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Abstract
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from 
Bacillus anthracis, has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing 
Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain 
inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site 
and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization. We used feature 
importance analysis to filter out unnecessary features and engineered remaining features to regularize the feature landscape and 
encourage learning of the depolymerization mechanism. We find that, while not enforced in training, a gradient-boosting decision 
tree is able to reproduce the experimental activities of inhibitory Nbs while maintaining high classification accuracy, whereas neural 
networks were only able to discriminate between classes. Further feature analysis revealed that inhibitory Nbs restrain Sap motions 
toward an inhibitory conformational state described by domain–domain clamping and induced twisting of domains normal to the 
lattice plane. We believe these motions drive Sap lattice depolymerization and can be used as design targets for improved Sap- 
inhibitory Nbs. Finally, we expect our method of study to apply to S-layers that serve as virulence factors in other pathogens, paving 
the way forward for Nb therapeutics that target depolymerization mechanisms.
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Introduction
Many bacteria and almost all archaea express SLPs that assemble into 
paracrystalline arrays known as S-layers (1, 2). Bacillus anthracis—the 
bacterium responsible for lethal anthrax infections—is one such 
organism. The surface array protein (Sap) is one of the two SLPs 
identified in B. anthracis and is expressed during the exponential 
phase of growth. After secretion, Sap noncovalently attaches to 

the peptidoglycan layer via the surface-layer homology motif (3). 

The assembly domain of Sap (SapAD) consists of six Ig-like domains 

connected by flexible linkers. The monomers assemble into a two- 

dimensional lattice with p2 symmetry (4, 5). While the many func-

tions of such S-layers are still being uncovered, several pathogenic 

bacteria have been shown to lose their pathogenicity upon knock- 

out of their S-layer genes (2, 4, 6, 7), suggesting that S-layer protein 

https://orcid.org/0000-0002-7596-0845
https://orcid.org/0000-0002-5752-6009
https://orcid.org/0009-0000-9546-2280
https://orcid.org/0000-0002-9775-4102
https://orcid.org/0000-0003-2823-6480
mailto:apak@mines.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/pnasnexus/pgae538


assembly may be a viable target for therapeutic intervention. One 
potential avenue for targeting these S-layers is through the use of 
nanobodies (Nbs), a type of single-domain antibody (4, 8, 9).

Camelid Nbs were recently demonstrated to depolymerize and 
inhibit the formation of Sap S-layers in B. anthracis (4). Infected 
mouse models treated with Sap-inhibitory Nbs completely 
cleared their infections. Of the 11 isolated Nbs in this study, five 
caused lattice depolymerization and inhibited subsequent lattice 
formation. The other six Nbs bound with high affinity but did not 
cause lattice depolymerization, suggesting that binding affinity is 
not the primary driving force for S-layer depolymerization. To 
date, X-ray structures of only two Sap-binding Nbs have been 
solved (4), which show that their complementarity determining 
regions (CDRs), specifically CDR3, are responsible for Sap epitope 
recognition. However, there are no clear sequence patterns differ-
entiating inhibitory Nbs from noninhibitory Nbs (Table S1). 
Outside of CDR3, Nb sequences are highly conserved; within 
CDR3, we observe chemically similar mutations in both inhibitory 
and noninhibitory Nbs (see Table S2), which make narrowing 
down specific point-mutations that may be responsible for inhibi-
tory action nontrivial if they even exist. More likely is that muta-
tions leading to inhibitory action are epistatic in nature.

