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ABSTRACT

MOTIVATION: Prediction of cancer outcome is a major challenge in oncology and is essential for treatment planning. Repositories such as
The Cancer Genome Atlas (TCGA) contain vast amounts of data for many types of cancers. Our goal was to create reliable prediction mod-
els using TCGA data and validate them using an external dataset.

RESULTS: For 16 TCGA cancer type cohorts we have optimized a Random Forest prediction model using parameter grid search followed
by a backward feature elimination loop for dimensions reduction. For each feature that was removed, the model was retrained and the area
under the curve of the receiver operating characteristic (AUC-ROC) was calculated using test data. Five prediction models gave AUC-ROC
bigger than 80%. We used Clinical Proteomic Tumor Analysis Consortium v3 (CPTAC3) data for validation. The most enriched pathways for
the top models were those involved in basic functions related to tumorigenesis and organ development. Enrichment for 2 prediction models
of the TCGA-KIRP cohort was explored, one with 42 genes (AUC-ROC =0.86) the other is composed of 300 genes (AUC-ROC =0.85). The
most enriched networks for both models share only 5 network nodes: DMBT1, IL11, HOXB6, TRIB3, PIM1. These genes play a significant role
in renal cancer and might be used for prognosis prediction and as candidate therapeutic targets.

AVAILABILITY AND IMPLEMENTATION: The prediction models were created and tested using Python SciKit-Learn package. They are

freely accessible via a friendly web interface we called surviveAl at https://tinyurl.com/surviveai.
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Introduction

Cancer is a leading cause of death, and accounts for 17% of
mortality worldwide. According to a report from the
International Agency for Research on Cancer (IARC),in 2018
a total of 9.5 million deaths and 18 million new cases of cancer
were reported worldwide. Interestingly, incidence and mortal-
ity rates are higher in men and in the developed world.! While
some types of cancers are treated based on biomarkers and spe-
cific genetic mutations,’? most cases are still treated according
to specific guidelines by surgery, chemotherapy, and/or radio-
therapy based on data integrating the clinical, histopathologi-
cal, details of therapy, imaging, and outcome information of the
patients.

Accurate prediction of prognosis of the various subtypes of
cancer may improve tailoring of therapy by allowing to take
into consideration the expected outcome versus therapy choice,
intensity, risk, side effects, and late complications.

In the last decade, large OMICs databases were created that
contain data generated from thousands of cancer samples. The
largest one, The Cancer Genome Atlas (TCGA), a repository

that contains genomic, epigenomic, transcriptomic, proteomic,
and clinical data, characterizing 33 types of tumors from over
20,000 patients, is considered to be one of the largest sources
for cancer OMICs data. Many groups have tried to use TCGA
data to predict the prognosis of patients affected by various
tumors using machine learning approaches, with varying levels
of success.?>8

Random Forest’ is a simple yet effective Machine Learning
algorithm that proved to be a successful predictor when using
structured data such as RNA expression analysis.’ It has low
overfitting and a simple feature importance scoring function
that is based on the Mean Decrease in Impurity function (Gini
Importance). This allows refinement of prediction models and
adds important insights into the biological role of each feature
in cancer development and prognosis.

Cancer outcome prediction using OMICS-related data
evolved in the last 2 decades starting with the use of gene-
expression microarrays.'12 The accumulation of data from
various OMICS technologies calls for the development of
advanced cancer outcome prediction tools.
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Here we describe a robust and simple analysis prediction
tool using the Random Forest algorithm on 5 tumor types

using the TCGA database.

Methods
Data

All RNA-seq datasets were downloaded from Genomic Data
Commons (GDC). Clinical data was downloaded from the
firehose data portal. The RNA-seq FPKM-UQ_normalized
data for cancer types of the TCGA projects were downloaded
from National Cancer Institute’s Genomic Data Commons
data portal. The samples in each project were divided into 2
groups. The first group included samples from patients who
were tumor-free for over 3years (Tumor-Free samples), the
second group included samples from patients that succumbed
to the disease at any time point (Deceased group). We only
used projects where the ratio between group size and the total
number of samples was between 20% and 80% (Table 1).
Validation of the models was done using 2 datasets from
Clinical Proteomic Tumor Analysis Consortium v3(CPTAC3):
Clear Cell Renal Cell Carcinoma (CPTAC3-ccRCC) and
Uterine Corpus Endometrial Carcinoma (CPTAC3-UCEC).

