “Lon-

quimay”, equipped as oceanographic research platforms. Fishing gear comprised a bottom

trawl constructed from 3 mm diameter polyamide nylon with 50 mm stretch-measured

diamond-mesh in the tunnel and cod-end. The trawl had a 24 m headrope, a 28 m

footrope, and a stretched circumference of 34 m with an average net opening during
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Figure 1 Study area. Map of (A) Chile showing location of study area (inset box) and (B) location of
zones (Z1 to Z8) and sampling sites (circles). Commercial trawl intensity is indicated in (B), in terms of
tows per nautical mile (nmi). Modified after Melo et al. (2007).

tows of 11 m. Tows lasted 18–53 min at a speed of 3.7 km h−1 which resulted in a swept

area of 12.2–35.9 km2. Geometric construction of fishing gear and tow speed were used to

calculate CPUE which was standardised as individuals per hour and square kilometre

swept (ind km−2 h−1). For each species, CPUE data were calculated separately and

log-transformed (Log (CPUE + 1)) in order to assess the departure of original data from

normality. Geographic coordinates and depth of each trawl were recorded for each tow.

A total of 128 tows were made in 32 sites grouped in eight regions, numbered from

north to south as zones 1 to 8, that span approximately 1,000 km between the latitudes

29.5◦S and 39◦S (Fig. 1). Survey data were collected from sites in four depth strata

(labelled as A: 100 and 199 m, B: 200–299 m, C: 300–399 m and D: 400–499 m) with four
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pseudoreplica tows in each site (16 tows per zone with 4 tows per site). Zones 1, 2, 4 and

5 were sampled in July/August 2006, zones 6, 7 and 8 in November/December 2006, and

zone 3 was sampled twice, in July 2006 and again in March 2007. Each site was recorded

and coded with the zone (1 to 8), depth strata (A to D) and pseudoreplica tow (numbered 1

to 4), i.e., tow coded as “1.A.2” represents the second tow made in zone 1, between 100 and

199 m depth.

This study was carried out in accordance with the “standards for the use of animals in

research” approved by the Animal Care and Ethics Committee of the Universidad Austral

de Chile (UACH/FIP 2005-61). Capture of fishes during this study was permitted through

Fisheries Undersecretariat Research Permit Number 1959-06, 2931-06 and 181-07 issued

by Ministry of Economy, Development and Tourism.

Community definition
All cartilaginous fishes captured during surveys were counted and identified to species.

A number of individuals caught (∼1%) were landed frozen to validate on-board

identification using diagnostic features described in literature (Compagno, 1984a;

Compagno, 1984b; Lamilla & Sáez, 2003; Lamilla & Bustamante, 2005; Ebert, Fowler &

Compagno, 2013). Species diversity was calculated from the number of species at each tow;

and compared using the Shannon diversity index (H according to Spellerberg & Fedor,

2003) by depth and zone.

Species richness (S) was calculated per depth stratum in each zone, and is defined

as the number of species within a specific number of individuals sampled (Kempton,

1979). Relative frequency of occurrence (FO) was determined for each species to explore

the variability of species’ occurrence along bathymetric and latitudinal gradients; and is

expressed as a percentage of occurrence of a species in relation to the total number of tows

within sites and zones. Three categories of FO were determined according to Solervicens

(1973): regular species, where FO = >50%; accessory species, where FO = 25–49% and;

incidental species, where FO = 10–24%. Latitudinal and bathymetric gradients of species

diversity of the major taxonomic groups (sharks and skates) were compared using analysis

of covariance (ANCOVA) with significance accepted at P < 0.05.

Community structure
Faunal assemblages and geographic patterns of cartilaginous fishes were determined

through a global similarity matrix. Species composition and abundance in each tow were

considered for the entire study area with CPUE values fourth-root transformed to balance

outliers (rare and abundant species). Sampling sites were sorted by an agglomerative

hierarchical cluster and through non-dimensional metric scaling (nMDS) considering

the global similarity matrix (Clarke, 1993; Clarke & Warwick, 1994). Log-transformed

CPUE values were used for hierarchical agglomerative clustering with group-averaging

linking, based on the Bray–Curtis similarity measure to delineate groupings with a distinct

community structure. A one-way ANOSIM was used to establish possible differences

between sampling site groups. Additionally, a SIMPER analysis was used to determine

the contribution of each species to the average Bray–Curtis dissimilarity between groups.
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Table 1 Taxonomic composition of samples analysed. Depth and latitudinal range of cartilaginous fishes caught during surveys.

