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Abstract: In the past 20 years, the development of an artificial olfactory system has made great
progress and improvements. In recent years, as a new type of sensor, nanoelectronic smelling has
been widely used in the food and drug industry because of its advantages of accurate sensitivity and
good selectivity. This paper reviews the latest applications and progress of nanoelectronic smelling in
animal-, plant-, and microbial-based foods. This includes an analysis of the status of nanoelectronic
smelling in animal-based foods, an analysis of its harmful composition in plant-based foods, and an
analysis of the microorganism quantity in microbial-based foods. We also conduct a flavor component
analysis and an assessment of the advantages of nanoelectronic smelling. On this basis, the principles
and structures of nanoelectronic smelling are also analyzed. Finally, the limitations and challenges
of nanoelectronic smelling are summarized, and the future development of nanoelectronic smelling
is proposed.
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1. Introduction

Nowadays, increasing demand for food quality requires an efficient, convenient, and
reliable method for quality control in the food industry, and nanomaterials and structures
have broad development and application prospects in the field of olfactory systems [1].
Nanoelectronic smelling has become one of the most sought-after nanosensors due to its
excellent selectivity and precise sensitivity. Unlike conventional gas sensors, nanometer
electronic smelling can generate a unique response to certain gases through a sensor
array with a pattern recognition system to receive the acquisition of data, simulating the
human brain in analyzing smell. Not only that, but nanoelectronic smelling can also
be combined with a variety of other methods. For example, machine learning, pattern
recognition technology, principal component analysis, nearest Neighbor method (KNN),
partial least-squares, and artificial neural networks to build mathematical models, especially
in food-related industries, using data visualization to convey clear and efficient information
to usersthrough infographics such as charts. This will help users analyze and interpret data
and make it easier to access, understand, and use. Its advantages are that specific sensor
arrays can be designed according to specific smells, which greatly increases the accuracy
of data and makes it more convenient to build corresponding mathematical models for
prediction. Traditional gas sensors can only analyze a single gas substance, and if there is
interference bias, incorrect data will be obtained. The multi-sensor array of nanoelectronic
smelling can carefully analyze all kinds of odorous substances so that the error rate is
reduced. In the last two decades, nanoelectronic smelling has been known for its ability
to work with metal particles (such as Pt, Pd, RH, Pt-Y, Y, SC, Ag, Au,), 2D nanomaterials
(such as MoS2, WSe2), WO3, nanofibers (NFs), chemo resistors, phosphoric acid nanosheets
(PNS), single-arm carbon nanotubes (SWNT), and other nanomaterials [2]. Nowadays, the
application of nanoelectronic smelling in the food industry has become a research hotspot.
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In the field of food identification, to the ability to predict the quality, grade, and crop
maturity of food products just by smell has long been a challenge for researchers, and nano-
electronic smelling devices have multiple advantages, including high sensitivity, simplicity,
rapidity, small sample requirements, and excellent correlation based on sensory evaluation
data. Henike Guilherme Jordan Voss et al. [3] constructed a nanoelectronic smelling model
consisting of a sensor array of thirteen metal oxide semiconductor sensors to monitor the
growth cycle of peaches. Their nanoelectronic smelling model was used to build an expo-
nential model to describe the quality of peaches at different harvest periods, and the model
predicted with an accuracy of 85%. Therefore, this nanoelectronic smelling method may be
a good device for peach farmers to use to predict the harvest time of peaches and reduce the
losses incurred when peaches are harvested while still immature. Sara Gaggiotti et al. [4]
used nanoelectronic smelling based on an array of six quartz crystal microbalances (QCMs)
sensors with a modified QCMs sensor using peptide-functionalized zinc oxide nanoparti-
cles to analyze the quality of flour produced by different wheat-processing methods with
the main objective of detecting low or high furosine content to carry out the differentiation
between pasta samples of different commercial values. This study helps to differentiate
between high- and low-priced pasta products in the market and prevent consumers from
being defrauded. The simplicity and speed with which the identification can be done
without destroying the food product makes nanoelectronic smelling a great alternative
for quality control in the food industry. Different foods have different flavors and the
analysis of the flavor components that we love is troublesome. The emergence of nano-
electronic smelling not only allows for an analysis of the flavor components of food but
also the flavor characteristics of the food, for example, nanoelectronic smelling can analyze
the flavor components of cooked meats and smoked sausages or the grade of different
varieties of cocoa beans, tea, etc. Lu Wang et al. [5] The study was conducted using gas
chromatography-mass spectrometry and nanoelectronic smelling to analyze the volatiles of
sugarcane juice. Thirteen volatiles were analyzed and alcohol was found to be the main
volatile in sugarcane juice. This study evaluated the flavor of different varieties of sugarcane
using nanoelectronic smelling, which provides an effective identification pathway for this
industry. Jiahui Zhang et al. [6] analyzed the flavor components of golden pomfret fillets
treated by four methods: vacuum freezing, hot air, microwave, and vacuum microwave
using nanoelectronic smelling, prepared based on ten oxide semiconductors, and the re-
sults showed a total of 86 volatile flavor components. The main flavor components were
hydrocarbons, aldehydes, esters, and alcohols, and the hot air, microwave, and vacuum
microwave treatment methods resulted in a decrease in ketones and an increase in esters
in the fillets, whereas the vacuum-freezing treatment method resulted in more hydrocar-
bons and alcohols in the fillets, providing a reference for the treatment of golden pomfret.
Compared to a dog’s nose, nanoelectronic smelling is more accurate and reliable. It can
accurately distinguish the subtle differences in the flavor components of the same foods by
different processing methods and can also be combined with various analytical processing
methods to process the collected data. For example, Mahdi Ghasemi-Varnamkhasti et al. [7]
used nanoelectronic smelling based on a five-odor sensor array combined with principal
component analysis, linear discriminant analysis, SVM, partial least-squares, polymerase
chain reaction, and artificial neural network methods for the storage of French cheese,
laying the foundations for the application of nanoelectronic smelling in combination with
other methods. To sum up, the advantages of using nanoelectronic smelling are that it
combines good data correlation with high sensitivity that is based on the human sensory
panel for specific applications, such as easy to build food monitoring systems, real-time
detection, economic efficiency, online monitoring of volatiles, non-destructive technology,
and a shorter time required for analysis. The combination of various technologies and
nanoelectronic smelling for real-time-related systems has proved to be a reliable approach
for aroma and flavor quality assessment.

This paper describes the scheme of the applications of nanoelectronic smelling for
different food products in three categories: animal-based food, plant-based food, and
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microbial food. Table 1 shows the inefficiency of some data. This paper summarizes the
application scenarios of nanoelectronic smelling in recent years, as well as its limitations and
deficiencies in identifying different types of food. Figure 1 shows the content distribution of
the literature reviewed in this paper, in addition to the principles of nanoelectronic smelling
and its nanostructure. Finally, we summarize the existing constraints of nanoelectronic
smelling and analyze the prospects for future applications to provide ideas for research
into nanoelectronic smelling.

Table 1. Efficiency and inadequacy of existing data.

Insufficient Data Available Reference

Sampling too little data, if there is an emergency, errors may occur [4]

Specific sensor arrays can be designed for specific flavor components [6]

For large data analysis, experiments can be combined with principal component
analysis, partial least-squares method, and other methods to establish a specific

model for prediction
[7]
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2. Nanoelectronic Smelling: Analysis of Animal-Based Foods

In animal-based foods, such as chicken, fish, and pork, the state of the meat affects their
respective taste and flavor. Nanoelectronic smelling can be an efficient way to distinguish
the state of the meat, can be used to evaluate different grades of meat for consumer reference,
and can be used to analyze the flavor composition of cooked food such as sausages, braised
pork ribs, etc., to provide an effective flavor reference for the producers of these types of
food. Table 2 is a summary of the main substances affecting flavor in animal-based foods.

Table 2. Summary of main parameters of animal-based foods.

The Main Ingredients That Influence Flavor Reference

Aldehyde [8–16]

Alcohols [12–14,17,18]

Ketones [11,14,19,20]

Esters [11]

Phenolic [11]

Furan [11–13]

Sulfide [12,13,16]
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2.1. Flavor Composition Analysis of Animal-Based Foods by Nanoelectronic Smelling

Jie Shi et al. [8] proposed the feasibility of applying solid phase microextraction (SPME)-
gas chromatography-mass spectrometry (GC-MS) and electronic smelling techniques to
differentiate the braised short ribs from different regions. They first analyzed the braised
short rib samples for fatty acids, aromatic compounds, and volatile compounds using
GC-MS, and discussed that the moisture, protein, and fat contents in the ribs differed
greatly between regions, which might be due to the different cooking times in different
regions that result in the different moisture loss of the ribs, whereas the difference in
protein may be due to the source of the material as well as the cooking conditions. Protein
undergoes a Maillard reaction during cooking and oxidizes with fat to produce a meaty
flavor, forming the precursors of flavor (free amino acids). Electronic smelling was used to
analyze the aroma composition of the samples by W1S, W1W, W2S, W2W, W3C, W3S, and
W5C sensors (PEN3 Airsence, Schwerin, Germany), and a total of 183 volatile compounds
were analyzed. Hexanal, benzaldehyde, and nonanal were the major compounds found
in high concentrations in the braised pork ribs. The only volatile compound found in the
Guangdong sample was 4-Isopropylbenzaldehyde, which shows that it is not only the
cooking method or the source of ingredients that affects the flavor composition of braised
pork ribs, but also the addition of soy sauce, vinegar, ginger, chili, wine, and pepper in
different regions, e.g., ethyl acetate could be a volatile component due to the addition of
soy sauce or wine, and linalyl acetate is the main volatile component of the leaves and skin
of peppercorns.

