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Introduction
Cancer is a leading cause of death, and accounts for 17% of 
mortality worldwide. According to a report from the 
International Agency for Research on Cancer (IARC), in 2018 
a total of 9.5 million deaths and 18 million new cases of cancer 
were reported worldwide. Interestingly, incidence and mortal-
ity rates are higher in men and in the developed world.1 While 
some types of cancers are treated based on biomarkers and spe-
cific genetic mutations,1,2 most cases are still treated according 
to specific guidelines by surgery, chemotherapy, and/or radio-
therapy based on data integrating the clinical, histopathologi-
cal, details of therapy, imaging, and outcome information of the 
patients.

Accurate prediction of prognosis of the various subtypes of 
cancer may improve tailoring of therapy by allowing to take 
into consideration the expected outcome versus therapy choice, 
intensity, risk, side effects, and late complications.

In the last decade, large OMICs databases were created that 
contain data generated from thousands of cancer samples. The 
largest one, The Cancer Genome Atlas (TCGA), a repository 

that contains genomic, epigenomic, transcriptomic, proteomic, 
and clinical data, characterizing 33 types of tumors from over 
20,000 patients, is considered to be one of the largest sources 
for cancer OMICs data. Many groups have tried to use TCGA 
data to predict the prognosis of patients affected by various 
tumors using machine learning approaches, with varying levels 
of success.3-8

Random Forest9 is a simple yet effective Machine Learning 
algorithm that proved to be a successful predictor when using 
structured data such as RNA expression analysis.10 It has low 
overfitting and a simple feature importance scoring function 
that is based on the Mean Decrease in Impurity function (Gini 
Importance). This allows refinement of prediction models and 
adds important insights into the biological role of each feature 
in cancer development and prognosis.

Cancer outcome prediction using OMICS-related data 
evolved in the last 2 decades starting with the use of gene-
expression microarrays.11,12 The accumulation of data from 
various OMICS technologies calls for the development of 
advanced cancer outcome prediction tools.
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Here we describe a robust and simple analysis prediction 
tool using the Random Forest algorithm on 5 tumor types 
using the TCGA database.

Methods
Data

All RNA-seq datasets were downloaded from Genomic Data 
Commons (GDC). Clinical data was downloaded from the 
firehose data portal. The RNA-seq FPKM-UQ normalized 
data for cancer types of the TCGA projects were downloaded 
from National Cancer Institute’s Genomic Data Commons 
data portal. The samples in each project were divided into 2 
groups. The first group included samples from patients who 
were tumor-free for over 3 years (Tumor-Free samples), the 
second group included samples from patients that succumbed 
to the disease at any time point (Deceased group). We only 
used projects where the ratio between group size and the total 
number of samples was between 20% and 80% (Table 1). 
Validation of the models was done using 2 datasets from 
Clinical Proteomic Tumor Analysis Consortium v3(CPTAC3): 
Clear Cell Renal Cell Carcinoma (CPTAC3-ccRCC) and 
Uterine Corpus Endometrial Carcinoma (CPTAC3-UCEC).

Software

We used python 3.7.6 and dependencies for full data analysis. 
Random Forest classifiers were created using scikit-learn 
0.23.2. Data parsing and analysis were done using pandas 1.1.1. 
Ingenuity Pathway Analysis was used for network enrichment 
assessments. The webapp was created based on Flask 1.1.2 and 
Jinja2 2.11.2.

Random forest model training and testing

Dimension reduction for the model required several steps as 
illustrated in Figure 1. The first RF model for each TCGA 
project was created using all 65 483 mRNA features. The 
model parameters were selected using GridSearchCV module 
from scikit-learn, which tests all possible combinations from 
the provided list as detailed in Supplemental Table 2. After 
the model training, the features were scored and sorted using 
the model’s property feature_importances_. The features with 
no importance (score 0) were removed. With the rest of 
the features, we have built a second model using a second 
GridSearchCV parameter search. The features were sorted and 
scored, and again features with no importance (score 0) were 
removed. We have continued dimensionality reduction using a 
backward feature elimination loop,13 until only one feature was 
left. For each reduction (N−1), each TCGA model was trained 
using 70% of the samples. The Area Under the Curve of the 
Receiver Operating Characteristic (AUC-ROC) was calculated 
using the predictions made on the testing data (the remaining 
30% of the TCGA samples). Figure 2 shows that the optimal 

model that was selected was the one in where the minimal fea-
tures provided the average AUC-ROC of the last 500 modes.