Software

We used python 3.7.6 and dependencies for full data analysis.
Random Forest classifiers were created using scikit-learn
0.23.2. Data parsing and analysis were done using pandas 1.1.1.
Ingenuity Pathway Analysis was used for network enrichment
assessments. The webapp was created based on Flask 1.1.2 and
Jinja2 2.11.2.

Random forest model training and testing

Dimension reduction for the model required several steps as
illustrated in Figure 1. The first RF model for each TCGA
project was created using all 65483 mRNA features. The
model parameters were selected using GridSearchCV module
from scikit-learn, which tests all possible combinations from
the provided list as detailed in Supplemental Table 2. After
the model training, the features were scored and sorted using
the model’s property feature_importances_. The features with
no importance (score 0) were removed. With the rest of
the features, we have built a second model using a second
GridSearchCV parameter search. The features were sorted and
scored, and again features with no importance (score 0) were
removed. We have continued dimensionality reduction using a
backward feature elimination loop,'® until only one feature was
left. For each reduction (N-1), each TCGA model was trained
using 70% of the samples. The Area Under the Curve of the
Receiver Operating Characteristic (AUC-ROC) was calculated
using the predictions made on the testing data (the remaining

30% of the TCGA samples). Figure 2 shows that the optimal

model that was selected was the one in where the minimal fea-
tures provided the average AUC-ROC of the last 500 modes.

The code for the models creation pipelines can be down-
loaded from https://github.com/omrin/surviveai.

Results

AUC-ROC mean of over 80% was achieved in 5 projects. Out of
26 RNA-Seq TCGA-tumor type projects, only 14 had the
required ratio between group size and the total number of sam-
ples (20%-80%) and had a minimum of 30 samples.

An average AUC-ROC score was calculated for the last 500
models (features range from 1 to 500). Out of the 15 cancer
types, 5 tumor groups had an average AUC-ROC of over 80%
TCGA-LGG (low grade glioma) 0.92 AUC-ROC, TCGA-
COAD (colon adenocarcinoma) 0.84 AUC-ROC, TCGA-
SARC (sarcoma) 0.86 AUC-ROC, TCGA-CESC (cervical
squamous cell carcinoma and endocervical adenocarcinoma)
0.8 AUC-ROC, and TCGA-KIRP (kidney renal papillary cell
carcinoma) 0.88 AUC-ROC. Detailed results and statistics for
each TCGA project can be found at Table 1.

The model with the minimal features that most closely
predicted the calculated AUC-ROC average was selected (See
Figure 2). Each selected model used dozens of dimensions: a
maximum of 90 features for TCGA-LGG and minimum 12
features for TCGA-COAD.

Prediction of the top 5 models highly correlates with sample tumor
origin. 'The top 5 models were tested on all 15 TCGA project
sample datasets. AUC-ROC scores were calculated for each
dataset using the predictions of each sample and the known
final results, see heatmap in Table 3. As expected, the scores for
the training samples that were used to create prediction models
were high and close to 1. For other datasets, the predictions
were almost without correlation to the true condition of the
samples (score .5)

Interestingly, a high negative correlation was found between
the prediction models TCGA-CESC, TCGA-LGG, and
TCGA-SARC and the predictions for the samples of the
TCGA-READ project.

Correlation of outcome predictions of TCGA dataset analyses with
the validation datasets within tumor types. In addition to the
validation of the predictions obtained by analysis of the TCGA
training sets using the testing sets, we further validated the
models using 2 independent datasets that served for measuring
the robustness of the models. We chose CPTAC3-ccRCC
renal tumor dataset for the validation of a model developed for
the same tissue of origin tumor which had a high prediction
score, and CPTAC3-UCEC uterine tumor as an independent
dataset for the testing of our model for the analysis of a tumor
type where specific prediction model had a lower score.