Phenolic compounds, acids, furans, and pyrazines were all detected as the flavor
components in the braised short rib samples, and highly-enriched volatile components
based on the GC-MS analysis were closely associated with electronic smelling signals. As
shown in Figure 2, the response of each sensor in the nanoelectronic smelling process to
the different flavor components of the sample can be seen, such as W1C, W3C, and W5C
sensors, which are sensitive to hydrocarbons and aromatic compounds. In contrast, W1C,
W3C, and W5C signals were negatively correlated with the abundance of 1-methyl-4-(1-
methylvinyl) cyclohexene, 4-isopropylbenzaldehyde, 1-octene-3-alcohol, and 2-furanol.
Combining all the results, hexanal, nonanal, linalyl acetate, 2,5-dimethylpyrazine, and
2,3-octanedione showed a strong correlation with lipids, proteins, and fatty acids. Through
the solubilization, encapsulation, and release processes, these key compounds greatly affect
the overall aroma of braised short ribs. Nanoelectronic smelling can successfully identify
condiments such as soy sauce, vinegar, pepper, rice wine, ginger, and pepper in the samples,
supporting the idea that electronic smelling can be used to differentiate braised pork ribs
from different regions. The study takes advantage of electronic smelling inside different
sensor arrays to identify different flavor substances. This kind of nanoelectronic smelling
can be targeted to distinguish a particular kind of substance, which enables researchers to
study the foundations of flavor substances.

The desirable flavor of seafood products is one of the main reasons for controlling con-
sumption. Mengyue Hu et al. [17] used electronic smelling and gas chromatography-mass
spectrometry to analyze the flavor composition of shrimp from different processing meth-
ods. The study used nanoelectronic smelling based on ten metal oxide sensors, as different
sensors can respond to different volatile compounds. A total of 48 volatile compounds in
five categories of alcohols, aldehydes, nitrogenous compounds, hydrocarbons, and other
compounds were detected in the four shrimp samples studied. During testing it was found
that the aldehydes and alcohols in shrimp increased sharply after boiling and that a large
number of nitrogenous compounds were produced during drying.
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The W1S, W1W, W2S, and W2W sensors had strong and different responses to the aroma components
of the samples, indicating that braised ribs may contain high sulfides, terpenoids, alcohols, and
aromatic compounds. In the scatter plot, the samples from different regions were well-separated.

The results showed that the concentration of alcohols, as a mild characteristic odor,
changed significantly during the different processing methods [18]; volatile alcohols were
higher in the boiled shrimp than in the raw shrimp, and 1-octen-3-ol was found to be the
dominant alcohol after boiling followed by 2-ethyl-1-hexanol. Aldehydes were not detected
in the raw shrimp but five aldehydes were detected in the boiled shrimp: pentanal, hexanal,
octanal, E2-heptanol, and benzaldehyde, and eight chain or heterocyclic compounds were
detected in the dried shrimp samples, indicating a significant increase in aldehydes during
the drying of the shrimp. A total of thirteen hydrocarbons were detected in all shrimp
samples, including aliphatic hydrocarbons, branched alkanes, aromatic acids, and olefins.
The remaining volatile compounds included sulfur-containing compounds, esters, and
ketones, and the results indicated that these compounds did not contribute much to the
overall flavor, whereas 1-octen-3-ol with an odor activity value (OAV) value of 28.06 was
the strongest odor compound in the boiled shrimp samples. 1-octen-3-ol was identified as a
potent aromatically active compound in other culinary seafood with a mushroom odor. In
addition, the aldehydes and alcohols had a weaker effect on shrimp flavor and the pyrazines
had a stronger effect. Among these compounds, the most effective aromatically active
component in dried shrimp was 2-ethyl-5-methylpyrazine, which imparted a pleasant
roasted-nut flavor. In addition, 2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine also
contributed to the dried shrimp flavor. Therefore, in the analysis of the seafood products,
pyrazines are the main influencing factors of flavor, so nanoelectronic smelling should pay
more attention to pyrazines, followed by alcohols. Alcohols can provide seafood products
with other flavors in addition to their own flavor, by enriching the flavor of the products,
whereas esters and ketones are less important. This study demonstrates that boiling and
post-drying are important stages in improving the flavor quality of shrimp and provides a
good direction for processing and production for businesses that produce shrimp.

Nowadays, excessive intake of high-salt foods has become one of the most serious
health problems. to reduce the content of sodium chloride in food, In a study of salt-free
bovine bone protein extract (NS-BBPE) used to compensate for the salty sensation of healthy
low-salt foods, Dongyu Shen et al. [21] optimized the Maillard reaction and were able to
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detect the salty taste induced by the NS-BBPE odor using nanoelectronic smelling. The
study used nanoelectronic smelling equipped with a total of ten metal oxide sensors to
analyze the linear discriminant analysis (LDA) of the unsalted beef bone protein extract for
its overall level of aroma composition and found high levels of organic sulfides, terpenes,
alkane aromatics, and nitrogen oxides in the unsalted beef bone protein extract [22]. This
study is similar to Jie Shi et al.’s [8] research method, which further proved such research
methods to be very reliable.

This study aimed to prove that salt-free bovine bone protein extract can produce a salty
taste similar to that of sodium chloride, using an enzymatic Maillard reaction under the
following process conditions: a reaction temperature of 105 ◦C; a reaction time of 20 min;
and a reduction of sugar by 1 g; EH-NS-BBPE by 30 g; water by 10 g; and HVP by 5 g. This
finding may provide a replacement for the unpleasant taste caused by excess salt in foods
as well as improve the healthiness of food without affecting the taste.

Tilapia meat is an excellent source of protein and Jiahui Chen et al. [19] used nanoelec-
tronic smelling (Alpha M.O.S., Toulouse, France), headspace-SPME-gas chromatography-
mass spectrometry, and headspace-gas chromatography-ion monitoring systems to analyze
the aroma characteristics of tilapia from four heat treatment methods, i.e., microwave,
baking, steaming and boiling, which were used to show sensory differences in raw and
cooked tilapia meat. The study used Fox 4000 sensing array fingerprint (4000 sensing array
fingerprint) analyzer nanoelectronic smelling based on 18 metal oxide semiconductors. The
results showed that tilapia treated by steaming and microwave methods had similar flavor
components, that raw and baked fish had significantly different flavor components, and
that a total of 43 volatile organic compounds were identified the in raw and heat-treated
tilapia. Seven aldehydes, two ketones, five alcohols, one ester, twenty-two hydrocarbons,
and six other compounds were identified in the raw tilapia; 7 VOCs (two aldehydes,
five hydrocarbons) were identified in the microwaved tilapia; 16 VOCs (two aldehydes,
two ketones, three alcohols, seven hydrocarbons, and two other compounds) were identi-
fied in the roasted tilapia); 11 VOCs (two aldehydes, one ketone, four hydrocarbons, and
four other compounds) were identified in the steamed tilapia; and 13 VOCs (one aldehyde,
one ketone, and one alcohol) were identified in the boiled tilapia. These results indicate
that volatile compounds can be largely reduced in heat-treated fish. These analyses indicate
that tilapia treated by four different thermal processing methods possesses different aroma
characteristics, which is essential to understanding the effects of thermal processing on
the nutrients in food [20]. From the results, aldehyde, ketone, and alcohol are identified
as the main flavoring substances in fish, although the proportion of hydrocarbon is larger
only in the boiled fish samples. Studying the references and applications of nanoelectronic
smelling for analyzing the main flavoring substances in food also improves study efficiency.
This is essential for understanding the effects of thermal processing on the nutrients in
food. Furthermore, analyzing the changes in the volatile aroma substances of food by
different heat-treatment methods provides a reference for an understanding of the flavor of
aquatic-based foods and facilitates the processing and consumption of food products.

The type of wood is the most critical factor affecting smoke composition [9]. Using
nanoelectronic smelling, Xiaoyu Yin et al. [10] analyzed the volatile composition of Harbin
red sausages smoked using pearwood, oak, applewood, and beechwood chips. A total
of 87 volatile compounds, including alcohols, aldehydes, ketones, acids, esters, phenols,
terpenes, aromatic hydrocarbons, and sulfur-containing compounds, were detected in the
sausages smoked using different methods. Through an analysis of the results, the sausages
smoked using pearwood had a higher furfuryl alcohol content than those smoked using
oak or beechwood, whereas there was little difference with those smoked using applewood.
The applewood-smoked sausages had a higher furfural content than those smoked using
oak or beechwood, and it was found that the highest content of 2-hydroxy-3-methyl-
2-cyclopenten-1-one was found in the smoked sausage. In addition, 2-cyclopentenone,
2-methyl-2-cyclopenten-1-one, 3-methyl-2-cyclopenten-1-one, 2,3-dimethyl-2-cyclopenten-
1-one, 3-ethyl-2-cyclopenten-1-one, and 3-ethyl-2-hydroxy-2-cyclopenten-1-one were also
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detected, which are common in smoked meats. In the analysis of the individual sensors of
nanoelectronic smelling, it was found that the smoking process had a significant effect on
the volatile substances of Harbin red sausage; the change in the volatile compounds was
the main reason for the enhanced smoky odor, and the smoky odor of sausages smoked
using pearwood was more intense. This study provides a reference for distinguishing
different types of smoked meat products and provides directions for the type of wood chips
that can be used to smoke foods to make them more flavorful.

In the same study of smoked meat products, Lang Zhang et al. [11] investigated the
effects of sugar on the flavor characteristics of smoked chicken; the source of its smoked
flavor was mainly due to the caramelization of sugar at high temperatures that produces
volatile compounds. The pyrolysis products of sugar caramelization differed depending
on the smoking temperature and time, so it was important to select the appropriate smok-
ing time used to control the flavor of smoked meat products. In this study, 75 volatile
compounds including alcohols, aldehydes, acids, esters, phenols, furans, ketones, and
other compounds were detected in the smoked chicken samples by using EN3.5 (PEN3
Airsence, Schwerin, Germany) nanoelectronic smelling. The content of 1-octen-3-ol was
found to be the highest among the alcohols and increased with the increase in smoking time.
The presence of linalool gives the smoked chicken its fruity and mushroom-like aroma.
Other aldehydes include pentanal, hexanal, octanal, nonanal, (pent)2-octenal, furfural,
decanal, 5-methylfurfural, and p-anisaldehyde. The odor thresholds of the aldehydes were
generally lower than those of the other volatile compounds, and these aldehydes play
an important role in the overall odor of smoked chicken legs. Analysis using nanoelec-
tronic smelling revealed that acid compounds contribute little to the flavor of smoked
chicken and that among the ester compounds, high levels of vinyl propionate and methyl
2-furancarboxylate were found, which are key to the floral and fruity aroma. Phenolic
compounds have a strong influence on the formation of the smoky odor and are mainly
derived from cresol and eugenol, and (E)-2-methoxy-4-(prop-1-enyl) phenol, pentane-2-
methoxy-4-(prop-1-enyl) phenol along with other phenols give smoked foods a smoky and
pungent flavor. Furans are derived from the enolization and dehydration reactions of carbo-
hydrates, and the analysis of 2-acetylfuran, 2-methyl-benzofuran, 5-methyl-2-acetylfuran,
and 2-furfuryl-5-methylfuran found that these compounds give the smoked chicken a
sweet, fruity, and grassy flavor. Of the nine ketones detected, the levels of 3-octanedione,
acetophenone, 4-(5-methyl-2-furanyl) butan-2-one, and 3′-methylacetophenone were high,
with 3′-methylacetophenone having the greatest effect on odor, whereas acetophenone
gave the smoked chicken a roast coffee odor. The other seven compounds probably came
from the spices used in the cooking process and they contributed significantly to the overall
flavor. Out of a total of 75 volatile compounds, 18 volatile compounds were identified as
the key compounds affecting flavor.