The code for the models creation pipelines can be down-
loaded from https://github.com/omrin/surviveai.

Results

AUC-ROC mean of over 80% was achieved in 5 projects. Out of 
26 RNA-Seq TCGA-tumor type projects, only 14 had the 
required ratio between group size and the total number of sam-
ples (20%-80%) and had a minimum of 30 samples.

An average AUC-ROC score was calculated for the last 500 
models (features range from 1 to 500). Out of the 15 cancer 
types, 5 tumor groups had an average AUC-ROC of over 80% 
TCGA-LGG (low grade glioma) 0.92 AUC-ROC, TCGA-
COAD (colon adenocarcinoma) 0.84 AUC-ROC, TCGA-
SARC (sarcoma) 0.86 AUC-ROC, TCGA-CESC (cervical 
squamous cell carcinoma and endocervical adenocarcinoma) 
0.8 AUC-ROC, and TCGA-KIRP (kidney renal papillary cell 
carcinoma) 0.88 AUC-ROC. Detailed results and statistics for 
each TCGA project can be found at Table 1.

The model with the minimal features that most closely 
predicted the calculated AUC-ROC average was selected (See 
Figure 2). Each selected model used dozens of dimensions: a 
maximum of 90 features for TCGA-LGG and minimum 12 
features for TCGA-COAD.

Prediction of the top 5 models highly correlates with sample tumor 
origin. The top 5 models were tested on all 15 TCGA project 
sample datasets. AUC-ROC scores were calculated for each 
dataset using the predictions of each sample and the known 
final results, see heatmap in Table 3. As expected, the scores for 
the training samples that were used to create prediction models 
were high and close to 1. For other datasets, the predictions 
were almost without correlation to the true condition of the 
samples (score .5)

Interestingly, a high negative correlation was found between 
the prediction models TCGA-CESC, TCGA-LGG, and 
TCGA-SARC and the predictions for the samples of the 
TCGA-READ project.

Correlation of outcome predictions of TCGA dataset analyses with 
the validation datasets within tumor types. In addition to the 
validation of the predictions obtained by analysis of the TCGA 
training sets using the testing sets, we further validated the 
models using 2 independent datasets that served for measuring 
the robustness of the models. We chose CPTAC3-ccRCC 
renal tumor dataset for the validation of a model developed for 
the same tissue of origin tumor which had a high prediction 
score, and CPTAC3-UCEC uterine tumor as an independent 
dataset for the testing of our model for the analysis of a tumor 
type where specific prediction model had a lower score.

The AUC-ROC obtained by the application of the TCGA-
KIRP based model for the analysis of the CPTAC3-ccRCC 
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data was 0.86, very similar to the value 0.88 of the TCGA-
KIRP test group. Interestingly, TCGA renal cell tumors have 2 
sub-types: Kidney renal clear cell carcinoma (TCGA-KIRC) 
and Kidney renal papillary cell carcinoma (TCGA-KIRP). We 
analyzed these subtypes separately and the predictions were 
0.79 and 0.88 AUC-ROC for the test groups, respectively. 
When we applied these 2 prediction models for validation 
cohort CPTAC3-ccRCC, which contains clear cell renal cell 
tumors, the predictions of both models were similar, 0.77 and 
0.86 AUC-ROC, respectively. The prediction of the less effi-
cient TCGA-UCEC model for the CPTAC3-UCEC data 
indeed gave a low predictions score, 0.63. Surprisingly the tis-
sue discordant TCGA-KIRP prediction model for the analysis 
of uterine the CPTAC3-UCEC data set over performed the 
prediction of the tissue concordant TCGA-UCEC model and 
scored AUC-ROC 0.663. Finally, we have tested all the TCGA 
predictions models using renal CPTAC3-ccRCC dataset. For 
most of the models, the results were below 0.7, except for the 
TCGA-SARC model which was 0.85. When we used the 
uterine CPTAC3-UCEC dataset on all the TCGA prediction 
models, all the scores were very low except for the TCGA-
SARC model which was 0.74.