Order Family Species Depth range (m) Latitudinal range (◦S)

Hexanchiformes Hexanchidae Hexanchus griseus (Bonnaterre 1788) 358–376 35–35.1

Squaliformes Etmopteridae Aculeola nigra de Buen 1959 262–492 29.4–36.5

Squaliformes Somniosidae Centroscymnus macracanthus Regan 1906 455 33.3

Squaliformes Etmopteridae Centroscyllium granulatum Günther 1887 262–482 33.2–38.9

Squaliformes Etmopteridae Centroscyllium nigrum Garman 1899 335–455 32–38.8

Squaliformes Centrophoridae Deania calcea (Lowe 1839) 362–492 29.5–38.9

Carcharhiniformes Scyliorhinidae Apristurus brunneus (Gilbert 1892) 443–461 34.5–36.5

Carcharhiniformes Scyliorhinidae Apristurus nasutus de Buen 1959 338–482 29.5–38.9

Carcharhiniformes Scyliorhinidae Bythaelurus canescens (Günther 1878) 237–492 29.4–38.9

Rajiformes Arhynchobatidae Bathyraja albomaculata (Norman 1937) 356–436 37.8–38.7

Rajiformes Arhynchobatidae Bathyraja brachyurops (Fowler 1910) 482 38.9

Rajiformes Arhynchobatidae Bathyraja multispinis (Norman 1937) 445 36.4

Rajiformes Arhynchobatidae Bathyraja peruana McEachran & Miyake 1984 243–492 29.6–38.9

Rajiformes Arhynchobatidae Psammobatis rudis Günther 1870 240–475 32–38.8

Rajiformes Rajidae Gurgesiella furvescens de Buen 1959 362–484 29.4–32

Rajiformes Rajidae Zearaja chilensis (Guichenot 1848) 159–476 33.3–38.7

Rajiformes Rajidae Dipturus trachyderma (Krefft & Stehmann 1975) 234–482 32–38.9

Rajiformes Rajidae Rajella sadowskii (Krefft & Stehmann 1974) 475 33.4

Rajiformes Torpedinidae Torpedo tremens de Buen 1959 149–376 34.5–38.9

Chimaeriformes Chimaeridae Hydrolagus macrophthalmus de Buen 1959 430–483 29.6–37.8

All indices and statistical procedures were made using software PRIMER v.6.0 (Plymouth

Marine Lab, Plymouth, UK).

RESULTS
From 32 sites sampled, the total catch was 194,705 cartilaginous fishes from the 76 towsthat

contained specimens, of which 2,725 individuals were landed and examined. In 52 tows

(40.6% of the total) there was no catch of cartilaginous fishes and were thus excluded from

the remaining analysis. A total of 20 species (nine sharks, ten skates and one chimaera)

was confirmed (Table 1). Note, that for the purpose of the current study the term ‘skate’

includes Torpedo tremens. Bathymetrically, the shallowest depth stratum (100–199 m) and

latitudinally, the northernmost zone (zone 1) yielded the lowest percentage occurrence of

cartilaginous fishes caught in 3.13% and 37.5% of tows respectively (Table 2). The greatest

number of species caught per family was five, in the family Arhynchobatidae, followed by

the families Rajidae (four species), Etmopteridae and Scyliorhinidae (both three species).

The Hexanchidae, Somniosidae, Centrophoridae, Torpedinidae and Chimaeridae were

each represented by a single species (Table 1).

Community definition
Species richness fluctuated between one and six species per site with no significant

differences between sharks and skates in slopes of the regression (ANCOVA; F = 0.826;

df = 1,117; P = 0.365; Fig. 2), but there were significant differences in the intercepts
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Table 2 Summary of the sampling design. Percentage of tows with cartilaginous fishes in the catch,
species richness (S) and total number (N) of cartilaginous fishes caught in each zone and depth stratum.

Zone Catch (%) S N

1 37.5 7 2,921

2 56.25 10 14,871

3 56.25 11 12,199

4 62.5 11 15,058

5 68.75 10 23,224

6 56.25 12 60,651

7 75 12 47,862

8 62.5 12 17,919

Depth stratum (m) Catch (%) S N

100–200 3.13 2 203

200–300 65.63 8 18,907

300–400 78.13 14 58,597

400–500 90.63 18 116,998

(ANCOVA; F = 24.972; df = 1,117; P > 0.001). There was no significant relationship

between species richness and latitude for sharks, but species richness for skates increased

with increasing latitude (Figs. 2A and 2C). Chimaeras were absent in the catch from

zones 6 and 8, but occurred in the other six zones (Fig. 2E). Species richness increased

significantly with depth for sharks, but not for skates (Figs. 2B and 2D). The slopes and

intercepts of the regressions were significantly different (ANCOVA, F = 17.06; df = 1,117;

P > 0.001 and F = 13.954; df = 1,117; P > 0.001, respectively). Chimaeras were restricted

to 430–480 m within the deepest depth stratum, and were observed off most of the central

coast of Chile, between approximately 29.5◦ and 37.5◦S (Figs. 2E and 2F).