On the whole, the methods used in the nanoelectronic smelling analysis of animal-
based food flavors are largely the same, using nanoelectronic smelling sensor arrays to
detect different flavor substances. All methods obtained accurate results, which not only
reflects the precision and speed of nanoelectronic smelling but also, to a certain extent,
reflects that nanoelectronic its robustness. One slight disadvantage is that the different
sensor arrays can only analyze specific and already-identified substances, so for substances
that are yet to be identified, researchers will not be able to utilize it, which is also a possible
direction for the future upgrade of nanoelectronic smelling applications.

2.2. Grading of Animal-Based Foods by Nanoelectronic Smelling

The objective evaluation of food is the key to differentiating food grades. Kang
Qian et al. [23] developed a portable nanoelectronic smelling system to differentiate three
grades of Chinese ham. The nanoelectronic smelling system has a sensing module with a
sensor array that works in a similar way to nasal cells to collect volatiles, coupled with a
server module and a cloud-stored database that works as a brain nerve to store and analyze
the collected signals, and which can be connected to a smartphone for easy control. It
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broadly contains three parts, sensor chamber, control module, and wireless communication
module, each of which can adsorb the target gas and transmit it to the smartphone through
the back-end and wireless communication module. The results of the ham analysis by
nanoelectronic smelling combined with the feature optimization method, showed that
nanoelectronic smelling was able to easily distinguish between three grades of ham and
had ideal performance in ham-grade prediction.In the future, the combination of electronic
smelling and the feature optimization method could potentially be used to identify other
agricultural products. This study combines nanoelectronic smelling with a smartphone,
which highlights the convenience of nanoelectronic smelling and paves the way for the
future popularity of nanoelectronic smelling.

Yuan Xu et al. [12] studied flavor differences in five different parts of Chinese cut
chicken (skin, breast, leg, head, and buttocks) using a nanoelectronic smelling array
equipped with 14 sensors, each sensitive to hydrogen sulfide, sulfide, alcohols, ketones,
aldehydes, and aromatic compounds, respectively. The analysis of the results revealed
137 volatile compounds, including 21 hydrocarbons, 7 aldehydes, 10 ketones, 53 alcohols,
10 esters, 6 furans, 11 acids, 15 miscellaneous compounds, and 4 sulfur-containing com-
pounds. Twenty-one hydrocarbons were also detected but did not contribute much to the
overall flavor due to the high odor threshold, whereas chicken breasts showed a high corre-
lation with volatile compounds such as 2-decenal, the-(C28), 3-heptanone, 5-methyl-(C34),
ester acetic acid, amyl ester (C96), propionic acid, hexyl ester (C99), furan 2(3H)-furanone,
5-butyldihydro-(C107), acid caproic acid, 2-ethyl-(C116), dichloromethane (C121), and
pyridine, 2-pentyl-(C128). In addition to2-heptanol (C56), 2(3H)-furanone and 5-ethyl-
dihydro-(C105) gave the chicken breast a pleasant, nutty aroma with a low aldehyde odor
threshold. Compounds such the(E)-2-octenal (C25), hexanal (C23), and 2-pentylfuran (C104)
were found to be the most abundant in the chicken breast samples. Aldehydes were found
to be the highest in chicken skin compared to others such as (E, E)-2,4-decadienal (C26) and
3-methyl-butyraldehyde (C22), which have the characteristic odor of cooked chicken oil.
Benzaldehyde is the key aroma produced by the Strecker reaction and is present only in
the head and breast of the chicken. Long-chain and branched-chain alcohols derived from
unsaturated fatty acids had a lower odor threshold and were present in greater amounts in
chicken skin (which also contained significant amounts of ethanol) but in lower amounts in
chicken breast. 1-octen-3-ol (C65), a compound characteristic of meat-flavored fats, was de-
tected only in the thigh and breast samples. Of the furan compounds, 2-ethylfuran (C102),
a well-known product of linoleic acid autoxidation, was found only in cooked chicken skin
and butter. Ketones, hydrocarbons, esters, and nitrogenous compounds contributed little to
the overall flavor due to their low concentrations and high thresholds, whereas hydrogen
sulfide and sulfur-containing substances were detected in chicken heads resulting in their
poor flavor. Overall, among the five parts of the chicken analyzed for flavor, chicken breast
had a better flavor that was acceptable to most consumers, and this study could cater to
consumer preferences by improving product quality and could also provide suggestions
for different consumer preferences. According to the results, when different parts of the
same food are studied using nanoelectronic smelling, specific flavor substances can be
classified and identified. For example, if the flavor of chicken skin is studied, the sensor
array for identifying aldehydes can be focused on. It is a challenge for nanoelectronic
smelling to discriminate between different parts of the chicken, and since there are only
a few differences in the flavor substances of the different parts of the same chicken, the
analysis becomes much more difficult for nanoelectronic smelling but further proves the
accuracy of nanoelectronic smelling methods.

Pork has long been a staple food. Dong Han et al. [13] used nanoelectronic smelling to
identify pork from three different breeds of Tibetan, Sanmenxia, and Duroc pigs. An analy-
sis of the results detected 61 volatile compounds including aldehydes, alcohols, ketones,
esters, aromatics, hydrocarbons, furans, nitrogenous compounds, and sulfur compounds.
Aldehydes were the most abundant in the samples, followed by hydrocarbons and aromatic
compounds. The formation of aldehydes from fat through oxidative degradation was the
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main contributor to the distinctive flavor of cooked pork. Eight aldehydes were detected in
the samples, including hexanal, heptanal, nonanal, hexadecanal, 5-2-octthel, (E)-2-nonenal,
and two phenyl-containing aldehydes, benzaldehyde, and 4-ethylbenzaldehyde. Hexanal
gave the pork a grassy athea and (E)-2-nonenal producd a fatty aroma. A total of seven
alcoholic compounds were detected in the samples: the alcohols 1-pentanol, 1-hexanol, and
1-octanol, as well as 1-octen-3-ol, 2-hethedecanol, (E)-2-octen-1-ol, and anisic brain. Among
these unstable factors, the compounds 1-octen-3-ol, thectanol, and (E)-2-octen-1-ol were
found in all three substances with various boiled pork products. 1-octen-3-ol gave the pork
a mushrootheike taste and (E)-2-octen-1-ol produced a green apple-like taste. Among the
three furan compounds detected, 2-pentylfuran, which had a fruity and buttery taste, was
the most abundant, and the two nitrogenous compounds, pyridine and 2-acetylpyrazine,
were significantly higher (p < 0.01) in boiled pork from porcine triceps brachii than in boiled
pork from porcine biceps femoris. In addition, 3-methylthiophene and benzothiazole were
very abundant in boiled meat from porcine biceps femoris. The detected aromatic com-
pounds did not contribute much to the pork flavor due to their high odor threshold. Pine
oil acetate and ethyl acetate were only found in Duroc pork and can be used to differentiate
between different breeds of pork. Two flavor murmurs, 2-pentyl flavor murmur and 2-ethyl
flavor murmur, impart a rubbery and sweet flavor to cooked pork, respectively. From
the nanoelectronic smelling analysis, out of the 61 volatile compounds found, 25 of them
were pork odor active compounds, and hexanal, nonanal, 1-octen-3-ol, dimethyl disulfide,
heptanal, 2-pentyl flavor murmur, and 2-ethylfuran were the main contributors to the
overall flavor of boiled pork, with their odor activity values (OAVs) ranging from 17.3 to
524.2 for the three pig breeds. Boiled pork was clearly distinguishable and 12 odor-active
compounds including (E, E)-2,4-decadienal, ethyl caproate, dimethyl disulfide, hexanal, 2-
acetylthiazole, (E)-2-nonenal, 1-0-octene-3-OI, (E, E)-2,4-nonenal, heptanal, (v)-2-octen-thel,
styrene, and (E)-2-octenal were identified as potential flavor markers. Overall, the volatile
compounds from different varieties of pork could be well-differentiated by nanoelectronic
smelling analysis, which is a potentially viable method for evaluating pork. Similar to the
study by Yuan Xu et al. [12], the discrimination of pork breeds provides a good reference
for nanoelectronic smelling in distinguishing food grades, sources, and parts.

Zelin Duan et al. [14] used a nanoelectronic smelling analysis of different salmon
species to differentiate the flavors of Chinese rainbow trout (ChR), Chilean Atlantic salmon
(CA), Chinese Atlantic salmon (ChA), and Chilean rainbow trout (CR). and to study
the odor characteristics of the dorsal muscles of salmonids from different geographical
origins. An analysis of the results showed that (Z)-4-heptenal, furfural, 2,3-butanediol,
2,3-butanedione, 1-octen-3-ol, and 2-methylbutyraldehyde were higher in Chinese rainbow
trout, and that 1-octen-3-ol produced a plant-like aroma and mushroom-like odor of
the flesh. 3-furanomethanol and 5-methyl-2-furanomethanol were found to be higher
in Chinese rainbow trout and 5-methyl-2-furanomethanol complemented the minty and
herbal odor of the fish, producing a pleasant sweetness and characteristic odor. In contrast,
(Z)-4-heptanal has a fishy boiled potato flavor and is made from (E, Z)-2,6-nonadienal,
which is the primary odor-active compound for many marine organisms such as fish, crabs,
and mussels. Heptanal (monomer) has been detected in Chilean rainbow trout but is not
found in other species of fish. It is produced due to the oxidation of fatty acids. The unique
volatile compound in Chinese Atlantic salmon is 3-methyl-2-butanol. Acetaldehyde gives
the fish the aroma of almonds and caramel and the content found in Chinese rainbow
trout and Chilean rainbow trout is significantly higher than that found in Chilean Atlantic
salmon and Chinese Atlantic salmon. Duan et al. also found that some volatile compounds
showed some regularity and could be broadly grouped into two categories, with Chilean
rainbow trout, Chinese Atlantic salmon, and Chilean Atlantic salmon in one category and
Chinese rainbow trout in the another. High levels of 2-butthene, pen-tanal, and (E)-2-
hexenal were found in the first category, probably because these fish are farmed in seawater.
In addition, (Z)-4-heptanal, furfural, 2,3-butanediol, 2,3-butanedione, 1-octen-3-ol, and
2-methyl butyraldehyde had significantly higher signal intensities in the second category
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than in the first category, and these results suggest that the alinity of environmental salinity
on salmon flavor may be greater than species differences alone. This study attempts a
method for the rapid differentiation of fish species origins using nanoelectronic smelling,
which can be effective in accurately distinguishing salmonid fish production regions as well
as production conditions from a market perspective, providing a new way of authenticating
food safety, and can also be used as a tool for identifying food fraud in the marketplace.