The AUC-ROC obtained by the application of the TCGA-
KIRP based model for the analysis of the CPTAC3-ccRCC
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Algorithm workflow for each TCGA project
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Figure 1. Model generation workflow for each TCGA project.
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data was 0.86, very similar to the value 0.88 of the TCGA-
KIRP test group. Interestingly, TCGA renal cell tumors have 2
sub-types: Kidney renal clear cell carcinoma (TCGA-KIRC)
and Kidney renal papillary cell carcinoma (TCGA-KIRP). We
analyzed these subtypes separately and the predictions were
0.79 and 0.88 AUC-ROC for the test groups, respectively.
When we applied these 2 prediction models for validation
cohort CPTAC3-ccRCC, which contains clear cell renal cell
tumors, the predictions of both models were similar, 0.77 and
0.86 AUC-ROC, respectively. The prediction of the less effi-
cient TCGA-UCEC model for the CPTAC3-UCEC data
indeed gave a low predictions score, 0.63. Surprisingly the tis-
sue discordant TCGA-KIRP prediction model for the analysis
of uterine the CPTAC3-UCEC data set over performed the
prediction of the tissue concordant TCGA-UCEC model and
scored AUC-ROC 0.663. Finally, we have tested all the TCGA
predictions models using renal CPTAC3-ccRCC dataset. For
most of the models, the results were below 0.7, except for the
TCGA-SARC model which was 0.85. When we used the
uterine CPTAC3-UCEC dataset on all the TCGA prediction
models, all the scores were very low except for the TCGA-
SARC model which was 0.74.

TCGA-KIRP model accurately predicted the prognosis of CPTAC3-
ccRCC samples, but on a different scale. We analyzed the RNA-
SEQ_data of CPTAC3-ccRCC samples using the selected
TCGA-KIRP final model (created using 42 features as
described in Table 2). The mean scores for the Deceased and
Tumor-free groups were significantly different as shown in
Figure 3, however, the scale by which each group was meas-
ured also differed. For the TCGA-KIRP samples, the
model produced scores between 0.025 and 0.95 while the

CPTAC3-ccRCC sample scores were 0.18 to 0.425 (before
normalization to 1). The model prediction AUC-ROC score
for the CPTAC3-ccRCC was 0.86, almost identical to the
TCGA-KIRP testing set.

Pathway analysis revealed enrichment for cancer and cancer-related
canonical pathways. We used the Ingenuity Pathway Analysis
(IPA) to analyze the genes selected in the final model for
enrichment of related pathways. The top pathways were those
involved in basic functions related to tumorigenesis and organ
development. For example, in the TCGA-KIRP tumor prog-
nosis prediction model, the pathways of Cell Cycle, Connective
Tissue Development and Function, and Renal and Urological
System Development and Function were the most highly
enriched with a P-value of 1038, In the TCGA-CESC, the
highly represented pathways were Inflammatory Diseases as
well as Inflammatory Response and Organismal Injury and
Abnormalities. Due to the fact that cervical cancer is usually
related to the effect of the human papillomavirus, it is not sur-
prising that the genes associated with an inflammatory response
may influence the prognosis of the cancer in those patients.!*
The TCGA-SARC model genes are enriched in Cell Cycle,
Cell Death and Survival, and Cellular Development pathways
which are relevant to cancer progression and prognosis. The
LGG model genes are enriched in pathways involved in
Organismal Injury and Abnormality, which are related to
tumor microenvironment inflammation which was recently
linked to these tumors.!> A full list of the features of the mod-
els used, pathway nodes, scores, and pathways functions can be
seen in Table 2.

As expected, functional pathways related to the tissues of
origin such as Renal and Urological System Development and
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Figure 2. AUC-ROC results as a function of the features numbers for 3 datasets: TCGA selected model data, CPTAC3-ccRCC, and CPTAC3-UCEC. The
datasets were tested on each model and AUC-ROC score was calculated. The blue line represents the average AUC-ROC for all 500 results of the TCGA

dataset.

Function, Reproductive System Disease, and Connective
Tissue Disorders correlated to the primary tissue of the TCGA
prediction models: kidney, cervix and glial cells, respectively.