At present, the mechanism of Nb-induced depolymerization is 
unknown, and experimental methods are unable to access the 
time- and length-scales necessary to observe this mechanism at 
molecular resolution (10). While all-atom (AA) molecular dynam-
ics (MD) simulations can provide the needed spatial resolution, 
the accessible time scales are too short to observe Nb binding 
and lattice-wide depolymerization, which occurs on the order of 
minutes (4, 10). Low-resolution coarse-grained (CG) MD simula-
tions could extend the accessible time- and length-scales; how-
ever, there is no existing CG model for Sap, and current 
bottom-up CG methods are ill suited for the configurational diver-
sity of large multidomain proteins (11–13). Instead, we hypothe-
sized that we could take advantage of the hierarchical nature of 
protein assembly (14, 15) by directing our attention to only the 
binding region of Sap (i.e. D1D2) and using all-atom molecular dy-
namics (AAMD) simulations combined with machine learning 
(ML) to detect differences in small time- and length-scale motions 
that may lead to collective S-layer disassembly.

Several studies have already attempted to couple MD simula-
tions with ML to elucidate molecular driving forces behind target 
protein properties (16–21). One study used ML to predict protein 
antifreeze activity using AAMD data (22, 23). Antifreeze activity 
was approximated using hydrogen-bond lifetimes of water mole-
cules to solvent-accessible residues to quantify the degree to 
which the protein restrains water. Another recent study coupled 
sequence descriptors, structural descriptors, and averaged MD 
features to predict the activities of a library of enterokinase en-
zymes (24). By analyzing varying combinations of these features 
trained using different model architectures, the authors found 
that the dynamical information encoded by the MD features aug-
mented model predictions when combined with sequence de-
scriptors. Together, these studies show that MD and ML can be 
coupled to better study protein behavior.

To our knowledge, MD-informed ML has not yet been used to 
study the functional response of an antigen to libraries of anti-
bodies (Abs) or Nbs bound to the same epitope when competitive 
inhibition is not likely as a mechanism of action. Existing ML mod-
els developed for Abs/Nbs typically attempt to predict structure 
(25–27) or binding pose (28–30), improve binding affinity and spe-
cificity (31–36), or predict properties such as thermostability, tox-
icity, and nativeness (37, 38). The implicit assumption behind 

these models is that binding affinity, specificity, and protein sta-
bility are the primary drivers of Ab/Nb function. However, these 
prior approaches are unsuitable in the present context since ex-
periments have already shown that binding affinity and binding 
pose are incomplete predictors of Nb-induced S-layer depolymer-
ization. To enhance S-layer targeting Nbs for therapeutic use, a 
new quantifiable objective must be developed that directly corre-
lates to the depolymerization mechanism.

In this work, we set out to design an interpretable predictor for the 
S-layer depolymerization activity of Nbs that could also be used to 
identify microscopic correlations related to the mechanism of action 
for depolymerization. We performed AAMD simulations of isolated 
D1D2 (the Nb binding site of Sap) with and without a bound Nb 
across all known inhibitory and noninhibitory Nbs that bind to the 
epitope. We then trained a series of ML models using D1D2 confor-
mations to predict inhibitory activity and identified the architecture 
that most closely reproduces experimental observations. Through 
feature importance analysis and feature engineering, we refined 
our ML models to enhance learning of inhibitory activities and sim-
plified feature analysis to suggest mechanisms for Sap depolymer-
ization (Fig. 1). Our analysis reveals that the inhibitory activity of 
Nbs corresponds to Nb-promoted clamping and twisting motions 
near the binding site that we reason lead to Sap depolymerization. 
This finding demonstrates the utility of an interpretation framework 
that leverages both MD simulations and ML analysis to identify func-
tional mechanisms of Nbs based on antigen dynamical responses.

