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Annexins: players of single cell wound healing and regeneration
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ABSTRACT
Cell life is defined by a thin 4 nm plasma membrane, which separates the interior of a cell from its
environment. Thus, disruption of the plasma membrane poses a critical risk to cells, which
requires immediate repair to avoid uncontrolled osmotic lysis and cell death. The initial repair
response to stop the leakage usually occurs within 10–45 s and implicates Ca2+-activated phos-
pholipid-binding proteins including annexins. We previously reported that annexin-induced cur-
vature of lateral membrane around the hole plays an important role for immediate resealing of
human cancer cells. Once the breach has been sealed, the cell often regenerates itself by
removing the damaged membrane. This process, which also involves annexins includes excision
and shedding of damaged membrane implicating the endosomal sorting complex required for
transport (ESCRT) III and actin cytoskeleton remodeling. Hence, studies of cell membrane repair
mechanisms should differentiate between the immediate repair response happening within
seconds and the subsequent regeneration phase, which occurs in the order of minutes to hours
after injury.
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The plasma membrane of eukaryotic cells constitutes
the “margin between life and death for individual
cells”[1]. Moreover, the plasma membrane in combina-
tion with the cytoskeleton defines the cell shape, facil-
itates cell-cell contacts and can anchor cells to the
surrounding extracellular matrix. It is therefore crucial
that the plasma membrane is kept intact, both for cell
survival and for the cell system as a whole to remain
well-functioning [2]. Once the cell has healed, it faces
the issue of regenerating damaged cellular structures
including the area around the injured membrane.

Focused research within plasma membrane repair
mechanisms started in the 1990s, which seems late giving
the fundamental importance of this mechanism for cell
viability [3]. However, the field is gaining increasing
attention. This is mainly driven by the association of
membrane repair with several diseases where the stron-
gest link between repair deficiency and disease pathology
is observed for muscular dystrophies that lead to gradual
muscle wasting and weakening [4,5]. On the other hand,
our findings reveal that cancer cells are a counterexample
to repair-deficient diseases, since they appear to be more
dependent on efficient plasma membrane repair to cope
with the physical stress imposed on them due to their
invasive behavior [6,7]. Importantly, novel biophysical

techniques to better address plasma membrane repair
mechanisms have been introduced lately and further pro-
moted research in this field.

Membrane integrity is governed by several repair
and regeneration mechanisms that are likely to be uti-
lized in combination depending on the kind of injury
imposed on the membrane. One important hallmark in
the repair response is influx of Ca2+ through the mem-
brane lesion due to a more than a thousandfold con-
centration gradient between the extracellular space and
the cytoplasm [8]. Ca2+ influx triggers the rapid recruit-
ment of repair proteins within 10–45 s to the injured
membrane [9]. This initial recruitment of Ca2+-
activated repair proteins such as annexins correlates
with the time frame needed to seal a membrane hole
to avoid excessive leakage of cell mass [10,11]. Thus,
the damage response can be considered as a two-phase
process: First, an immediate repair response to quickly
seal the hole, and secondly – a regeneration phase to
fully reestablish the membrane upon damage [12]
(Figure 1). Although mechanisms of single-cell regen-
eration upon injury are poorly characterized these pro-
cesses appear to depend on strategies to remove
damaged membrane by endocytic mechanisms and by
shedding of injured membrane.
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The cellular damage response can trigger the fusion
of intracellular compartments with each other and the
plasma membrane, which led to the patch hypothesis; it
suggests that intracellular organelles fuse to form an
impermeant patch at the damaged membrane [13].
While patching has been observed in large cell types
such as eggs and oocytes of echinoderms [14] and
amphibians [15] the process appears to be too slow
alone to account for the rapid initial resealing (within
10–45 s) observed in many mammalian cell types.
Moreover, we have not detected any patch formation
during repair of human cancer cells such as HeLa
cervix carcinoma and MCF7 breast carcinoma cells
[6]. Our results support an alternative model in mam-
malian cells where lateral recruitment of membrane
around the hole is used for resealing as reported from
a mouse model of dysferlin-deficient muscular dystro-
phy [16]. Here, the membrane necessary for resealing is
derived from the surrounding sarcolemma, enriched
and then fused at the wound site [16]. In line with
this, we have seen related repair responses implicating
the manipulation of wound edges and lateral mem-
brane in breast cancer cells upon wounding by ablation
laser [17]. This response involves several annexin
family members that upon injury to the plasma