In the nanoelectronic smelling evaluation of food-grade research, all reflect the good
accuracy of the nanoelectronic smelling, can be separated from the small material differ-
ences, which provides a good reference for the future popularization of the nanoelectronic
smelling application, this has paved the way for its popularization, but the slight deficiency
is that the nanoelectronic smelling can only make a distinction for specific foods at present,
and it will be a good research direction to popularize it in all foods.

Above all, nanoelectronic smelling in hierarchical identification in the field of plant
foods, does not appear particularly gratifying advantages, this may be due to poor flavor
ingredients in plant-based foods very subtle and easily affected by the external environment,
existing nanoelectronic smelling cannot accurately distinguish, but can be combined with
the model, find out the specific flavor components, precision criterion, So this can make the
classification of food more clear, and the application of nanoelectronic smelling combined
with a variety of methods may be the future application trend.

2.3. Status of Nanoelectronic Smelling Analysis of Animal-Based Foods

Jun Qi et al. [15] investigated the effects of different freezing and storage times of fresh
chicken meat on its stew flavor by analyzing changes in free amino acids, 5′-nucleotides,
minerals, and volatile components. The total free amino acid stew content increased from
159.90 mg/100 mg to 292.81 mg/100 mg as the freezing and storage period of raw meat
was extended. A total of 58 volatiles, including aldehydes, ketones, alcohols, hydrocarbons,
furans, esters, and sulfur-containing compounds, were detected after the chicken was
frozen and stored for 0, 2, 4, 6, and 8 weeks and then stewed for 3 h. The odor-active
compounds consisted of 12 aldehydes, 3 alcohols, 2-heptanone, and 2-pentylfuran. These
results indicated that aldehydes were the most important aroma substances, and that
hydrocarbons and esters did not contribute much to the overall aroma due to the high
odor threshold. In this study, since enzymes in meat cannot synthesize mineral elements,
changes in the mineral element content could only be related to water and heat transfer,
and since the chicken samples were already boned, flavor substances from the bone were
transferred to the meat during stewing, thus causing flavor changes in the meat. This
could also account for the increase in magnesium and sodium. As the freezing time
increased, the content of all mineral elements, except chlorine, decreased, indicating that
fewer minerals were transferred from the bone marrow to the meat than from the meat
to the broth, results consistent with an increase in the mineral elements in the broth. The
increase in aldehydes in the raw meat after 2 weeks of frozen storage could be related
to the lipolysis of phospholipids; saturated and monounsaturated fatty acids have high
stability, but polyunsaturated fatty acids are unstable. The content of unsaturated free
fatty acids in thawed chicken meat increased due to lipolysis of phospholipids. The aroma
compounds in the stewed chicken meat are mainly from the oxidative decomposition of
polyunsaturated fatty acids. Therefore, phospholipid lipolysis affects the formation of
volatile compounds during stewing. The total content of aldehydes decreases and the
content of highly hydrophobic substances increases as the frozen storage time of raw meat
increases. Short-term storage of frozen ingredients had a positive effect on the improvement
in the salty, fresh, meaty, and fatty characteristics of stews, but the grassy characteristics
of frozen meat also increased after 8 weeks of storage, similar to raw meat stored at
−18 ◦C for 6 weeks. where subsequent stewing showed improved salty, fresh, meaty,
and fatty characteristics. The increase in saltiness and freshness was attributed to the
enhanced migration of chloride and fresh amino acids from the bone marrow to the meat.
In conclusion, the freezing and preservation time of raw chicken meat can significantly
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affect its flavor when stewed, with the best flavor and maximum meatiness, freshness, and
saltiness of the stew after 6 weeks of freezing. This study provides a good reference for
storing frozen fresh meat.

Also analyzing the status of chicken, Esmaeil Mirzaee-Ghaleh et al. [24] investigated
the ability of a nanoelectronic smelling machine to identify frozen and frozen-thawed
chicken meat, which applied nanoelectronic smelling based on eight metal oxide semi-
conductors to pretreat the samples. The results showed that the average accuracy of
fresh-chilled and frozen-thawed chicken classifications were 95.2% and 94.67%, respec-
tively. The accuracy of the fresh chicken classification was 95.83%, which was higher
compared to the frozen-thawed chicken. Nanoelectronic smelling combined with the
F-KNN algorithm was used for the intelligent classification of fresh and frozen-thawed
chicken meat. The whole system includes sensor signal acquisition, pre-processing, feature
extraction, and classification using the F-KNN algorithm. Based on the excellent perfor-
mance of the F-KNN classification algorithm, it can be concluded that the nanoelectronic
smelling system is a fast and nondestructive online identification technology for fresh and
frozen-thawed samples. The analysis of the results shows that the high performance of the
F-KNN algorithm confirms that the nanoelectronic smelling system can be used as a fast,
accurate, and non-destructive method for online and automatic pairwise identification of
fresh and frozen-thawed chicken. This study provides an effective identification pathway
for the frozen food industry. Using the same analysis of frozen chicken as Jun Qi et al. [15],
this study combined nanoelectronic smelling with an F-KNN algorithm to build a com-
plete classification model, which is more reliable and accurate than discriminating solely
using nanoelectronic smelling, and also makes a reference for the application prospects of
combining nanoelectronic smelling with other methods. In this era of artificial intelligence,
combining algorithms to build prediction models may be a new research direction for
nanoelectronic smelling.

Fedor S. Fedorov et al. [16] detected the status of chicken differently, using a com-
bination of nanoelectronic smelling and machine vision techniques to check the cooked
status of roasted chicken. To measure the environmental changes caused by the presence of
volatile compounds, they applied a home-made electronic smelling system that included
an array of eight commercial sensors, MQ-2 (smoke), MQ-3 (alcohol), MQ-4 (methane),
MQ-5 (LPG), MQ-7 (CO), MQ-8 (H2), MQ-9 (CO, methane, LPG), expressed as CO-II, and
MQ-135 (NH3, CO2, nitrogen oxides). During grilling or cooking, the food undergoes
physicochemical changes causing the release of volatile gases and changes in the color
of the food. They first cooked chicken with charcoal and after 20–25 min, detected an
increase in the sensor response of the nanoelectronic smelling system, possibly related to
the carbon dioxide, methane, carbon monoxide, and nitrogen oxide vapors being emitted
by the burning charcoal. The beginning of grilling also showed an increase in sensor
resistance in the array, which was very pronounced during the first 10 min of cooking.
The measured temperature on the surface of the chicken breast was 190–210 ◦C. At such
high temperatures, volatile organic compounds are expected to be formed via the Maillard
reaction, thermal degradation of lipids, and Maillard-lipid interactions. The results showed
that the primary sources of the chicken’s odor were sulfur-containing compounds including
2-methyl-3-furanethiol, 2-furothiol, and methanethiol; and carbonyl compounds, such as
hexanal, trans-2-octenal, and trans-2-nonenal. In particular, MQ-3 and MQ-7 exhibited the
highest variability at all cooking times, responding primarily to alcohol vapor and carbon
monoxide. The MQ-2 and MQ-4 sensors also exhibited good sensitivity to match the acyclic
saturated hydrocarbons. In this study, nanoelectronic smelling was used to evaluate the
odor of roasted chicken, machine vision was used to detect changes in appearance, and
differences in cooking status were obtained by applying a linear discriminant analysis to the
nanoelectronic smelling vector response and Red-green-blue (RGB) data. The production
of the roasted chicken odor was controlled by moisture loss during cooking, which released
volatile compounds such as aromatic and sulfur-containing compounds. The presence of
high concentrations of aerosol particles at 5–10 min was also observed. The appearance of
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the chicken was also influenced by the grilling time, with an increase in discoloration over
time. A linear discriminant analysis separated the clusters associated with "undercooked",
"cooked", and "overcooked" chicken. The combination of electronic smelling and computer
vision ensured greater selectivity, as evidenced by the increase in the martingale distance
between clusters in the LDA plot. Thus, the proposed technique is attractive for food quality
control due to its objectivity, rapidity, and non-destructive measurements. Nanoelectronic
smelling can identify the odor characteristics of roasted chicken, whereas computer vision
can identify the discoloration of chicken meat. The combination of these two methods
yields greater selectivity in the qualitative determination of chicken cookability. Unlike
MEsmaeil Mirzaee-Ghaleh et al. [24], this study is a novel approach as it identifies the color
of cooked chicken using machine vision techniques rather than just algorithms to build
a model. This approach can be considered novel, as distinguishing food by appearance
is an important criterion for most people, and the use of machine vision technology is
a good substitute for human observation. By simulating the basis of human judgment
in combination with odor judgment by nanoelectronic smelling, the results of this study
become more reliable.

For studying the state of food, researchers are not limited to using only one technique
of nanodot electronic smelling, but are able to combine it with algorithms, vision, and other
techniques to make it more robust, which could be a future direction for interconnecting
nanodot electronic smelling with multiple techniques.

3. Analysis of Plant-Based Foods by Nanoelectronic Smelling

Unlike animal-based foods, plant-based foods are not as processed or are processed in
a simpler way, such as baking or drying. In this field of research, researchers mostly analyze
plant-based food flavor or grade evaluation, such as analyzing the roasted components in
soybeans or the aroma of tea leaves after drying. In addition to this, because plant-based
foods are closely related to agricultural products, issues such as pesticides, diseases, and
other problems can be overcome with the help of nanoelectronic smelling due to its ability
to identify harmful substances in food. Table 3 is a summary of the main substances
affecting flavor in plant-based foods.