Results
Experimental study of Nb–Sap depolymerization
We first performed an S-layer depolymerization assay to probe 
which Nbs cause lattice depolymerization and to quantify the de-
polymerization activity of each Nb. Beginning with polymerized 
SapAD, varying concentrations (between 0 and 8 µM) of each in-
hibitory and noninhibitory Nb (Table S1) were added and allowed 
to incubate. The mixtures were then subjected to a size-based sep-
aration method to isolate monomeric Sap from S-layers, followed 
by quantification using immunodetection (see “Methods”). The re-
sulting “Sap signal” measures the amount of free Sap monomer, 
which directly indicates the effective depolymerizing activity of 
the Nb. Figure 2A compares inhibitory Nbs and shows that 
Nb692 and Nb702 exhibit the highest depolymerization activity 
(>60% of Sap depolymerized), Nb683 with intermediate activity 
(25%), and Nb707 and Nb704 the lowest activity (<13%). As a con-
trol, we also included the noninhibitory Nbs which showed no 
measurable depolymerization activity (Fig. S1). We then solved 
the X-ray atomic structure of D1D2 bound to Nb692, the most in-
hibitory Nb from our assay, and Nb694, a noninhibitory Nb that 
binds to an alternate site on D1 and was previously used as a crys-
tallization aid (4). Figure 2B shows the alignment of the monomer-
ic D1D2 structure when bound to noninhibitory Nb684 (solved in 
(4, 5)), crystallization aid Nb694, and inhibitory Nb692. The 
RMSD of D1D2 α-C atoms from Nb694-bound to Nb684- and 
Nb692-bound is 7.8 and 7.6 Å, respectively. However, RMSD be-
tween Nb692- and Nb684-bound is 1.7 Å, revealing that binding 
of inhibitory Nb692 induces subtle conformational differences in 
D1D2 compared with binding of noninhibitory Nb684, but not 
enough to explain inhibitory action.

Identification of Nb binding sites on Sap
Before investigating the inhibitory activity of our Nbs using AAMD 
simulations, we first sought to determine the binding site for each 

2 | PNAS Nexus, 2024, Vol. 3, No. 12

http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae538#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae538#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae538#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgae538#supplementary-data


of our Nbs. Our solved structure of Nb692-bound D1D2 suggests a 
common binding site at the hinge between D1 and D2 that is 
shared by both inhibitory Nb692 and noninhibitory Nb684, which 
is contrasted by the alternate binding site on D1 by crystallization 
aid Nb694. We performed multisequence alignment across all of 
our Nbs and focused on the CDR3 sequence (Table S2). While 
the majority of Nb sequences were consistent with both Nb692 
and Nb684, both Nb703 and Nb704 were notably different enough 
to suggest an alternate binding site. However, when we aligned 
Nb703 and Nb704 to the alternate binding site of Nb694 and per-
formed AAMD simulations, we found that both Nbs released with-
in 10 ns of every replica, suggesting that the Nbs do not bind there. 

Instead, all our Nbs were observed to be stable during AAMD sim-
ulations when bound to the Nb692 (and Nb684) binding site (de-
scribed next), suggesting that the hinge region between D1 and 
D2 (as depicted in Fig. 1A) is indeed the correct Nb binding site.

ML to classify Nb inhibitory activity
We performed extensive AAMD simulations of D1D2 bound to 
each of the Nbs to identify conformational motions that might ex-
plain inhibitory action. We hypothesized that the activity of these 
Nbs depended only on the resultant inter-domain conformational 
motions of D1D2. To describe these motions, we grouped amino 

Fig. 1. Overview of the computational workflow. A) Schematic of the AAMD pre- and post-processing steps. The binding site (D1D2) is first isolated from 
the Sap monomer, each Nb is aligned to the binding position, each system is simulated using AAMD, and D1D2 is extracted from the simulations and CG- 
mapped to reduce the dimensionality of the system while maintaining dynamic information. B) Schematic of the ML workflow. Processed trajectories are 
transformed into inter-domain pair distances and used to train a collection of ML classifiers to predict the inhibitory character of a given bound Nb based 
on D1D2 motions alone. The best model is selected, unimportant features are removed, improved classifiers are trained on the remaining engineered 
features, then feature analysis is used to pinpoint mechanisms for Nb-induced Sap depolymerization.