The CPUE per site ranged widely, from 5.5 to 2,785 ind km−2 h−1 among individual

sites and 728 to 7,942 ind km−2 h−1 among zones (Table 3). Log-transformed CPUE

increased with latitude for both sharks and skates, although the slopes of the regressions

were not significantly different (Figs. 3A and 3C). Based on latitude, the ANCOVA did

not reveal significant differences in slope (F = 0.412; df = 1,117; P = 0.523), but did in

elevation between sharks and skates (F = 43.942; df = 1,117; P > 0.001). There was a

significant effect of depth on the CPUE for sharks, but not for skates (Figs. 3B and 3D), and

there was a significant difference between the slopes and elevations of the regressions

(ANCOVA; F = 19.59; df = 1,117; P > 0.001; F = 31.12; df = 1,117; P > 0.001,

respectively). For chimeras, the CPUE was generally low across the species’ latitudinal

range (Fig. 3E).

Diversity index (H) was not influenced by latitude for sharks, but increased significantly

for skates (Fig. 4; ANCOVA; F = 5.056; df = 1,117; P = 0.263) and the intercepts were

significantly different (ANCOVA; F = 15.92; df = 1,117; P > 0.0001). Values of H for

sharks averaged approximately 0.6 across the eight zones, but showed high variability

among sites in each zone (Fig. 4A). For skates, there were zero-values for H in all zones,
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Figure 2 Variation of species richness in cartilaginous fishes. Latitudinal and bathymetric changes
of species richness of sharks (A–B), skates (C–D) and chimaeras (E–F) across the study area. Fitted
least-square regression model (solid line) and statistical significance are indicated in each case.

particularly zone 1, but values of up to approximately 1.1 also occurred at sites in the

central and southern zones (Fig. 4C). Significant differences were observed in the slopes

and intercepts of the regression between sharks and skates based on depth (ANCOVA;

F = 15.35; df = 1,117; P > 0.001 and F = 8.40; df = 1,117; P > 0.001). Diversity index

for sharks was markedly higher in waters over about 325 m deep, and was almost absent

in shallowed depth strata (Fig. 4B). Skate diversity varied considerably within most depth

strata and, overall, showed no significant trend with depth (Fig. 4D).

Three incidental species (Bathyraja multispinis, Dipturus trachyderma, Torpedo

tremens) and two regular species (Psammobatis rudis, Zearaja chilensis), represent the

community at 200–299 m depth. Hexanchus griseous and T. tremens are regular species,

along with six accessory species in the 300–399 m depth stratum. Hexanchus griseus

was restricted to this stratum, whereas T. tremens was also captured at shallower depths.
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Figure 3 Variation in abundance of cartilaginous fishes in Chile. Latitudinal and bathymetric changes
of relative abundance (Log (CPUE + 1)) of sharks (A–B), skates (C–D) and chimaeras (E–F) across the
study area. Fitted least-square regression model (solid line) and statistical significance are indicated in
each case.

Centroscymnus macracanthus, Apristurus nasutus, Bathyraja peruana, Bathyraja albo-

maculata, Rajella sadowskii and Hydrolagus macrophthalmus were only found in the

deepest stratum (400–499 m), whereas there were nine other regular species that were

also represented in shallower strata (Table 5).

A taxonomic change in community composition occurred along the depth gradient.

Three skates, Psammobatis rudis, Zearaja chilensis and Dipturus trachyderma dominated

communities between 100 and 300 m accounting for >80% of total cartilaginous fish

CPUE, but as depth increased there was a major shift in community, as small-sized,

deep-water dogfishes, such as Centroscyllium spp. came to dominate the catch (Fig. 3,

Table 4). Other contributors to this species-complex change were relative reductions

in Bythaelurus canescens and small-sized skates (i.e., Psammobatis rudis and Gurgesiella

furvescens) (Tables 4 and 5).
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Table 3 Catch per unit effort of shark, skates and chimaeras per geographic zone. Abundance, as total
CPUE (ind km−2 h−1) of cartilaginous fishes caught during surveys in each zone (geographic location
of zones is indicated in Fig. 1).