Table 3. Summary of main parameters of plant-based food.

The Main Ingredients That Influence Flavor Reference

Sulfide [25,26]

Aromatic compound [27]

Benzene [27]

Acids [26,28]

Aldehyde [29–33]

Esters [29,32]

Furan [30,31]

Alcohols [30,31]

2-AP [34]

Ketones [33]

3.1. Flavor Analysis of Plant-Based Foods by Nanoelectronic Smelling

Junhua He et al. [25] applied nanoelectronic smelling to analyze the effects of different
microwave treatment times on the flavor of tea seed oil and detected volatile compounds.
The results showed that the response values of sensor arrays W1W (sulfide), W2W (organic
sulfide), and W5S in the nanoelectronic smelling system increased significantly (p < 0.05)
with increasing microwave treatment times (nitrogen oxides), whereas the response values
of W1W, W2W, and W5S were close at 0 min and 2 min but gradually increased from 3 min
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to 6 min, which showed that microwave treatment increased sulfides, organic sulfides, and
nitrogen oxides in tea seed oil. Significant changes in sulfides (e.g., methionine, dimethyl
sulfoxide), nitrogen heterocyclic compounds (e.g., pyrazine, pyrrole, and pyridine), and
oxygen heterocyclic compounds (e.g., furan, pyran, furanone) were responsible for the
significant increase in the WIW, W2W, and W5S response values. A total of 80 volatile
compounds were detected across all sensor arrays with similar flavor profiles (green, sour,
and fruity) for the samples at 0, 2, and 3 min of treatment time, 4 and 5 min of treatment
time for the samples with similar flavor profiles (roasted, fatty), and 6 min of treatment time
for the samples in one category (caramelized, roasted). These results provide theoretical
guidance for the processing and flavor regulation of oilseed oils. Consumers can choose
different flavor types of camellia oil according to their preferences.

Xiaoai Chen et al. [27] studied the changes in the flavor components of bergamot
during curing with nanoelectronic smelling. In the treatment, they first ground 3.0 g
of sample into a 50 ml vial and equilibrated it for 30 min at room temperature. Then
the top space gas was sampled and pumped into the sensor array at a constant rate of
400 mL/min, and the measurement lasted for 120 s. The aroma characteristics of each
sample were expressed in terms of the nano response values of the ten sensor arrays of the
electronic smelling system. Sensor W2W (aromatic component, sensitive to organic sulfides)
contributed to the fresh samples. In other words, the fresh buddha contains more aromatic
compounds. Sensors W1S (sensitive to methyl), W2S (sensitive to alcohols, aldehydes,
ketones), W6S (selective mainly to hydrides), and W1W (sensitive to sulfides), indicated
that the sugary and cooked buddha contains more alcohols, aldehydes, ketones, hydrides,
and sulfides. The volatiles of salt-impregnated samples, desalted samples, and sugar-
impregnated samples were determined by W1C (aromatic component, benzene) and W5C
(short-chain alkane aromatic component) sensors, indicating that salted, desalted, and dried
Buddha’s hands contained more aromatic components, benzene, and short-chain alkane
aromatic components. According to the results of the nanoelectronic smelling analysis, a
total of 81 substances were detected, including terpenes (21), aromatic hydrocarbons (11),
alcohols (11), aldehydes (10), esters (7), phenols (6), acids (5), ketones (2), and other
species (10). From this analysis, the processes that significantly affected the flavor of
bergamot were curing and drying, whereas salting promoted the production of aldehydes,
esters, and acids but caused the alcohols to decrease, and drying promoted the production
of alcohols, phenols, aldehydes, and acids at the expense of terpenoids. The characteristic
volatile compounds during bergamot curing were formed mainly by the biological reactions
in the salting stage and the thermochemical transformations in the drying stage. The results
show that during the curing process of bergamot, the flavor compounds of different sensor
arrays have specific responses and researchers can alter specific samples accordingly, for
example, sensor W2W could generate a response to aromatic compounds and organic
sulfide, as curing is a state of change, and can then use a real-time monitoring sensor
response value to identify changes in the material. This study exemplifies the applicability
of nanoelectronic smelling technology in tracking changes in the flavor composition of cured
foods, with the advantages being fast, sensitive, and nondestructive sample identification
that objectively reflects the information of the sample under test.

Jiashen Cai et al. [28] used nanoelectronic smelling to study the effects of baking
methods on the volatile components of soybeans. According to the analysis of the results,
there was no significant difference in protein content under low baking temperature or
short baking time (p < 0.05), because 170 ◦C or less than 20 min was considered as a mild
treatment level. Most of the samples with 10 min baking intervals (except 230 ◦C) increased
the PDI values in soybeans to varying degrees, with roasting at 140 ◦C for 20 min providing
a maximum value of 40.97%. Roasting at 200 ◦C for 20 min was considered wise for soybean
processing, with approximately 21% of the PDI being retained. By increasing roasting tem-
perature, the thermosensitive amino acids were methionine > arginine > cysteine > lysine,
with a significant decrease of 12.5–17.7%, followed by serine, histidine, threonine, and
tyrosine with a loss of 6.3–12.1%. The content became lower with further increases in baking
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temperature. The results showed that temperature had an effect on physicochemical indices,
except for fat content. Roasting at 200 ◦C for 20 min decreased the protein dispersion index
by about 38%; whereas lipoxygenase and peroxidase were completely inactivated. The ma-
jor heat-sensitive amino acids were methionine, arginine, and cysteine. The nanoelectronic
smelling system showed some ability to discriminate between different roasted soybeans.
The study also selected the flavor markers of soybeans to predict the flavor development of
soybeans, which is one of the directions for the development of nanoelectronic smelling
applications. In summary, roasting at 200 ◦C for 20 min is considered to be the best method
for soybean processing, resulting in an effective inactivation of endogenous enzymes and
acceptable nutritional values. The results of this study can be used to gain a preliminary
understanding of the relationship between heat treatment and the quality development
of soybeans. Further research on the applications of nano electronic smelling to build
predictive models for the selection of target volatile compounds, particularly effective
flavoring agents, using different soybean varieties and roasting methods is ensured. The
research area of nanoelectronic smelling is broadened.

Yanqin Yang et al. [29] applied nanoelectronic smelling to analyze the effects of the
drying process on the flavor of black tea, and they used a Herakles II electronic smelling
system to output a complex signal instead of the signal generated by a limited number of
sensors. It gives a "fingerprint" of volatile components and allows differences or similari-
ties between samples to be demonstrated by powerful data-processing software. In this
study, volatile gases were collected from black tea during harvesting, withering, kneading,
fermentation, first-drying, and final firing at variable temperatures, and the aroma of black
tea was classified into three types: clear, floral, and sweet [35]. Based on the analysis of the
results, a total of 243 compounds were identified and some volatile compounds such as (Z)-
2-heptenal (82), 1-octen-3-ol (93), heptanal (69), hexanoic acid, and ethyl ester (102) could
produce grassy, mushroom-like, and fruity flavors and were present in higher concentra-
tions in clear aroma black tea than other tea samples. Similarly, several specific compounds
such as 3-hexenal (42), 3-hexen-1-ol (63), linalool (143), and 2,6-dimethyl-2,6-octadiene
(104) may contribute to the specificity of floral black tea samples and they also showed
higher levels in floral black tea samples compared to other black teas. The production of the
unique aroma of black tea can be regulated by adjusting the drying temperature and time.
This study contributes to the quality control and identification of black tea and provides
technical support and good theoretical guidance for the targeted processing of black tea.

A study by Jiayu Chen et al. [30] was similar to that of Yangin Yang et al. [29], which
analyzed the aroma of leachates from 44 Dianhong black teas. The two studies were
broadly similar in approach but differed in the source of the aroma of the black teas,
with 61 volatile compounds identified. Among them, aldehydes were the most common,
with 2-methylfuran and linalool being the most important components affecting the mass
fraction of tea extracts [31]. The results provide a new technical approach for the quality
evaluation and control of tea leachates, and both studies provide comprehensive data
support and reference for the comprehensive quality evaluation of tea leaves.

Yan Yang et al. [36] combined nanoelectronic smelling and machine learning tech-
niques to propose a BPNN-based transfer learning framework to build a classification
model for identifying different wines and Chinese liquors. They first performed a measure-
ment phase and a rinsing phase. In the measurement phase, the sample gas is drawn into
the sensor chamber through the inlet at a rate of 400 mL/min. As the sample absorbs on
the metal oxide semiconductor sensor, the conductivity increases and then stabilizes at a
constant value as the sensor surface is saturated. In flush mode, this flow rate is regulated
to 600 mL/min so that the sample line connected to the inlet is backflushed at 200 mL/min
and the analyte is removed from the sensor surface, so the conductivity decreases and then
stabilizes at another constant value as the analyte is completely removed. The data points
are trained as a model for machine learning and the framework is analyzed to prove that the
framework can effectively distinguish wine from Chinese liquor. This study demonstrates
that electronic smelling, as a non-destructive device, is able to distinguish between wine
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and Chinese liquor when selecting the best machine-learning algorithm. It offers broad
prospects for the further development of wine and liquor evaluation and process control.
This will contribute to the standardization of operational processes and cost reduction for
manufacturers, and enhance the protection of consumer rights.

3.2. Grade Evaluation of Plant-Based Foods by Nanoelectronic Smelling

Guilherme G. Teixeira et al. [37] used a homemade nanoelectronic smelling to classify
and evaluate grades of virgin olive oil, which classified olive oil according to commercial
grades of fruitiness intensity (ripe fruitiness or light, medium, and strong green fruitiness).
The nanoelectronic smelling of this study integrated several systems, namely a heated
sampling unit and a heated multisensor detection array. In contrast to other sampling
methods, the study used two commercial silica gel heating blankets to heat the samples
and then take the top space gas phase, which undergoes adsorption phenomena with the
metal oxides and thus identifies the volatiles. It is worth mentioning that the device also
includes a diaphragm vacuum air pump to perform integrated system cleaning between
sample analyses, which ensures that the sample is not infected and enhances data reliability.
According to the analysis of the results, ripe fruity oils were better differentiated from
green fruity light oils. The use of nanoelectronic smelling enables the identification of the
different chemical volatile compounds that are responsible for the positive and negative
sensory properties typical in olive oils and the satisfactory discrimination of oils based on
the perceived primary olfactory sensation as well as their intensity. The olive oil analysis
is non-invasive, requires a small number of samples, and is able to provide results in a
short time (about 15 min). Although successful preliminary results were reported, further
research is needed in the future to improve the spectra of the oils studied and to enhance
the validation methods applied, and this research could create greater commercial value by
assisting producers in the classification of grades of olive oil.