Fig. 2. Experimental characterization of Nb-induced depolymerization. A) Sap depolymerization assay in the presence of each of the listed inhibitory Nbs 
at varying concentrations; higher Sap signal indicates more depolymerized Sap monomer, and therefore higher Nb activity. B) Overlay of 
crystallization-aid Nb694-bound D1D2 represented in gray, Nb684-bound D1D2 extracted from Sap monomer form (5) represented in blue, and 
Nb692-bound D1D2 represented in pink; the D2 domains are aligned to emphasize the change in D1.
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acids with highly correlated motions into CG sites following the 
Essential Dynamics Coarse-Graining method (39). We then com-
puted pairwise distances between D1 and D2 CG sites for a result-
ant 900-dimensional dataset. Using this dataset, we tested the use 
of ML models to predict the two activity classes (inhibitory and 
noninhibitory) of bound Nbs identified experimentally; as a con-
trol, we also included a third nonbound class representing D1D2 
without a Nb present. Four ML architectures were tested for their 
effectiveness in this classification task: a feed-forward neural net-
work (FFNN) for its simplicity, a recurrent neural network (RNN) 
for its ability to learn correlations across time-sequences, a trans-
former for its ability to learn relationships across distant features 
within sequences, and a gradient-boosting decision tree (GBDT) 
for its interpretability. We evaluated all trained models on both 
their classification accuracy and their ability to rank inhibitory 
Nbs according to experimental activity.

Figure 3 presents the average predicted probability that a 
given Nb-D1D2 system is inhibitory across the four ML architec-
tures. All models showed similar accuracies between 92 and 
94% (Table S4) and successful delineation of inhibitory dynamics 
from both noninhibitory and nonbound dynamics. However, only 
the GBDT (Fig. 3D) correctly placed inhibitory Nbs close to the ex-
perimental order of inhibitory activity, with the predicted ranking 
following Nb692 > Nb702 and Nb683 > Nb704 > Nb707; recall that 
the experimental ranking follows Nb692 > Nb702 > Nb683 >  
Nb707 > Nb704 (Fig. 2A).

Our results suggest that the decision-tree architecture is cap-
able of identifying the correlations driving inhibition. While en-
couraging, we desired a model whose predictions more closely 
follow the experimental differences in activity between inhibitory 
Nbs. Because we are only optimizing discrimination between non-
bound, noninhibitory, and inhibitory classes, the ability to cor-
rectly rank Nbs within a single class is not strictly guaranteed. 
However, we believe that there is a common underlying mechan-
ism driving depolymerization that increases in strength with 

increasing inhibitory activity. Therefore, we expect to see in-
creased sampling of “inhibitory conformations” in high-activity 
systems. If the classifier correctly identifies those conformations, 
described by correlations hidden within the input features, ex-
perimental ranking could arise naturally as more samples of “in-
hibitory conformations” improve model confidence.

Given the high-dimensional nature of our dataset, we hypothe-
sized that noisy or redundant features could be impairing the 
ranking. To identify possible redundant features, we computed 
Shapley Additive Explanation (SHAP) (40) values that represent 
the importance of each of the 900 pairwise distance features for 
the final GBDT predictions. We then trained a series of new 
GBDTs with a subset of features filtered in decreasing order of im-
portance to find the cutoff between information-dense features 
and unnecessary features. For each model, we computed a simpli-
fied ranking score that represents the deviation between the pre-
dicted ranking and the experimental ranking of inhibitory activity; 
here, a lower ranking score is better, with zero indicating a quali-
tatively perfect match. As shown in Fig. 4A, we found that the 
GBDT effectively learned the inhibitory behavior using the top 
200 pairwise distance features (in terms of SHAP values). Adding 
more features did not improve accuracy or decrease the ranking 
score. While the GBDT model retained the same accuracy of 
92% when using only the top 200 pairwise distances as features, 
the ranking score did not decrease beyond two due to the fact 
that the predicted ranking for Nb707 and Nb704 (the two least in-
hibitory Nbs) was consistently flipped with respect to the experi-
mental ranking, shown in Fig. 4B. We therefore sought to 
improve the GBDT with additional feature engineering.