Zone

Species 1 2 3 4 5 6 7 8

H. griseus — — — — 54.7 — — —

A. nigra 130 249.4 208 390 10 11 — —

C. macracanthus — — 9.2 — — — — —

C. granulatum — 770.6 109.9 259.8 64.7 4,611 1,730 577.6

C. nigrum — 257.5 752.6 363.8 2,845.1 1,639.8 435.7 5.2

D. calcea 15 54.7 68.5 37.8 41.5 28.4 122.1 85.1

A. brunneus 15 — — — — 15.5 326.3 206.7

A. nasutus — — — 30.6 — 59.2 — —

B. canescens 272.7 312.5 403.8 476.5 483.2 1084.4 361.4 160.5

B. albomaculata — — — — — — 14.5 5

B. brachyurops — — — — — — — 4.7

B. multispinis — — — — — 8.4 — —

B. multispinis 42.4 52 65.7 121.8 21.5 50.2 29 92

P. rudis — 32.7 71.0 38.5 192.2 77.1 154.2 14.9

G. furvescens 239.5 55.5 — — — — — —

Z. chilensis — — 9.2 — — 21 984.1 5

D. trachyderma — 55.8 — 127.8 159.3 336.2 100.6 395.3

R. sadowskii — — 38.2 — — — — —

T. tremens — — — 18.7 — — 10.1 4.4

H. macrophthalmus 14.2 17.6 9.2 15.2 63.9 — 5.9 —

Total 728.8 1,858.3 1,745.3 1,880.5 3,936.1 7,942.2 4,273.9 1,556.4

Community structure
Agglomerative hierarchical cluster analysis (Fig. 5) revealed four major fish assemblages

(I–IV) at similarity level of 40%, and one outlier. The ANOSIM showed that the four

assemblages were significantly separated from each other (n = 76, R Global = 0.68;

P > 0.01), with the outlier characterised by the presence of one single species (Bathyraja

peruana) with the lowest total CPUE (8.6 ind km−2 h−1). Geographically, assemblage I

grouped 11 sites located north of Coquimbo to Valparaı́so (zones 1–3, Fig. 1) and between

depths of 237 to 379 m, with an average of CPUE of 56.3 ind km−2 h−1 for 10 species

(5 sharks and 5 skates). This community was dominated by Centroscyllium nigrum that

comprised 34.3% of the CPUE, Bythaelurus canescens (22.2% CPUE) and Psammobatis

rudis (11.5% CPUE) (Table 5). Assemblage II included the largest number of sites (45),

taxa (20) and specimens (average CPUE = 475 ind km−2 h−1). Sites in this assemblage

were scattered over the entire study area and occupied a depth range of 335–492 m.

Prominent species in this assemblage were C. granulatum (37.6% CPUE), C. nigrum

(28.5% CPUE), and B. canescens (15.9% CPUE) (Table 5). Assemblage III comprised 10

relatively shallow sites (149–262 m) in the most southerly zone offshore from Concepción,
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Figure 4 Variation in diversity of cartilaginous fishes in Chile. Latitudinal and bathymetric changes of
Shannon diversity index (H) of sharks (A–B) and skates (C–D) across the study area. Fitted least-square
regression model (solid line) and statistical significance are indicated in each case.

the second largest port in Chile. The skates Z. chilensis and D. trachyderma dominated this

assemblage of 6 species with 83.3% of the assemblage CPUE (158 ind km−2 h−1; Table 5).

Assemblage IV grouped 10 relatively shallow sites (243–281 m) located south of Valparaı́so

in zones 4, 5 and 6. This assemblage had the lowest diversity (5 species) and abundance

(39.9 ind km−2 h−1). Two species, Psammobatis rudis and C. granulatum, were the most

abundant species accounting for 63.4% and 20.4% of CPUE respectively (Table 6).

Ordination analysis (nMDS) produced similar results to cluster analysis with four

assemblages (Fig. 6). The outlier observed (zone 3, site B, tow 1) was a tow off Valparaı́so

apparently separated from other tows due to the presence of a single species (Bathyraja

peruana) with low abundance (8.5 ind km−2 h−1). SIMPER analysis showed low average

within-assemblage similarity of 29.9–38.6% for all assemblages. Two main consolidating

species, P. rudis and D. trachyderma were identified within each assemblage, and accounted

for 100% within-assemblage similarity in assemblage III; 59.4% in assemblage IV and

>6% in assemblages I and II, respectively. Unlike within-assemblage similarity, the

between-assemblage dissimilarity levels in all four assemblages were high, ranging

from 92.7 to 96.7%. Psammobatis rudis, Bythaelurus canescens, Centroscyllium nigrum

and Dipturus trachyderma, accounted for 80.7% of total (84.2%) dissimilarity between

assemblages I and III. Nine species together contributed 92.9% towards total (96.7%)

dissimilarity between assemblages I and II. Eight species were responsible for 91.9%

(95.1%) and 90.5% (94.3%) of total dissimilarity in both, assemblages II and III and

assemblages II and IV respectively. Finally, seven species contributed 92% towards total
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Table 4 Occurrence of shark, skates and chimaeras per geographic zone. Frequency of occurrence of
cartilaginous fishes caught during surveys in each zone (geographic location of zones is indicated in
Fig. 1).