Comparison of gene enrichment of 2 prediction models for the same
samples cohort. We developed, based on the analysis of the same
set of TCGA-KIRP samples, 2 separate models based on
300-feature model and 42-feature model. The predictions of
the 2 models were 0.85 and 0.86, respectively. The 42 genes
that comprised the smaller prediction model are included in
the 300 genes model. Analysis of the 300 features TCGA-
KIRP model by the Ingenuity Pathways Analysis software

matched 7 networks that are significantly enriched by those
genes (see Supplemental Table 3 for specific molecules in
each network and P-values). The most enriched network
(P-value=10-%) that was selected by the IPA is composed of
35 components, out of them 26 are shared with the 300 fea-
tures of the model. The network is related to the following
functions: Cancer, Organismal Injury and Abnormalities,
and Reproductive System Disease. In the 42 feature TCGA-
KIRP model on the other hand the most enriched network
(P-value =10-%) is also composed of 35 genes, out of them 15
genes are shared with the 42 features of the model. Cell Cycle,
Connective Tissue Development and Function, and Renal and
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Table 3. Each data set was tested on top 5 models. The AUC-ROC score was calculated based on the predictions rate for each dataset.

PREDICTION MODEL

CESC COAD

Samples data set BLCA 0.569 0.357 0.456 0.574 0.494
BRCA 0.447 0.469 0.459 0.440 0.511
CESC _ 0.391 0.540 0.601 0.544
COAD 0.540 _ 0.467 0.625 0.566
HNSC 0.571 0.384 0.482 0.478 0.434
KIRC 0.561 0.625 0.671 0.555 0.646
KIRP 0.539 0.502 _ 0.508 0.616
LGG 0.566 0.570 0.584 _ 0.470
LIHC 0.552 0.513 0.594 0.602 0.525
LUAD 0.649 0.438 0.562 0.506 0.517
LUSC 0.539 0.406 0.458 0.489 0.455
SARC 0.532 0.437 0.586 0.465 _
SKCM 0.507 0.429 0.475 0.440 0.591
UCEC 0.549 0.553 0.571 0.460 0.582

Red indicates opposite prediction correlation and intensity ranges between 0 to 0.5. Green indicates direct prediction correlation and ranges from 0.5 to 1. White indicates
that there is no correlation.
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Figure 3. Mean score results from TCGA-KIRP model on TCGA-KIRP and CPTAC3-ccRCC groups, deceased, and tumor free. tP-value=2.23 X 10-54.
1P-value=.01.

Urological System Development and Function pathways
categories were significantly enriched in this network. As
depicted in Figure 4, only 5 genes from the 42 feature TCGA-
KIRP model were characterized as IPA network nodes in the
larger network: DMBT1, 1L11, HOXB6, TRIB3, PIM1.
Those genes appear in both networks and might play a signifi-
cant role in the disease renal cancer prognosis.

DMBT1' (Deleted In Malignant Brain Tumors 1) is a
tumor suppressor gene. Deletions in this gene play a role in the
progression of many human cancers, including brain, lung,

esophageal, gastric, and colorectal tumors. IL11, as part of
KRT8-IL11 axis activation upregulation,’” promotes tumor
metastasis and is predictive of a poor prognosis in renal cell
carcinoma. It was also suggested as a potential therapeutic tar-
get in cancer treatment.’® HOXB6 (Homeobox B6) was found
to play different roles in several cancer pathways,'%?° including
in methylation-driven genes related to prognosis in renal cell
carcinoma.?’ TRIB3 (Tribbles pseudokinase 3) has many
biological functions. However, high expression of TRIB3 was
correlated with both advanced tumor stage and unfavorable
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Figure 4. Shared features between top networks of TCGA-KIRP
prediction models: (A) The top network from IPA prediction for the
TCGA-KIRP 300 features model. That network is associated with Cancer,
Organismal Injury and Abnormalities, Reproductive System Disease
pathways. The gray nodes are the nodes from the model feature list (26
out of 35 network nodes, P-value=10-4?). (B) The top network from IPA
prediction for the TCGA-KIRP 42 features model. That network is
associated with Cell Cycle, Connective Tissue Development and
Function, Renal and Urological System Development and Function. The
gray nodes are the nodes from the model feature list (15 out of 35
network nodes, P-value=10-38). The blue nodes are the shared genes
between the networks that are also features in both models: DMBT1, IL11,
HOXBS6, TRIB3, PIM1.

prognosis.?? High expression of TRIB3 in other cancer types,
such as hepatocellular carcinoma and lung cancer, also corre-
lated with poor survival rate.32* PIM1 is a proto-oncogene
belonging to the Ser/Thr protein kinase family. It was recently
found that when overexpressed in human renal cell carcinoma
tissues and cell lines, it positively correlated with disease pro-
gression.”” PIM1 was found to be involved in Smad2, Smad3,
and c-Myc?® phosphorylation and was suggested as a potential
therapeutic target for renal cell carcinoma patients.