We reasoned that emphasizing correlated motions within our 
top 200 pairwise distance features might remove additional noise 
and further regularize the model to learn inhibitory behavior. We 
investigated two transformations: principal component analysis 
(PCA) and time-lagged independent component analysis (TICA). 
PCA and TICA are linear projections of features that represent 

Fig. 3. Ranking of Nb systems across ML architecture. A–D) Probability that a given nanobody (x-axis) is inhibitory (p(inhibitory), y-axis), as predicted by a 
FFNN (A), RNN (B), transformer (C), and GBDT (D) ML models trained on inter-domain pair distances. The horizontal red line in each graph is placed at 
p(inhibitory) = 0.5 (50%); predictions higher than 50% are classified as inhibitory, while predictions lower are classified as either noninhibitory or 
nonbound.
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the directions of largest variance and autocorrelation, respective-
ly. We trained the PCA and TICA transformations based on the 
nonbound D1D2 data only, as we expect the unrestrained statis-
tics to include motions characteristic of all three classes. 
Figure 4C and D show the average predicted probabilities that 
each Nb is inhibitory using the transformed PCA and TICA fea-
tures, respectively. In comparison to the previous top 200 pairwise 
distance GBDT (Fig. 4B), both linear projections improve the rank-
ing prediction to a ranking score of 0 and still retain accuracies of 
92%. However, we do observe that the difference between the pre-
dicted inhibitory probabilities of Nb707 and Nb683 are not statis-
tically significant in the TICA model unlike in the PCA model, 
which suggests that the PCA transformation is the most success-
ful at improving the relative ranking of inhibitory Nbs. This ana-
lysis shows that by using SHAP analyses and feature engineering 
to remove unnecessary features and transform information- 
dense features, we can retain model accuracy while improving 
its ability to learn the driving force behind the target behavior.

Feature analysis to identify the mechanism of 
inhibition
With a GBDT architecture and PCA-transformed feature set that 
aligns excellently with our experimental data, we sought to use 
this model (hereafter referred to as the top-200-PCA-GBDT model) 
to identify collective motions that explain the differences in Nb 
activity. We expect these motions to reveal the mechanism of ac-
tion that drives depolymerization of the Sap lattice and inhibition 
of Sap lattice assembly.

First, we investigated class-level feature differences, i.e. delinea-
tion of inhibitory, noninhibitory, and nonbound trajectories. In 
Fig. 5A, we compare potential of mean force (PMF) profiles pro-
jected on the first two principal components (PC1 and PC2) from 
statistics aggregated across each D1D2 trajectory within each class. 

We find that both the noninhibitory and inhibitory Nb-bound 
systems exhibit a free energy minimum around PC1 = −21.5 and 
PC2 = 6.0 that does not exist in the nonbound case. This new free 
energy minimum is commensurate with the D1D2 X-ray structure 
when bound to inhibitory Nb692 (the purple triangle in Fig. 5A). 
There is also a reduction in sampling of other conformations for 
inhibitory-bound D1D2 than for noninhibitory-bound, suggesting 
that conformational restriction may play a significant part in the 
mechanism of depolymerization. Motivated by this insight, we cal-
culated the RMSD of each CG site in D1D2 for each class relative to 
the X-ray Nb692-bound D1D2 structure. In Fig. 5B, the RMSD distri-
bution across nonbound, noninhibitory, and inhibitory systems in-
dicates that conformational restriction of D1D2 occurs upon Nb 
binding, with further restriction from inhibitory Nbs, indicated by 
the heightening of the peak at 1.4 Å (Fig. 5B). This restriction of con-
formational fluctuations suggests that rigidification of key sites 
may drive lattice inhibition. However, this analysis alone is not 
enough to explain the differences in activity across inhibitory 
Nbs, as separating RMSD statistics by Nb did not show consistent 
overall rigidification that scales with inhibitory activity (Fig. S3).