Species Zone

1 2 3 4 5 6 7 8

H. griseus — — — — 100 — — —

A. nigra 7.2 27.6 20.1 43.2 0.8 1.2 — —

C. macracanthus — — 100 — — — — —

C. granulatum — 8.7 1.1 2.9 0.5 49.6 27.2 10

C. nigrum — 4.6 11.8 6.5 37.7 28.2 10.9 0.1

D. calcea 1.4 10.5 11.5 7.3 5.9 5.9 32.8 25.2

A. brunneus 0.9 — — — — 1.9 57.3 39.9

A. nasutus — — — 35.2 — 64.8 — —

B. canescens 4 9.1 10.3 13.9 10.4 30.3 14.7 7.2

B. albomaculata — — — — — — 72.6 27.4

B. brachyurops — — — — — — — 100

B. multispinis — — — — — 100 — —

B. peruana 4.3 10.4 11.5 24.5 3.2 9.6 8.1 28.4

P. rudis — 5.6 10.6 6.6 24.2 12.5 36.7 3.9

G. furvescens 68.4 31.6 — — — — — —

Z. chilensis — — 0.6 — — 1.4 97.5 0.5

D. trachyderma — 94.5 — 10.4 9.5 26.1 12.6 36.9

R. sadowskii — — 100 — — — — —

T. tremens — — — 18.7 — — 35.6 17

H. macrophthalmus 6.9 17 7.7 14.8 45.6 — 8 —

(93.4%) dissimilarity between assemblages II and III; while between assemblages III

and IV, Zearaja chilensis, Dipturus trachyderma, Psammobatis rudis and Centroscyllium

granulatum accounted for 91.9% of total (92.7%) dissimilarity.

DISCUSSION
Trawling has long been used to explore waters off the central-north and central-south

coasts of Chile in order to identify regions where benthic crustaceans and teleost fishes

of commercial interest occur in high abundance (Sielfeld & Vargas, 1999; Menares

& Sepúlveda, 2005). Currently, trawl-fishing effort is centred, but not restricted, on

squat lobsters (Cervimunida johni and Pleuroncodes monodon), deep-water shrimps

(Heretocarpus reedi), hakes (Merluccius gayi and M. australis) and Chilean horse mackerel

(Trachurus murphyi). The abundance of these target species is estimated through regular

trawl surveys to allow the fishing effort to be adjusted to achieve ‘maximum sustainable

yield’. A useful by-product of such surveys has been the production of species checklists

that have enriched knowledge of Chile’s national marine biodiversity (Pequeño, 2000;

Acuña et al., 2005). These extensive fishery-dependent and independent surveys, that

include cartilaginous fishes in the catch, are conducted annually in central Chilean waters

(c. 21.5–38.5◦S). For example, between 1994 and 2004, exploratory surveys for demersal

Bustamante et al. (2014), PeerJ, DOI 10.7717/peerj.416 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.416


Table 5 Catch per unit effort and occurrence of shark, skates and chimaeras per depth strata sam-
pled. Abundance, as total CPUE (ind km−2 h−1) and frequency of occurrence (FO) of cartilaginous
fishes caught in each depth stratuma.

Species CPUE FO

Depth stratum Depth stratum

A B C D A B C D

H. griseus — — 54.7 — — — 100 —

A. nigra — 4.1 45.8 948.1 — 0.4 4.6 95

C. macracanthus — — — 9.2 — — — 100

C. granulatum — 85.4 3,258.8 4,779.3 — 1.1 40.1 58.8

C. nigrum — — 1,541.1 4,758.6 — — 24.5 75.5

D. calcea — — 220.9 232.3 — — 48.7 51.3

A. brunneus — — 23.2 540.2 — — 4.1 95.9

A. nasutus — — — 89.8 — — — 100

B. canescens — 18.7 1,121.4 2,415.4 — 0.5 31.6 67.9

B. albomaculata — — 9.4 10.0 — — 48.4 51.6

B. brachyurops — — — 4.7 — — — 100

B. multispinis — — — 8.4 — — — 100

B. peruana — 61.1 214.2 199.3 — 12.9 45.1 42

P. rudis — 430.1 122.4 28.1 — 74.1 21.1 4.8

G. furvescens — — 38.4 254.3 — — 13.1 86.9

Z. chilensis 13.7 951.1 39.9 14.5 1.3 93.3 3.9 1.4

D. trachyderma — 375.4 431.2 278.5 — 34.6 39.7 25.7

R. sadowskii — — — 38.2 — — — 100

T. tremens 5.3 6.5 21.4 — 16.1 19.6 64.3 —

H. macrophthalmus — — — 126.0 — — — 100

Total 19.0 1,932.4 7,142.8 14,734.9

Notes.
a Depth strata are A, 100–199 m; B, 200–299 m; C, 300-0399; D, 400–499.

crustaceans comprised 6,143 trawl hauls made at depths of 100–500 m (Acuña et al., 2005).

Although 13 shark, 8 skate and 1 chimaera species were caught, published data are limited

to a simple indication of the latitudinal range for each species (Acuña et al., 2005). The

absence of quantitative data on the species’ abundance, particularly in respect of fishing

effort, location (latitude) and depth provides a challenge for management, whether for

exploitation or for conservation. It is also of relevance to note that these fishery-dependent

and independent surveys report on the diversity of animals from areas that are subject to

continuous and often intense fishing activity which is implicated in the decline in species

richness (Wolff & Aroca, 1995).