TCGA-KIRP model accurately predicted the prognosis of CPTAC3-
ccRCC samples, but on a different scale. We analyzed the RNA-
SEQ data of CPTAC3-ccRCC samples using the selected 
TCGA-KIRP final model (created using 42 features as 
described in Table 2). The mean scores for the Deceased and 
Tumor-free groups were significantly different as shown in 
Figure 3, however, the scale by which each group was meas-
ured also differed. For the TCGA-KIRP samples, the 
model produced scores between 0.025 and 0.95 while the 

CPTAC3-ccRCC sample scores were 0.18 to 0.425 (before 
normalization to 1). The model prediction AUC-ROC score 
for the CPTAC3-ccRCC was 0.86, almost identical to the 
TCGA-KIRP testing set.

Pathway analysis revealed enrichment for cancer and cancer-related 
canonical pathways. We used the Ingenuity Pathway Analysis 
(IPA) to analyze the genes selected in the final model for 
enrichment of related pathways. The top pathways were those 
involved in basic functions related to tumorigenesis and organ 
development. For example, in the TCGA-KIRP tumor prog-
nosis prediction model, the pathways of Cell Cycle, Connective 
Tissue Development and Function, and Renal and Urological 
System Development and Function were the most highly 
enriched with a P-value of 10−38. In the TCGA-CESC, the 
highly represented pathways were Inflammatory Diseases as 
well as Inflammatory Response and Organismal Injury and 
Abnormalities. Due to the fact that cervical cancer is usually 
related to the effect of the human papillomavirus, it is not sur-
prising that the genes associated with an inflammatory response 
may influence the prognosis of the cancer in those patients.14 
The TCGA-SARC model genes are enriched in Cell Cycle, 
Cell Death and Survival, and Cellular Development pathways 
which are relevant to cancer progression and prognosis. The 
LGG model genes are enriched in pathways involved in 
Organismal Injury and Abnormality, which are related to 
tumor microenvironment inflammation which was recently 
linked to these tumors.15 A full list of the features of the mod-
els used, pathway nodes, scores, and pathways functions can be 
seen in Table 2.

As expected, functional pathways related to the tissues of 
origin such as Renal and Urological System Development and 

Figure 1. Model generation workflow for each TCGA project.
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Function, Reproductive System Disease, and Connective 
Tissue Disorders correlated to the primary tissue of the TCGA 
prediction models: kidney, cervix and glial cells, respectively.

Comparison of gene enrichment of 2 prediction models for the same 
samples cohort. We developed, based on the analysis of the same 
set of TCGA-KIRP samples, 2 separate models based on 
300-feature model and 42-feature model. The predictions of 
the 2 models were 0.85 and 0.86, respectively. The 42 genes 
that comprised the smaller prediction model are included in 
the 300 genes model. Analysis of the 300 features TCGA-
KIRP model by the Ingenuity Pathways Analysis software 

matched 7 networks that are significantly enriched by those 
genes (see Supplemental Table 3 for specific molecules in 
each network and P-values). The most enriched network 
(P-value = 10−45) that was selected by the IPA is composed of 
35 components, out of them 26 are shared with the 300 fea-
tures of the model. The network is related to the following 
functions: Cancer, Organismal Injury and Abnormalities, 
and Reproductive System Disease. In the 42 feature TCGA-
KIRP model on the other hand the most enriched network 
(P-value = 10−38) is also composed of 35 genes, out of them 15 
genes are shared with the 42 features of the model. Cell Cycle, 
Connective Tissue Development and Function, and Renal and 

Figure 2. AUC-ROC results as a function of the features numbers for 3 datasets: TCGA selected model data, CPTAC3-ccRCC, and CPTAC3-UCEC. The 

datasets were tested on each model and AUC-ROC score was calculated. The blue line represents the average AUC-ROC for all 500 results of the TCGA 

dataset.
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Table 3. Each data set was tested on top 5 models. The AUC-ROC score was calculated based on the predictions rate for each dataset.