Next, we analyzed the PCA-transformed top 200 pairwise dis-
tances at the individual Nb level, expecting to see significant local-
ization of sampling within the first few PCs to explain variations in 
inhibitory activity. However, the spread in conformational sam-
pling at low PCs did not consistently decrease with increasing in-
hibitory activity (Fig. S4). The Nb with intermediate inhibitory 
activity (Nb683) appeared to restrict D1D2 the most in this low- 
dimensional projection, suggesting that the conformational re-
striction driving lattice inhibition is encoded in collective motions 
with lower variance observed in free D1D2—motions described by 
higher PCs.

Because the top-200-PCA-GBDT model is able to correctly place 
Nb683 in the ranking of inhibitory Nbs with these PCA-transformed 
features, we performed SHAP analysis on this model to reveal the 

Fig. 4. Feature engineering to improve predictions of inhibitory Nb ranking. A) Accuracy and ranking scores of the GBDTs trained on the listed numbers of 
top pairwise distance features, as defined by SHAP analysis. B–D) Probability that a given Nb (x-axis) is inhibitory (p(inhibitory), y-axis), as predicted by a 
GBDT model trained on the top 200 pairwise distance features (B), PCA features projected from the top 200 pairwise distance features (C), and TICA 
features projected from the top 200 pairwise distance features (D). The horizontal red line in each graph is placed at p(inhibitory) = 0.5 (50%); predictions 
higher than 50% are classified as inhibitory, while predictions lower are classified as either noninhibitory or nonbound.
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PCs most responsible for the prediction of inhibitory activity. 
Intriguingly, the top three most important PCs are PC187, PC3, 
and PC1 (see Fig. 6A). The inclusion of low- and high-PCs suggests 
that the inhibitory motions of interest are a combination of mo-
tions that exhibit low-variance (PC187) and high-variance (PC3 
and PC1) in nonbound D1D2. To further explore these important 
PCs, the Nb-separated inhibitory dataset was clustered using ag-
glomerative clustering in all 200 PCA dimensions and projected 
onto PC187, PC3, and PC1 (Fig. S9). The resulting clusters were 
filtered to be within the free energy minimum near the 
Nb692-D1D2 X-ray structure and have a high average probability 
of inhibition (>0.9) of the inclusive samples, as predicted by the 

top-200-PCA-GBDT model. Figure 6B shows the percentage of sam-
ples from each inhibitory Nb trajectory found within this confor-
mationally restricted state, revealing a stark increase in restricted 
state population with increasing inhibition.

Because we are studying such a small library of Nbs, we wanted 
to ensure as much as possible that our top-200-PCA-GBDT model 
is not simply overfitting the dynamics of a small set of five inhibi-
tory Nbs despite convergence of its test loss. In the absence of oth-
er Nbs to independently test, we reasoned that an ensemble of 
models trained on subsets of our data may be sufficient to test 
for generalizability—if the models are only memorizing, we would 
expect considerable fluctuations in the prediction accuracy and 

Fig. 5. Configurational differences that stratify the three classes. A) PMF profiles projected onto PCs 1 and 2, separated by class. The PCA model is 
transformed from the top 200 pairwise distances. The purple triangle indicates the X-ray structure of Nb692-bound D1D2. The red plus (+) indicates the 
X-ray structure of Nb694-bound D1D2. B) Probability distributions of the RMSD of D1D2 averaged per CG site. The X-ray structure of Nb692-bound D1D2 
serves as the reference.