There has also been a number of fishing-independent studies, such as Ojeda (1983),

that reported the presence of 2 shark and 3 skate species from 118 hauls made at depths of

over 500 m on a trawl survey in austral Chile (52◦S–57◦S). Further north, 133 hauls made

between 31◦S and 41◦28′S at depths of 50–550 m produced 7 shark, 5 skate and 1 chimaera

species (Menares & Sepúlveda, 2005). In central Chile, Meléndez & Meneses (1989) reported

11 shark species from 173 hauls in exploration surveys using bottom trawl nets between
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Figure 5 Cluster of assemblages. Agglomerative hierarchical cluster indicating the clustering of the four assemblages. Site grouping is colour coded
and indicates 40% similarity. Sites are coded following zone (1 to 8), depth strata (A to D) and pseudoreplica (1 to 4).

Figure 6 nMDS of sites. Ordination in two-dimensions using non-dimensional metric scaling indicating
the clustering of the four assemblages. Sites grouping is colour coded and indicate 40% similarity. Colour
and site codes follows Fig. 5.

18◦S and 38◦30′S and at depths of 500–1260 m. In the most northerly survey, between

18◦S and 21◦S, the same gear type used over a wider depth range (30–1050 m) resulted in 4

shark, 4 skate and 1 chimaera species from 21 hauls (Sielfeld & Vargas, 1999). Each of these

studies, however, also lacked quantification of the catch and are therefore of limited value,

beyond providing information on the presence (or apparent absence) of species within a

geographic region.
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Table 6 SIMPER summary. Average abundance (ind km−2 h−1) and percentage of contribution per
species in each assemblage (n indicates the number of sites included per assemblage).

Species/Assemblage I (n = 11) II (n = 45) III (n = 9) IV (n = 10)

Avg. % Avg. % Avg. % Avg. %

H. griseus — — 1.2 0.3 — — — —

A. nigra 4.1 7.2 21.1 4.4 — — 0.4 1.0

C. macracanthus — — 0.2 0.0 — — — —

C. granulatum — — 178.5 37.6 1.1 0.7 8.1 20.4

C. nigrum 19.3 34.3 135.3 28.5 — — — —

D. calcea 1.4 2.4 9.7 2.0 — — — —

A. brunneus 1.4 2.4 12.2 2.6 — — — —

A. nasutus — — 2.0 0.4 — — — —

B. canescens 12.5 22.2 75.9 16.0 — — — —

B. albomaculata — — 0.4 0.1 — — — —

B. brachyurops — — 0.1 0.0 — — — —

B. multispinis — — 0.2 0.0 — — — —

B. peruana 2.5 4.5 8.9 1.9 4.1 2.6 — —

P. rudis 6.5 11.5 2.0 0.4 18.3 11.6 25.3 63.4

G. furvescens 2.8 4.9 5.9 1.2 — — — —

Z. chilensis 0.8 1.5 1.2 0.3 106.2 67.4 — —

D. trachyderma 5.1 9.0 16.3 3.4 26.8 17.0 5.7 14.2

R. sadowskii — — 0.8 0.2 — — — —

T. tremens — — 0.5 0.1 1.1 0.7 — —

H. macrophthalmus — — 2.8 0.6 — — — —

Community definition
The species richness observed in the current study (20 species), is higher than those found

in surveys conducted previously in the region (Ojeda, 1983; Meléndez & Meneses, 1989;

Sielfeld & Vargas, 1999; Ojeda, Labra & Muñoz, 2000; Acuña & Villarroel, 2002; Acuña

et al., 2005; Menares & Sepúlveda, 2005). Variation in the reported species richness of

cartilaginous fishes within the region among years may reflect the different gear types

used, different effort, different depths sampled, and species misidentifications (Pequeño &

Lamilla, 1993; Lamilla et al., 2010). While the species richness reported here is similar

to that reported by Acuña et al. (2005), the cartilaginous fish community appears to

differ between the two studies. Direct comparisons are somewhat speculative as while

our study provides quantification of the fauna in terms of CPUE and FO while the

results of Acuña et al. (2005) are limited to whether a species was present, in unreported

abundance. Nevertheless, a couple of thematic differences are apparent with small,

shallow-water skates (i.e., Psammobatis scobina, Sympterygia lima, S. brevicaudata and

Discopyge tschudii) absent in our study, while deep-sea skates of the genera Bathyraja

and Rajella were not caught in the earlier study (Fig. 7). These results suggest that, in

comparison to our study, (a) shallower waters may have been sampled, and (b) the fishing

effort in deeper waters was more limited in the study reported by Acuña et al. (2005).
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Figure 7 Diagram of abundance and latitudinal range of cartilaginous fishes in Chile. Latitudinal
distribution and abundance (Log (CPUE + 1)) of cartilaginous fishes present in the continental shelf
and slope of Chile. Solid lines represent species range reported by Acuña et al. (2005).