membrane and Ca2+ influx are rapidly recruited to
the damaged membrane. To this end, we have assessed
the impact of nine annexin family members (ANXA1-
ANXA7, ANXA11, ANXA13) on supported membrane
patches with free edges – a model system relevant for
mimicking the condition around a membrane hole
[18]. Interestingly, we found that a common character-
istic of annexins is their ability to generate membrane
curvature on anionic membranes, which seems to be
important for their function during repair [18].

Upon plasma membrane injury, ANXA4 and ANXA6
are recruited to the damaged membrane and bind to and
in the vicinity of wound edges. Here, self-association of
ANXA4 into trimers induces out-of-plane curvature of
membrane edges, whereas ANXA6 appears to trigger in-
plane constriction of hole edges. The combination of
these forces acts to pull the membrane edges together
toward wound closure [17,19]. Moreover, we find that
several other annexin family members bind around the
injury site and may contribute by bending lateral mem-
brane and glue adjacent membranes together [20]. Thus,
the initial resealing response is likely orchestrated by
annexin family members that are recruited to the injured
membrane within the appropriate time frame (10–45 s)
for rapid resealing. Once the initial leakage is stopped, the

Figure 1. Model for plasma membrane repair in mammalian cells that discriminates between initial resealing and subsequent regenera-
tion. Injury to the membrane and influx of Ca2+ ions into the cytoplasm activate annexin proteins that are recruited to the damaged
membrane within 10-45 s. Here, ANXA4 and ANXA6 induce out-of-plane curvature and in-plane constriction, respectively, which in
collaboration with other annexin family members enriches lateral membrane and promotes wound closure. Upon initial resealing, cells
start to regenerate their membrane by shedding damaged membrane and/or by internalization (not shown). Excision of larger membrane
areas requires F-actin buildup, which is regulated by ANXA2 protein at the injured membrane. Smaller membrane pieces are shedded in
the form of ectosomes – a process that is facilitated by the ESCRT III complex. ANXA7 is needed to position and attach the ESCRT III
components ALG-2 and ALG-2-interacting protein X (ALIX) at the injured membrane during this phase.
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cell starts to regenerate and restructure the membrane
often by removing the initially damaged membrane via
shedding of damaged membrane and/or endocytosis
(Figure 1). Some annexins are involved in this phase as
well, and we have revealed that ANXA2 in a complex with
S100A11 facilitates local cortical F-actin polymerization,
which is required to excise the damaged part of the
plasma membrane[6]. Since ANXA2 is recruited early, it
probably serves a dual role by first facilitating curvature
and fusion of lateral membrane at the wound site, and
secondly to direct actin polymerization to restructure and
excise the wounded part of the membrane.

Our recent data show that another annexin, ANXA7,
which was the first annexin family member to be dis-
covered [21], is involved in regenerating the plasma
membrane upon damage [20]. Cells actively shed
damaged membrane by ectocytosis through the endo-
somal sorting complex required for transport (ESCRT)
III. The ESCRT III complex assembles spirally around
the damaged membrane followed by contraction, which
leads to shedding of membrane in the form of ecto-
somes. Here, the Ca2+-binding protein apoptosis-linked
gene-2 (ALG-2) is needed to assemble the ESCRT III
complex [22,23]. While ALG-2 lacks membrane-
binding capability we found that ANXA7 is used to
recruit and attach ALG-2 and ALG-2-interacting pro-
tein X (ALIX) to the damaged membrane. Thus,
ANXA7 can initiate the process of ESCRT III buildup
during the regeneration process to shed damaged mem-
brane [20].

Single-cell membrane repair is an intriguing research
field covering a wide panel of cellular processes, which
need to be swiftly coordinated to reseal a torn membrane.
However, how these processes are linked and regulated in
detail is still unclear and requires further exploration.
There seems to be some discrepancy between different
cell studies, which may simply reflect general cellular
plasticity, i.e. that different cell types repair differently.
Thus, more interdisciplinary research combining biophy-
sics with cell biology should provide better mechanistic
insight into this fascinating repair response.
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