SurviveAl webapp. An interactive free software based on the
models was created using Flask 1.1.2. It enables physicians and
researchers to get clinical predictions (for research purposes
only) for RNA-Seq cancer multiple samples. The easy to use
interface allows one to insert specific gene lists with FPKIM-
UQ_values for each gene and to get predicted survival scores
for 5 cancer types: Cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), colon adenocarcinoma
(COAD), kidney renal papillary cell carcinoma (KIRP), brain
lower grade glioma (LGG) and sarcoma (SARC). The tool
uses scikit-learn’s predict_proba(X) method in the chosen
TCGA-project model, and provides the probability for the
given sample to match each group. Higher scores correlated
with higher survival likelihood, while lower scores suggest poor
survival prognosis. That being said, it is essential to calibrate
the prediction scores scale for each cohort before using the tool
as a predictor for specific samples, due high batch effect sensi-
tivity of the models. In Figure 3 demonstrate the difference in
the mean score value for each group. Although the CPTAC3-
ccRCC difference between the Deceased and Tumor-free
groups is significant (P-value=.01), it is less significant than
the TCGA-KIRP group (P-value=2.23 X 10->4). Calibration
should be done with at least 10 to 20 samples to get maximum
accuracy. The app automatically normalizes the scores to 1 by
dividing them using the highest result.

SurviveAl webapp can be accessed at https://tinyurl.com/
surviveai

Discussion

Following the significant price decrease of high-throughput
sequencing, projects like TCGA have generated vast amounts
of data that enable machine learning. Usually, only specific
types of cancer cohorts are used to create prediction models,
combining multiple sources of OMICs-data to enhance AUC-
ROC-based predictions. A multi-OMICs prediction model is
more costly and less useful for routine clinical use, due to the
increased number of methodologies needed. In order for a
model to be user friendly and readily applicable, we based our
model on RNA-seq data only, which is affordable and accessi-
ble, in clinical and research facilities. We have used 70% of the
samples in each TCGA project to train the prediction models,
and in order to validate the prediction, we tested them against
the rest 30% of the samples from the cohort that was not used
for training (test data). In addition, the models were tested
against external datasets, CPTAC3-ccRCC and CPTAC3-
UCEC. As expected, the models provided low prediction
scores for the CPTAC3-UCEC samples, as none of the mod-
els were related to uterus cancer. Although KIRP (Kidney
Renal Papillary Cell Carcinoma) and ¢ccRCC (Clear cell renal
cell carcinoma) are different subtypes of kidney cancer, the
TCGA-KIRP model provides excellent predictions (AUC-
ROC=0.86) for the ccRCC dataset samples. Interestingly, the
TCGA-SARC model also provides about the same accuracy
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(AUC-ROC =0.85) for this dataset, even though the 2 models
(KIRP and SARC) do not share any features at all (see Table 2)
We highly recommend that before using the models to cali-
brate with a truth set that contains at least 10 to 20 samples, as
RNA expression level tends to be sensitive to batch effect.

For example, the CPTAC3-ccRCC Tumor-Free samples
produce average score results of 0.73 for the Tumor-Free sam-
ples while the TCGA-KIRP survived results were between 0.9
and 1 (Table 3).

In this study, we show a novel method of machine learning
driven pathways discovery using the simple and robust tech-
nique of reverse feature elimination. Also, the decision to use 2
distinct groups (Deceased and Tumor free), allowed us to deci-
pher critical genes and features that are important for progres-
sion prediction in some of the projects.

We checked all possible projects available for analysis on the
TCGA datasets and used only RNA-seq data for predictions.
The reason for this is the relatively low cost and simplicity to
produce such data for clinical and research purposes. This
allows other researchers to use the models available free online.
The Random Forest model is simple and allows us to easily
extract the most important features from the data.

In 4 out of 5 models, a significant portion of the models’
genes were part of cancer-related pathways. The molecules
which were not included might be extensions of those net-
works or create another unknown network themselves. From
a clinical perspective those genes might serve as new drug
targets or biomarkers.
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