 PREDICTION MODEl

CESC COAD KIRP lGG SARC

Samples data set BlCA 0.569 0.357 0.456 0.574 0.494

BRCA 0.447 0.469 0.459 0.440 0.511

CESC 0.979 0.391 0.540 0.601 0.544

COAD 0.540 0.951 0.467 0.625 0.566

HNSC 0.571 0.384 0.482 0.478 0.434

KIRC 0.561 0.625 0.671 0.555 0.646

KIRP 0.539 0.502 0.981 0.508 0.616

lGG 0.566 0.570 0.584 0.990 0.470

lIHC 0.552 0.513 0.594 0.602 0.525

lUAD 0.649 0.438 0.562 0.506 0.517

lUSC 0.539 0.406 0.458 0.489 0.455

READ 0.074 0.519 0.667 0.148 0.222

SARC 0.532 0.437 0.586 0.465 0.988

SKCM 0.507 0.429 0.475 0.440 0.591

UCEC 0.549 0.553 0.571 0.460 0.582

Red indicates opposite prediction correlation and intensity ranges between 0 to 0.5. Green indicates direct prediction correlation and ranges from 0.5 to 1. white indicates 
that there is no correlation.

Figure 3. Mean score results from TCGA-KIRP model on TCGA-KIRP and CPTAC3-ccRCC groups, deceased, and tumor free. †P-value = 2.23 × 10−54. 

‡P-value = .01.

Urological System Development and Function pathways 
categories were significantly enriched in this network. As 
depicted in Figure 4, only 5 genes from the 42 feature TCGA-
KIRP model were characterized as IPA network nodes in the 
larger network: DMBT1, IL11, HOXB6, TRIB3, PIM1. 
Those genes appear in both networks and might play a signifi-
cant role in the disease renal cancer prognosis.

DMBT116 (Deleted In Malignant Brain Tumors 1) is a 
tumor suppressor gene. Deletions in this gene play a role in the 
progression of many human cancers, including brain, lung, 

esophageal, gastric, and colorectal tumors. IL11, as part of 
KRT8-IL11 axis activation upregulation,17 promotes tumor 
metastasis and is predictive of a poor prognosis in renal cell 
carcinoma. It was also suggested as a potential therapeutic tar-
get in cancer treatment.18 HOXB6 (Homeobox B6) was found 
to play different roles in several cancer pathways,19,20 including 
in methylation-driven genes related to prognosis in renal cell 
carcinoma.21 TRIB3 (Tribbles pseudokinase 3) has many 
biological functions. However, high expression of TRIB3 was 
correlated with both advanced tumor stage and unfavorable 
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prognosis.22 High expression of TRIB3 in other cancer types, 
such as hepatocellular carcinoma and lung cancer, also corre-
lated with poor survival rate.23,24 PIM1 is a proto-oncogene 
belonging to the Ser/Thr protein kinase family. It was recently 
found that when overexpressed in human renal cell carcinoma 
tissues and cell lines, it positively correlated with disease pro-
gression.25 PIM1 was found to be involved in Smad2, Smad3, 
and c-Myc26 phosphorylation and was suggested as a potential 
therapeutic target for renal cell carcinoma patients.

SurviveAI webapp. An interactive free software based on the 
models was created using Flask 1.1.2. It enables physicians and 
researchers to get clinical predictions (for research purposes 
only) for RNA-Seq cancer multiple samples. The easy to use 
interface allows one to insert specific gene lists with FPKM-
UQ values for each gene and to get predicted survival scores 
for 5 cancer types: Cervical squamous cell carcinoma and 
endocervical adenocarcinoma (CESC), colon adenocarcinoma 
(COAD), kidney renal papillary cell carcinoma (KIRP), brain 
lower grade glioma (LGG) and sarcoma (SARC). The tool 
uses scikit-learn’s predict_proba(X) method in the chosen 
TCGA-project model, and provides the probability for the 
given sample to match each group. Higher scores correlated 
with higher survival likelihood, while lower scores suggest poor 
survival prognosis. That being said, it is essential to calibrate 
the prediction scores scale for each cohort before using the tool 
as a predictor for specific samples, due high batch effect sensi-
tivity of the models. In Figure 3 demonstrate the difference in 
the mean score value for each group. Although the CPTAC3-
ccRCC difference between the Deceased and Tumor-free 
groups is significant (P-value = .01), it is less significant than 
the TCGA-KIRP group (P-value = 2.23 × 10−54). Calibration 
should be done with at least 10 to 20 samples to get maximum 
accuracy. The app automatically normalizes the scores to 1 by 
dividing them using the highest result.