In order to effectively utilize almond skins and reduce the wastage of resources, Jianti
Yao et al. [32] used nanoelectronic smelling to evaluate the taste and flavor of bread with
almond slices added. The analysis of the results revealed that substances detected by
nanoelectronic smelling, such as ethyl caproate, butyl acetate, and propyl butyrate, were
considered to be the source of the bread’s fruity taste, and 3-methyl-butyraldehyde and
3-methyl-thiopropionaldehyde were found to be the source of the bread’s aroma due to
their "malty/sweet" characteristics. Similarly, phenylacetaldehyde and benzaldehyde,
which were mostly detected in the crumbs, produced "honey/rose" and "almond/caramel"
odors, as do maltol and styrene, which also give the bread a sweet, malty, and caramel
flavor. Thus, the addition of almond bark gives the bread more flavor. The addition of
almond bark to the bread did affect some of the textural properties of the bread during
refrigeration, enriching the variety of volatile organic compounds and giving the bread a
unique flavor. According to their research, it was found that the negative effects on the
bread due to the addition of almond bark could be improved by the ultrasonic treatment of
the dough. At the same time, the rich nutrients in almond bark may contribute significantly
to the health of bread, and further research on the changes in the nutrient composition
during bread making is needed to elucidate the nutritional function of almond bark bread.
In conclusion, almond bark can be used as an ingredient in breadmaking, which not only
helps to produce bread with long shelf life and unique flavor, but also can make full use
of the by-products of almond processing, reduce resource wastage, and environmental
pollution, and can be used in the development of new types of bread.

Rice is one of the most important agricultural products in human history; however,
the aging process of rice seriously affects its flavor and quality. Jinyong Xu et al. [34]
investigated the working principles of the electronic smelling device and its application in
the evaluation of rice quality based on variation in aroma characteristics. Volatile organic
compounds in rice have unique properties and, therefore, can be used for quality deteriora-
tion assessment and identification. In nanoelectronic smelling, volatile organic compounds
are adsorbed onto the surface of the sensing material where they react with molecules and
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produce volatile matter responses leading to changes in the electronic signals. Changes in
volatile organic compounds produced during rice aging are then detected based on these
signal changes. Finally, appropriate pattern recognition methods (e.g., principal component
analysis, partial least-squares, linear discriminant analysis, etc.) and several artificial neural
networks (e.g., BP, RBF, LVQ, etc.), were used to evaluate the flavor. The results showed that
the substances detected by nanoelectronic smelling included 2-acetyl-1-pyrroline (2-AP),
aldehydes, heterocyclic, and alcohols, whereas 2-AP was considered to be the main odorant
contributing significantly to the rice aroma, which has a special flavor of nuts and popcorn.
In the experiments, the cooling rate was found to have a significant effect on the volatiliza-
tion of the aroma substances, with higher cooling rates prolonging the retention time,
whereas at lower cooling rates, 2-AP had a significant positive effect on sensory evaluation.
Therefore, an electronic smelling device can be used to monitor the aging process of rice
and accurately assess its quality based on the changes in 2-AP content during storage.
In contrast, rice stored at a higher temperature (250 ◦C) and humidity (70%) showed a
significant increase in aldehyde content, leading to a significant decrease in flavor quality.
Aldehydes are one of the main volatiles of rice aroma and their concentration is an indicator
to monitor the rice aging process. Temperature is an important factor affecting changes in
aldehyde content, and high temperatures accelerate the rate of lipid oxidation, leading to
poorer rice quality. However, the operating temperature of electronic smelling devices is
usually between 200 ◦C and 400 ◦C, which has a significant effect on the aldehyde content.
The high operating temperature is an obstacle to the application of electronic smelling for
quality detection based on changes in aldehyde content during rice storage. This study
demonstrates the great potential of nanoelectronic smelling for the rapid qualitative detec-
tion of rice, as it has many advantages in conventional analysis. Furthermore, reducing the
operating temperature, using suitable pattern recognition methods, and developing new
predictive models could be the future trends of nanoelectronic smelling.

In that study, although nanoelectronic smelling showed promising advantages, there
are still many shortcomings and most of the ideas are still only at the laboratory stage, for
example identifying and quantifying a large group of volatile organic compounds, rather
than only a specific one. Therefore, electronic smelling devices can only be used for the
preliminary detection and classification of rice quality based on changes in these aroma
characteristics (for example, VOCs’ molecules are chemisorbed on the surface of MOS-
based sensor arrays) as it is susceptible to high-humidity operating environments, which
can lead to a baseline drift, thus affecting the stability of the electronic smelling device. The
sensors operate at temperatures between 200 ◦C and 400 ◦C, leading to the decomposition
of aldehydes. In addition, some of the characteristic compounds decrease significantly
with increasing storage time, which requires an increase in the detection limit of the sensor
array. In addition, suitable pattern recognition methods were not used to analyze the sensor
responses, which directly affected the accuracy of the data analysis. In addition, when the
composition of the gas mixture changes, especially when differentiating between different
rice varieties, the number of sensors in the array needs to be increased to achieve accurate
detection. In addition, the poor repeatability of the electronic smelling device from one
year to another is a major limitation for its widespread use in rice quality testing.

Jianxin Song et al. [26] applied different drying methods of nanoelectronic smelling:
hot air drying (HAD), heat pump drying (HPD), infrared radiation drying (IRD), vacuum
drying (VD), vacuum freeze-drying (VFD), and instantaneous controlled pressure-drop
drying (DIC) to analyze the volatile components in red dates. The study used nanoelectronic
smelling equipped with 10 metal oxide semiconductors (W1C, W5S, W3C, W6S, W5C, W1S,
W1W, W2S, W2W, and W3S) and the results showed that 15, 16, 15, 17, and 26 aroma
compounds were detected in RJ, HPD, IRD, VD, VFD, and DIC dried samples, including
alcohols, aldehydes, acids, esters, and ketones. In addition, acetic acid, propionic acid,
2-methylbutyric acid, butyric acid, heptanoic acid, valeric acid, capric acid, octanoic acid,
and capric acid constituted 90% of the aroma compounds in all samples. The responses
were significantly higher for W1W (mainly terpene-sensitive) and W5S (broad response)
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followed by W2W (sulfide sensitive) with values of 6.08~7.64, 4.1~5.10, and 1.98~2.21. All
three were present in RJ, whereas the lowest response values for W1W, W5S, and W2W
were found in IRD, HPD, and IRD dried samples, respectively. The other sensors had
response values of 0 to 1, indicating a very small response. The vacuum freeze-dried
dates showed significantly different aroma characteristics compared to the other dried
samples, but the response values of the sensors (W1W and W5S) were close to those of the
vacuum freeze-dried samples in the metal oxide semiconductor electronic smelling due
to the similarity of the sensors (W1W and W5S) [38]. The vacuum freeze-dried dates had
the highest aroma components. When studying the changes in volatile substances, drying
methods with the same substance can be classified, and the changes in the drying process
can be clearly observed by analyzing the sensor data that responds to the substance, and
different operations can also be carried out according to the different state of the sample.
This study allows for the discrimination between the different drying methods of dates on
the market and their subsequent evaluation and classification.

Tatiane Francielli Vieira et al. [39] applied nanoelectronic smelling to evaluate yerba
mate samples from three different states in Brazil, with a detection process similar to that
described previously., More characteristically, the study used high-performance liquid
chromatography, phytochemicals, in vitro antioxidant activity, visible and near-infrared
spectroscopy, colorimetric methods, and nanoelectronic smelling together with chemomet-
ric methods, leading to a multi-method exploration of the comparative analysis of yerba
mate samples. From the results, it was demonstrated that nanoelectronic smelling has
good advantages.

3.3. Identification of Harmful Substances in Plant-Based Foods by Nanoelectronic Smelling

Identifying species and detecting early disease in plants is very challenging and
difficult to implement for an automated device, and the manual identification process
is a lengthy one that requires prior knowledge of the plant itself, such as shape, odor,
and texture. M. S. Mustafa et al. [40] developed a system to identify herb species and
detect their early disease using computer vision and nanoelectronic smelling. The system
focused on the extraction of the odor, shape, color, and texture of herb leaves and a hybrid
intelligent system to identify 10 species of herbs with 97% and 96% accuracy, respectively.
This study can be a good remedy as a single technique to identify herb species. Despite
the high requirements of computer vision for species recognition, it is still difficult to
achieve better accuracy when using plant samples such as lemongrass with equal shape
and texture. Nanoelectronic smelling solves the problem of consistency in shape and
texture based on scent, but its performance in re-identifying herbaceous plant species will
be reduced when the leaf scent becomes weak. Therefore, a combination of computer
vision, electronic smelling, and pattern recognition would be better for the recognition of
herbaceous plant species.

To explore the best method for the quantitative detection of pesticide residues in tea,
Alireza Sanaeifar et al. [41] applied electronic smelling and confocal Raman microspec-
troscopy for the detection of chlorpyrifos concentrations, with complementary data ob-
tained using electronic smelling and confocal Raman microspectroscopy (CRM) sensing
techniques. Based on the fact that tea leaves with different pesticide concentrations have
different volatile compounds and that the responses generated by nanoelectronic smelling
vary, various features of the nanoelectronic smelling sensor array were extracted and com-
bined with partial least-squares (PLS), artificial neural network (ANN), and support vector
machine (SVM) methods to build a suitable model system, with a total of 108 variables
selected to construct the electronic smelling data vector. This study demonstrated the
possibility of a multi-technology fusion system based on electronic smelling and confocal
Raman microspectroscopy that could be a beneficial alternative for the rapid and safe
control of pesticide residues in tea.