Bustamante et al. (2014), PeerJ, DOI 10.7717/peerj.416 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.416


Taken together, these two studies indicate that at least 30 cartilaginous fishes inhabit

(or did inhabit) the continental shelf and slope off central Chile; although some

species showed pronounced latitudinal variation in distribution (e.g., Aculeola nigra,

Centroscyllium nigrum, Gurgesiella furvescens) while in some others, the latitudinal

extension is not reported (i.e., Bathyraja peruana, Sympterygia brevicaudata, S. lima,

Discopyge tschudii).

Species abundance was highly variable between zones with the lowest abundance in the

north (zone 1). The abundance in the central and the most southern zones (2, 3, 4 and

8) was about double this value, in zones 5 and 7 it was four times as large and in zone 6

it was an order of magnitude greater. Interestingly, five species (e.g., Hexanchus griseus,

Centroscymnus macracanthus, Bathyraja brachyurops, B. multispinis, Rajella sadowskii)

were caught, mostly in low numbers, only within a single zone and within a single depth

stratum. The pattern of occurrence suggests that the species are naturally uncommon

or, more likely, that the trawl regime only sampled the upper end of their natural range

(Fig. 7). In contrast, two species (e.g., Apristurus nasutus and Hydrolagus macrophthalmus)

showed a marked preference for a particular depth stratum but occurred in more than one

zone. Others species showed an obvious latitudinal variation in abundance, for example,

Aculeola nigra was common in the north (zones 1–4), rare in central zones (5–6) and

absent in the southern zones (7–8); whereas, Psammobatis rudis and Dipturus trachyderma

showed the opposite trend. Both Centroscyllium species (C. granulatum and C. nigrum)

have a high abundance in central Chile and are less common in both north and south, and

appear to become extremely abundant with increasing depth. Between 300 and 500 m, the

diversity further doubled and the abundance of most species increased. With the exception

of two species (Zearaja chilensis and Torpedo tremens), all cartilaginous fishes were caught

at depths below 200 m and most increase their abundance with depth. This relative absence

of cartilaginous fishes in shallow waters (100–199 m) was both unexpected and difficult to

explain, and needs to be addressed in future studies.

Community structure
Species richness of cartilaginous fishes in the south-east Pacific has been described to

increase towards lower latitudes following the same geographic pattern of other marine

fishes (Meléndez & Meneses, 1989; Pequeño, Rucabado & Lloris, 1990; Rohde, 1992;

Pequeño & Lamilla, 1993; Camus, 2001); however, these observations are based on species

inventories without reference to latitudinal or bathymetric ranges which obviously can

have a marked influence on species distributions. Also, elasmobranch diversity in the

Atlantic and Pacific oceans have been described to decrease with depth, especially below

1,000 m depth (Pakhomov et al., 2006; Priede et al., 2006). Our results provided evidence

of an overall increase in species richness with increasing latitude and depth down to 500 m,

in contrast to a decrease in diversity with increasing latitude demonstrated by littoral fishes

(Ojeda, Labra & Muñoz, 2000), but similar to diversity gradients of benthic invertebrates

and in the Northern Hemisphere described by Rex, Stuart & Coyne (2000). In our study,

the latitudinal and bathymetric stability of assemblage II (Fig. 5), is consistent with a
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“transition intermediate area” as described by Camus (2001), and suggests that differences

between assemblages were due to compensatory changes in mesopredator abundance

(Navia et al., 2011). There is a correlation between the location of assemblages I, III and

IV and intensive trawl fishing areas (Wolff & Aroca, 1995; Escribano, Fernandez & Aranis,

2003; Acuña et al., 2005). Continuous and unselective removal of certain species by

commercial fisheries may explain in part the variation of species abundance among

assemblages.

At the community level, the main assemblage (II) was distributed across the entire

surveyed area comprising 58% of sites; and showed a high average dissimilarity to

assemblages I, III and IV (96.7, 95.1 and 94.3% respectively). Differences were mainly

due to the importance of small-sized sharks (Bythaelurus canescens, Centroscyllium

granulatum and C. nigrum), although diversity of small-sized skates also contributed

to overall dissimilarity. In our study assemblages I, III and IV represented ‘coldspots’ of

diversity, similar to those found along the outer shelf in south-west Atlantic cartilaginous

fish community (Lucifora et al., 2011). While those coldspots were simply defined as areas

of low diversity, in the current study coldspots coincide with traditional fishing grounds.

Commercial fisheries in Chile, in particular trawl-based activities, are likely to have a direct

effect on cartilaginous fish community structure and distribution as has been previously

documented for other marine fishes in central Chile (Arancibia & Neira, 2005).