SurviveAI webapp can be accessed at https://tinyurl.com/
surviveai

Discussion
Following the significant price decrease of high-throughput 
sequencing, projects like TCGA have generated vast amounts 
of data that enable machine learning. Usually, only specific 
types of cancer cohorts are used to create prediction models, 
combining multiple sources of OMICs-data to enhance AUC-
ROC-based predictions. A multi-OMICs prediction model is 
more costly and less useful for routine clinical use, due to the 
increased number of methodologies needed. In order for a 
model to be user friendly and readily applicable, we based our 
model on RNA-seq data only, which is affordable and accessi-
ble, in clinical and research facilities. We have used 70% of the 
samples in each TCGA project to train the prediction models, 
and in order to validate the prediction, we tested them against 
the rest 30% of the samples from the cohort that was not used 
for training (test data). In addition, the models were tested 
against external datasets, CPTAC3-ccRCC and CPTAC3-
UCEC. As expected, the models provided low prediction 
scores for the CPTAC3-UCEC samples, as none of the mod-
els were related to uterus cancer. Although KIRP (Kidney 
Renal Papillary Cell Carcinoma) and ccRCC (Clear cell renal 
cell carcinoma) are different subtypes of kidney cancer, the 
TCGA-KIRP model provides excellent predictions (AUC-
ROC = 0.86) for the ccRCC dataset samples. Interestingly, the 
TCGA-SARC model also provides about the same accuracy 

Figure 4. Shared features between top networks of TCGA-KIRP 
prediction models: (A) The top network from IPA prediction for the 
TCGA-KIRP 300 features model. That network is associated with Cancer, 
Organismal Injury and Abnormalities, Reproductive System Disease 
pathways. The gray nodes are the nodes from the model feature list (26 
out of 35 network nodes, P-value = 10−42). (B) The top network from IPA 
prediction for the TCGA-KIRP 42 features model. That network is 
associated with Cell Cycle, Connective Tissue Development and 
function, Renal and Urological System Development and function. The 
gray nodes are the nodes from the model feature list (15 out of 35 
network nodes, P-value = 10−38). The blue nodes are the shared genes 
between the networks that are also features in both models: DMBT1, Il11, 
HOXB6, TRIB3, PIM1.

https://tinyurl.com/surviveai
https://tinyurl.com/surviveai
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(AUC-ROC = 0.85) for this dataset, even though the 2 models 
(KIRP and SARC) do not share any features at all (see Table 2)

We highly recommend that before using the models to cali-
brate with a truth set that contains at least 10 to 20 samples, as 
RNA expression level tends to be sensitive to batch effect.

For example, the CPTAC3-ccRCC Tumor-Free samples 
produce average score results of 0.73 for the Tumor-Free sam-
ples while the TCGA-KIRP survived results were between 0.9 
and 1 (Table 3).

In this study, we show a novel method of machine learning 
driven pathways discovery using the simple and robust tech-
nique of reverse feature elimination. Also, the decision to use 2 
distinct groups (Deceased and Tumor free), allowed us to deci-
pher critical genes and features that are important for progres-
sion prediction in some of the projects.

We checked all possible projects available for analysis on the 
TCGA datasets and used only RNA-seq data for predictions. 
The reason for this is the relatively low cost and simplicity to 
produce such data for clinical and research purposes. This 
allows other researchers to use the models available free online. 
The Random Forest model is simple and allows us to easily 
extract the most important features from the data.

In 4 out of 5 models, a significant portion of the models’ 
genes were part of cancer-related pathways. The molecules 
which were not included might be extensions of those net-
works or create another unknown network themselves. From 
a clinical perspective those genes might serve as new drug 
targets or biomarkers.
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