Sara Mostafapour et al. [33] examined harmful substances such as formaldehyde in
milk using nanoelectronic smelling based on a novel colorimetric sensor array with a
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mixture of molybdenum disulfide quantum dots and organic reagents. Each element of
the nanoelectronic smelling sensor array consisted of a mixture of molybdenum disulfide
quantum dots and organic reagents that functionalize the nanomaterials. This is because
molybdenum disulfide quantum dots show specificity and a higher affinity for oxygen-
functionalized volatile compounds such as aldehydes and ketones. They used this sensor
array first for the classification of eight different aldehydes and ketones based on a linear
discriminant analysis. Classification accuracies of 96% and 83% were achieved in the
training and prediction phases, respectively. The introduced colorimetric sensor array
was then used for the semi-quantitative and quantitative analyses of formaldehyde in
milk samples. Because the response of the sensor array to humidity affects its accuracy,
reproducibility, and shelf life, this study, unlike other studies, investigated the response of
our sensor array to humidity before studying its response to aldehydes and ketones. An
analysis of the results shows that a significant advantage of the nano–electron ratio is its
very low sensitivity to humidity. In addition, the sensor array can accurately distinguish
between formaldehyde levels at permissive levels and elevated levels in milk (with an
accuracy of about 95%). Next, it was feasible to combine this sensor array with PLSR as a
multivariate calibration method for the direct quantitative measurement of formaldehyde
in milk without any sample pretreatment. This method proved to be an effective method
for building sensor arrays based on simple quantum dot synthesis and assembly and is
expected to be extended to other analytes in a similar manner and with different matrices.
An effective solution for milk quality detection is proposed.

4. Analysis of Microbial-Based Foods by Nanoelectronic Smelling

The flavor components of fermented foods are complex and variable and there are
many factors and uncertainties affecting their flavor components. The variety of fermented
foods and the different flavor components produced by microorganisms in different envi-
ronments, such as shrimp paste with different fermentation times and cheese fermented at
different temperatures, present a great challenge to nanoelectronic smelling. Table 4 is a
summary of the main substances affecting flavor in microbial-based foods.

Table 4. Summary of main parameters of microbial-based foods.

The Main Ingredients That Influence Flavor Reference

Alcohol [42]

Aromatic compound [42,43]

Esters [43–46]

Aldehyde [44,45,47,48]

Alcohols [43–45,47–50]

Sulfide [43,47,49]

Acids [45,46]

4.1. Flavor Analysis of Microbial-Based Foods by Nanoelectronic Smelling

Most fermented foods derive their flavor from their degree of aging, but the aging
process is very lengthy. Hongbo Li et al. [51] applied a nanoelectronic smelling analysis
using physical intervention (ultrasonic field, alternating magnetic field, or a combination
of both) to assess the aging process of aged vinegar compared to the flavor of naturally
aged vinegar, and the nano-electronic smelling results indicated that the odor changed after
the synergistic treatment of ultrasonic and alternating magnetic fields. Some of the sensor
results showed values closer to the natural aging odor, and the ultrasonic and alternating
magnetic field treatment was able to accelerate the aging process of vinegar. The highest
effect of accelerated aging was the combination of ultrasonic and magnetic fields, followed
by ultrasonic or magnetic fields alone and the natural process (combination of ultrasonic
and magnetic field–magnetic field > ultrasonic, or magnetic field–individual > natural
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process). This suggests that the combination of ultrasonic and alternating magnetic fields
would be a natural remedy to change-accelerate vinegar aging. Xiao Xu et al. [42] applied a
nanoelectronic smelling analysis of the fermentation efficiency of multi-stage fermentation
using glutinous rice supplemented with Fu brick tea (FGR-FBT) compared to conventional
fermentation and showed that the aroma profile was higher in volatile alcohols and alkane
compounds and more aromatic. Sulfur-chlorine and olefin compounds were generated, and
the difference in the nature of volatile compounds formed in the presence of FBT during
fermentation could be attributed to differences in the microbial metabolism. This study
may lead to a new line of high-quality fermented foods based on the use of foo brick tea and
glutinous rice. Rafael Martínez-García et al. [44] applied nanoelectronic smelling to study
the flavor of cava with different ways of yeast inoculation. The study applied nanoelec-
tronic smelling with partial least-squares to model the fermentation time of kava separately.
The results showed that lactones, isoprenoids, and furan compounds were temperature-
dependent; carboxylic acids were dependent on aging time; whereas methyl esters of
fatty acids (MEFAs) and terpenoids were present in yeast form. Alcohols, aldehydes, and
isoamyl esters of fatty acids (IEFAs) were temperature and aging-dependent and this study
demonstrates that nanoelectronic smelling is a suitable tool for use in the wine industry.
Anzi Ding et al. [47] applied nanoelectronic smelling to analyze the flavor analysis of three
freshwater fish (bleak, crucian carp, and yellow carp) and fermented fish dew. The results
were analyzed and the 71 volatile components were d, 3-methylbutanol, 3-(methyl thiyl)
propyl aldehyde, 1-octen-3-ol, phenylacetaldehyde, nonanal, dimethyl trisulfide, decanal,
and hexanol Based on the results obtained from this study, further work may focus on the
direct regulation of fatty acid metabolic pathways. This study may provide a theoretical
basis for the production of high-quality fish sauce products. Xiao Zhang et al. [45] applied
a nanoelectronic smelling study to collect 49 samples (13 commercial and 36 traditional
soybean pastes) and evaluated the relationship between their flavor differences and odor-
ants. The results showed that the flavor differences in the samples were caused more by the
concentration of key aroma substances than by their composition, and that these differences
were mainly due to the maturation stage of the traditional soybean paste samples and the
heating process of the commercial soybean paste samples. Twenty-three and nineteen odor-
ants were identified as key aroma compounds in the commercial and traditional soybean
paste samples, respectively, of which fourteen were identified as key aroma compounds in
both types of samples. This phenomenon suggests that the flavor differences in the samples
were caused more by the levels of the key aroma compounds than by their composition.
Acids (acidic) and esters (fruity) were found to contribute more to the overall aroma, with
alcohols (floral and malty), aldehydes (malty), terpenes (floral), and sulfide-containing
compounds (similar to cooked potatoes) playing an important role in the flavour of com-
mercial soybean pastes. This study provides ideas for product flavors of industrial soybean
paste. Because each flour has unique aromatic properties, it is important to understand
it in order to obtain the desired flavor compounds. Danielle Laure Taneyo Saa et al. [52]
applied nanoelectronic smelling to study the volatile aspects of different bakery products
made using both mature and immature grains and transformed by fermented dough of
the genus Lactobacillus. The results show that nanoelectronic smelling can distinguish
between doughs composed of two types of flour, and the study verifies that, as a first step
in the baking process, a rapid analysis can be performed using nanoelectronic smelling to
verify the aromatic compounds of each flour and to control whether the flour is the correct
type. Using dough samples, nanoelectronic smelling can be used to separate the different
genotypes for maturation and fermentation. This study provides an effective reference
for the combination of ingredients and processes of fermented products to produce baked
products with higher nutritional value. Shan Li et al. [46] applied nanoelectronic smelling
to screen three NSLABs from traditional Kazakh cheese with good proteolytic and autolytic
abilities: Pediococcus acidilactici R3-5, Staphylococcus epidermidis R4-2, and Lactobacillus
rhamnosus R9-6. A control (no NSLAB) was also included, and four different types of
cheese samples were generated and analyzed for volatile compounds at different stages
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of ripening. The results showed that 48 compounds were detected at the three different
stages of cheese ripening, including 8 alcohols, 7 acids, 5 aldehydes, 4 ketones, 12 esters, 8
alkanes, and 3 other compounds. Esters and acids were the important components of the
volatile compounds. The variation in the number and levels of volatile compounds reflects
the differences in the proteolytic and autolytic capacity between the NSLAB strains and
commercial ferments. The study used a nanoelectronic smelling assessment to generate
odor fingerprints showing significant differences between the dry cheese, cottage cheese,
and control cheese. Significant differences in protein content, free-fatty acid content, and
acidity were observed between the two. The shortcoming of this study is that nanoelec-
tronic smelling may not detect the effects of microbial interactions between the NSLAB
strain of cheese and the commercial ferments on the overall flavor production, and further
studies are needed. Yanyan Lao et al. [53] applied nanoelectronic smelling to investigate
the effects of enzymatic digestion and fermentation on the flavor and nutritional quality
of fermented chrysalis beverages and analyzed chrysalis fermentation broth (without en-
zymatic digestion) at different fermentation stages, that is, after 0 h, 12 h, 24 h, 36 h, 48 h,
and 60 h. The results showed that the sample fermented for 60 h (after 48 h of lactic acid
bacteria fermentation and 12 h of brewer’s yeast fermentation) had the maximum response
value. However, the samples fermented for 0-48 h (fermented by lactic acid bacteria only)
had smaller response values. This implies that lactic acid bacteria fermentation has little
effect on the odor of fermented beverages. The difference in aroma between the samples
fermented for between 0 and 48 h was not significant, whereas the difference in aroma
between the samples fermented for 60 h and between0 and 48 h was significant, verifying
that the chrysalis beverage would have a more prominent flavor after subsequent yeast
fermentation. Cuiping Yi et al. [54] applied nanoelectronic smelling to analyze the volatile
characteristics of six mixed-culture rice flour fermentations, and the results showed that a
total of 110 volatile compounds were detected, among which the flavors of Lactobacillus
and Gluconacetobacter were roughly the same. The study helped to determine the selection
of strains in rice flour fermentation, which could improve the quality of this type of product.
S. Ghosh et al. [55] applied nanoelectronic smelling and a recursive Elman network for the
temporal analysis of data generated from the tea fermentation process, with the aim of the
early prediction of the optimal fermentation cycle of tea. A total of 81 black tea samples
were procured from three different tea gardens and they were analyzed using electronic
smelling in this study. The results showed that the model can be used in combination with
nanoelectronic smelling for the early prediction of the optimal fermentation time in the tea
industry for improving the quality of tea. Wenhui Zhu et al. [49] applied nanoelectronic
smelling to study the volatile components in shrimp paste fermented for three years and
the effects of different fermentation and storage times on the overall aroma characteristics
to determine the appropriate fermentation and storage times to ensure the flavor quality of
shrimp paste. The results showed that fermentation time had significant effects on nitrogen,
inorganic sulfur compounds, and the aromatic components of alkanes and alcohols in
shrimp paste, but not on hydrides, alkanes, and organic sulfides. The shrimp paste was
fermented for 2 years with good flavor and overall quality. The longer the fermentation
time, the more likely the shrimp paste to develop unpleasant flavors, thereby reducing its
quality. Cuiping Yi et al. [48] applied nanoelectronic smelling to study the volatile composi-
tion of fresh rice flour (FRN) fermented from pure cultures and five commercially available
mixed cultures. The results showed that the main volatile compounds of FRN from pure
cultures included aldehydes represented by nonanal, octanal, and 2,4-pentadienal, and
alcohols represented by hexanol and 1-nonanol. The aromas showed significant changes in
the storage time between 0 and 30 h, indicating a decrease in aldehydes and an increase in
alcohols and isoamyl alcohols, with the FRN produced by pure fermentation scoring the
highest in sensory evaluation, showing a more satisfactory flavor than that of mixed-culture
fermentation. Hassan Rahimzadeh et al. [56] applied nano-electronic smelling to analyze
the aroma changes during the storage of aromatic and non-aromatic rice, and the results
showed that nanoelectronic smelling can be a good assessment of the rice aging process as
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well as an auxiliary technique to control this process. In a study by Jie Zhang et al. [57], the
results showed that the addition of BGL0224 prior to alcoholic fermentation significantly
improved the "aroma index" of Cabernet Sauvignon wines, and BGL0224 enriched the
variety of volatile aroma compounds in the wines. BGL0224 enriched the variety of volatile
aroma compounds in wine and significantly increased the concentration of some aroma
compounds such as MCFAEEs, LCFAAEs, and terpenes, which provides an applicable
method for the aroma regulation of Cabernet Sauvignon wines. For food microorganism
fermentation, the fermentation material in the process of change is particularly important.
This allows researchers to improve the application of nano-electronic smelling for analysis
for the period of fermentation to target a specific material using nanoelectronic smelling
trace analysis.