Different levels of fishing pressure can generate multiple effects on the function of

species and their interactions (Navia et al., 2011). High species richness and abundance

represented in assemblage II, is consistent with a more stable community as high

biodiversity has been linked to the stability of trophic networks through the complex

interactions that arise among its components (Navia et al., 2011). In contrast, when there is

an external disturbance, in this case differential exposure to fishing pressure, the result may

be a complete reorganisation of the community (Bascompte, Melián & Sala, 2005).

Considering the overall species composition without counting rare species (defined

in relation to low species abundance), such as Echinorhinus cookei and Centroscymnus

owstonii, the absence of mid- to large-sized sharks is evident in our study (Fig. 7),

however fishing gear selectivity and species catchability may influence the frequency

of occurrence observed. Ferretti et al. (2010) described the ecological restructuring of

demersal elasmobranch communities in fishing areas worldwide. Diversity and abundance

of elasmobranchs erodes quickly as fisheries remove, unselectively, both small and large

species despite the lower catchability of the latter. As large sharks disappear from the catch

as fisheries develop, the community tends to become dominated by mesopredators. In

the current study these mesopredators are predominantly small-sized sharks, which are

more fecund and more resilient to fishing pressures than other elasmobranchs. Examples

of similar community restructuring have been documented for trawl fishing areas in the

Atlantic (Ellis et al., 2005), Gulf of Mexico (Shepherd & Myers, 2005), the Mediterranean

Sea (Ferretti et al., 2008) and Australian waters (Graham, Andrew & Hodgson, 2001);

although its extension to similar trawl fisheries elsewhere has not been properly evaluated

due to a lack of temporal and seasonal catch-composition data for elasmobranch species.
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Limitations and future directions
Previous research has identified two distinct biogeographic provinces based on multiple

taxa along the Chilean coast, the Peruvian province in the north (4◦–30◦S) and the

Magellanic province in the south (42◦–56◦S) (Camus, 2001). There is also an “intermediate

area” between these two provinces that has been described as a rich, mixed-origin

species’ transition zone for teleost fishes (Pequeño, 2000; Ojeda, Labra & Muñoz, 2000).

Considering the limitations of geographic scale, the single main biogeographic province

(assemblage II) that was identified between 29.5◦S and 38.5◦S only showed limited

evidence of species more usually associated with the Peruvian and Magellanic provinces.

Fishery-independent surveys allowed us to explore an extensive area, including

traditional commercial trawling zones and non-traditional fishing zones with similar

effort. It should be mentioned that the methodology used was designed to sample demersal

and bottom-dwelling species, and therefore the cartilaginous fish community’s definitions

used here effectively excludes species that occur in mid- to surface waters and likely

underestimates species richness (Pakhomov et al., 2006). Potential limitations of our

analysis include differential vulnerability to fishing gear, which could be species-specific

or relate to swimming performance or the size of individuals. The original experimental

design attempted to cover all zones during the same season but some were sampled

in separated cruises during summer and winter due logistical issues. Oceanographic

variability may influence species distribution and potential seasonal changes of abundance

and species richness need to be addressed in future research, especially at shallower depths

(100–200 m). Also, the sampling effort was not evenly distributed throughout the whole

of the latitudinal range with sites clustered within each zone; as such it is unlikely that all

habitat types were sampled. This may be important as rocky substrates and other irregular

habitats such as coral reefs and seamounts have been described as high diversity areas

(hotspots), especially for cartilaginous fishes (Henry et al., 2013).

The clusters of sample sites also resulted in a relatively low resolution ‘picture’, and

precluded a fine scale description of species’ distributions and abundance, and how these

might be influenced by local conditions (e.g., habitat type).

Our results provide a quantitative description of species richness and abundance

of the cartilaginous fish community on the outer continental shelf and slope of Chile

to complement and extend knowledge of biological and ecological interactions of

this demersal ecosystem. More than 90% of elasmobranch species worldwide inhabit

demersal ecosystems on continental shelves and slopes (Compagno, 1990), which makes

them vulnerable to trawl fishing (Shepherd & Myers, 2005) and we are just beginning to

understand the potential ecological consequences of removal and declines of cartilaginous

fishes. The information presented here is of immediate value in the assessment of the

conservation status of species and the threats to their populations posed by demersal

trawling. This study is also of particular value for future assessment of how natural or

anthropogenic activities may impact the various species by providing quantitative baseline

information against which change can be assessed.
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Guerrero Y, Bustamante C, Alarcón MA, Queirolo D, Hurtado F, Gaete E, Rojas P,
Montenegro I, Escobar R, Zamora V. 2007. Caracterización del fondo marino entre la III
y X Regiones (Informe Final FIP 2005-61). Valparaı́so: Pontificia Universidad Católica de
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