4.2. Analysis of Nanoelectronic Smelling for Fresh Foods

Freeze-drying processes are the most effective preservatives without compromising
the appearance of the final product. Pasquale Giungato et al. [58] applied nanoelectronic
smelling to analyze the freeze-drying process to extend the shelf life of sea fennel, and this
study tested three possible processes to maintain flavor and extend shelf life: drying at
40 ◦C, drying at 60 ◦C, and freeze-drying. Color measurements showed that the samples
darkened as the drying temperature increased from 40 ◦C to 60 ◦C, whereas freeze-drying
preserved the initial appearance of the fresh samples. The weight loss remained almost
constant for all samples (about 85% of initial weight) but the average water activity was
higher in the case of the air-dried samples at 40 ◦C and low enough in all cases to prevent
mold growth. Juan C. Rodriguez Gamboa et al. [59] developed a thin-film semiconductor
(SnO2) sensor and a portable, compact self-developed nanoelectronic smelling application
trained using a deep multilayer perceptron (MLP) neural network to analyze wine spoilage.
This study allows the early detection of wine spoilage thresholds to be performed in
routine tasks of wine quality control, and the study was also compared to conventional
analytical methods of nanoelectronic smelling. The results showed that the degree of
spoilage of the three wines could be classified within 2.7 s of gas injection, which means
that the method is 63 times faster than the results obtained by the conventional method
in the experimental setup. Xuhui Huang et al. [43] applied nanoelectronic smelling to
distinguish the odor of fresh and grilled eel, and a total of 155 volatile compounds were
detected in both the eels, showing that the main characteristic volatiles of grilled eel were
methyl propyl disulfide, dimethyl trisulfide, heptane, octane, and alkene. The grilled eel
produced more aromatic compounds, broad-bodied alcohols, nitrous oxide, mushroom
alkenes, sulfur-containing organic compounds, and organic sulfides than the fresh eel.
The proportions of aromatic compounds, broad-bodied alcohols, nitrous oxides, terpenes,
sulfur-containing organic compounds, and organic sulfides were significantly different
between the fresh and the grilled eel. For the fresh eel, aromatics compounds, ammonia,
broad-alcohols, nitrous oxides, terpenes, sulfur-containing organic compounds, and organic
sulfides occupied a proportion of 9%, 10%, 12%, 11%, 8%, and 5%, respectively, whereas
the proportion of homologous compounds for the grilled eel were 23%, 4%, 18%,13%, 9%,
and 9%. This study demonstrated that nanoelectronic smelling could distinguish between
the two odor differences.

4.3. Analytical Detection of Food Microbial Counts by Nanoelectronic Smelling

Robert Rusinek et al. [60] applied nanoelectronic smelling to test the suitability of
wheat bread for consumption after days of storage and showed that nanoelectronic smelling
is a rapid and non-invasive tool for assessing the suitability of bread for immediate con-
sumption after baking. The device detects a loss of aroma during ageing and indicates
the time taken for microflora lesions to appear in bread stored under quasi-anaerobic
conditions. In turn, an analysis of the volatile compounds emitted by bread stored under
quasi-anaerobic conditions showed that the response by the sensor arrays of nanoelec-
tronic smelling was positively or negatively correlated with the number and percentage
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of the volatile groups in the general odor. This study demonstrates that nanoelectronic
smelling can be a good tool for diagnosing microbial counts in commerical breads after
baking. Shuang Gu et al. [50] applied nanoelectronic smelling to detect the number of
Aspergillus species of rice and showed that the changes in the volatiles (e.g., n-octanol and
tetradecane) and several aromatic compounds produced during storage in rice grains after
fungal infestation were closely correlated with the fungal species and the total amount
as well as the sensor responses of the electronic smelling. The shortcoming of this study
was that it was not possible to identify different fungi of the same genus and in the future,
the establishment of a large number of different fungi for the same genus of growth and
taxonomic models to identify the species and growth stages of unknown fungi by com-
paring them with standard models of known fungi is a possible future research direction.
Unlike this study, Shubhangi Srivastava et al. [61] applied nanoelectronic smelling and a
fuzzy controller for the detection of rice strains with rice mosaic disease and their results
showed equal significance. Sudipta Hazarika et al. [62] applied a system for the detection
of a pathogen called citrus decline virus (CTV) in citrus spp. using nanoelectronic smelling.
The study collected the leaves of 62 plant species and detected viral infections using gold
standard polymerase chain reaction. The study successfully classified healthy plants and
those affected by CTV-induced disease. The results showed that the system had shorter
response times (3 min) and recovery times (10 min) for rapid and largescale screening in
plantations and nurseries, and compared to traditional methods, this technique is cheaper,
simpler, and saves time. The shortcoming of this study was that the variation in the nano-
electronic smelling performance due to environmental fluctuations was not investigated,
which may lead to bias in practical applications. Xiaoxu Zhang et al. [63] applied nano-
electronic smelling to the identification and prediction of three aspergillus ochratoxin and
detected a total of 50 volatile compounds. Combined with a partial least-squares regression
model, nanoelectronic smelling proved to be a reliable identification and diagnosis method
for predicting aspergillus strains on grape culture media. Table 5 shows a comparison of
nanoelectronic smelling combined with various methods.

Table 5. Advantages of combining nanoelectronic smelling with other methods are compared.

Combined Approach Role Performance Reference

Combined with SPME-Gas
Chromatography-Mass

Spectrometry

Comparison with the results of
nanoelectronic smelling analysis to

verify the reliability of the data

The two methods were compared
with each other to produce more

accurate results
[8]

Integration with smartphones Portable nanoelectronic smelling
with smartphone

Simple and convenient, easy to
operate, and can collect data analysis
and processing, availability is strong

[23]

Combined with the
F-KNN algorithm

The method builds a complete
classification prediction model with
more accurate and reliable results

This method can be used as a quick
and non-destructive way to separate

the status of chicken
[24]

Combined with machine
vision technology

Visual analysis by color change
combined with odor analysis by

electronic smelling

Analysis from both appearance and
odor of food, one more dimension

than traditional method,
accurate results

[16]

Combining methods such as
partial least-squares (PLS),
artificial neural networks

(ANN), and support vector
machines (SVM)

Development of a complete
mathematical model for predicting

pesticide residues in tea

The complete mathematical model
system can be applied in a variety of

occasions anytime and anywhere,
without environmental restrictions

[41]

Combining deep multilayer
perceptron (MLP) neural

network training

Applying machine-learning
techniques to train and form

predictive models from datasets
collected by nanoelectronic smelling

Early predictions can be made in the
quality control of wine for

subsequent changes
[59]
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5. Conclusions and Outlook

This paper reviews the applications of nanoelectronic smelling in three types of food
and discusses the research progress of nanoelectronic smelling in terms of flavor compo-
sition analysis, grade evaluation, etc. The substances most identified were alcohols and
aldehydes, and it was also shown that they are the factors that influence the flavor of
foods. Aldehyde compounds in animal-based foods had the greatest influence on flavor,
followed by alcohols on the flavors of plant-based and microbial-based foods. Esters and
aldehydes also have a certain influence, as do sulfides and aromatic compounds in animal-
and microbial-based foods. Nano electronic smelling will become a hot research direction
in the field of nanosensors because of their excellent accuracy and good selectivity.

With advancement in microelectronics, material sciences, manufacturing processes,
and computer technologies, nanoelectronic smelling devices are developing toward inte-
gration, miniaturization, and practicality. Combining nanelectronic smelling with different
algorithmic models from different research objects to form a complete detection and analysis
system is the future application trend of nanoelectronic smelling. For example, combining
it with a partial least-squares regression algorithm to perform volatile compound measure-
ments. In addition, improving the response characteristics of the sensor array to cope with
the impact of different working environmental factors is also a future problem that needs
to be solved. Many nanosensor arrays are highly susceptible to environmental factors such
as humidity, temperature, etc., which could lead to a baseline drift affecting the stability
of the device; however, methods such as pattern recognition can also be used to improve
the accuracy of the sensor responses to ensure the reliability of the data. At the same
time, how to accurately distinguish between different types of foods belonging to the same
genus is another issue that needs to be addressed. Foods belonging to different species
have high similarity in flavor components, therefore, higher precision requirements for
sensors are required, which greatly increases the application limitations of nanoelectronic
smelling. The density of the sensor arrays could be increased to break this limitation, and
one solution could be to start with nanostructures or nanomaterials. In the near future,
nanoelectronic smelling could not only be used in food identification, such as disease
identification, environmental monitoring, etc., but it could also be developed into smaller
and more professional equipment so that it could be more widely used and could even
replace many traditional time-consuming industrial processes. Further progress needs to
be made in the field of nanoelectronic smelling-based sensors, and the range of applications
can be further expanded.
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