Fig. 6. Analysis of collective D1D2 motions contributing to nanobody inhibitory activity. A) Top 15 PCs identified by SHAP analysis of the 
top-200-PCA-GBDT model. Larger mean absolute SHAP values indicate higher impact on the model output induced by that feature. Error bars indicate the 
standard deviation of mean SHAP values across five randomized SHAP analyses. B) Percent sampling of the inhibitory state described by PC187/PC3/PC1 
across inhibitory Nbs. C) Depiction of PC187, PC3, and PC1 motions by highlighting the five highest-weighted pair distances for each PC eigenvector (cyan 
lines) on CG-mapped D1D2 (D1 in pink, D2 in blue, and the linker in gray).
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probabilities of inhibition. We trained a series of five subset-top- 
200-PCA-GBDT models where one noninhibitory Nb (Nb688) and 
one of each of the inhibitory Nbs was entirely withheld from train-
ing, then re-introduced for the final inhibitory predictions. While 
the predicted probability of inhibition for withheld inhibitory 
Nbs was <40% in most cases, the experimental ranking of remain-
ing inhibitory Nbs was preserved (Fig. S6). The inability of each 
subset model to correctly rank Nbs it has not seen does indicate 
that the GBDT model is at the cusp of being too data-scarce to 
be generalizable to new Nbs. Yet, because each subset model re-
tains the correct ranking on remaining inhibitory Nbs—which, 
we reiterate, is not enforced during training—we believe the 
GBDT model is still robust enough to sufficiently learn the under-
lying mechanism of inhibition. SHAP analyses on each of these 
new subset-top-200-PCA-GBDT models show that the set of 
most important features are largely retained upon removal of 
Nbs during training (Fig. S7). Therefore, because important fea-
tures remain effectively unperturbed with removal of training 
data, we concluded that the learned correlations characteristic 
of the mechanism of inhibition are indeed generalizable across 
Nbs despite the small size of our Nb library.

Finally, we extracted CG-site pairs corresponding to the largest 
magnitude eigenvector components from PC187, PC3, and PC1. 
Figure 6C illustrates the five top-weighted interdomain pairs for 
each of the three PCs, highlighted by cyan lines. The placement 
and direction of these pairs suggest that stratification of motions 
along these vectors likely results in a complex combination of 
end-to-end clamping, twisting, and out-of-lattice pulling, driving 
lattice depolymerization and inhibition of further assembly. 
Indeed, traversing along PC1 while restraining PC187 and PC3 
(Movie S1) shows significant restriction of end-to-end clamping, 
induction of D1 twisting, and pulling out of the lattice plane. 
Restraining PC187 and PC1 while traversing along PC3 further 
confirms end-to-end rigidification and D1 twisting (Movie S2). 
From this analysis, we conclude that motions characteristic of 
Nb-induced Sap depolymerization are strongly encoded within 
the features identified through SHAP analysis of our top- 
performing GBDT. The inhibitory activity of each Nb is not simply 
a function of whether it binds to the hinge between D1 and D2. 
Rather, the efficacy of Nbs as lattice-inhibitors is determined by 
how well the Nb induces and maintains these inhibitory confor-
mations in D1D2. Finally, our study also demonstrates the utility 
of using feature importance analysis on well-trained ML models to 
identify collective motions associated with a target property that 
is not easily identifiable.

Discussion
This study presents an explainable ML framework that uses 
AAMD data of the Sap/Nb binding site (i.e. D1D2) to distinguish be-
tween inhibitory Nbs that cause Sap S-layer depolymerization and 
noninhibitory Nbs that have no macroscopic effect on the lattice. 
Although experiments clearly rank the inhibitory activities of 
Sap-binding Nbs, there are no obvious patterns in structure or se-
quence that explain the mechanism driving these differences.

In this work, we leveraged ML classifiers to connect microscop-
ic conformations at the Nb-binding site (e.g. expressed as 
CG-mapped pairwise distances between domains) directly to 
the observed efficacy for lattice depolymerization behavior. In or-
der for this model to be useful for uncovering the mechanism of 
action for depolymerization, the model must first be shown to ac-
curately reproduce experiments. We initially tested simplified de-
scriptors of the binding site conformations (Fig. S2), similar to 

prior studies that leveraged ML with AAMD data (18, 19, 24, 41). 
However, we found that higher fidelity descriptors of conform-
ational motions, such as those encoded within inter-domain pair-
wise distances, were necessary to delineate systems that included 
inhibitory Nbs from those that did not.

While we observed that successful prediction was agnostic to 
several different ML architectures, only the GBDT model was 
able to qualitatively rank the probabilities of inhibitory Nbs simi-
lar to their experimental activities even though ranking of inhibi-
tory Nbs was not explicitly enforced during training. Recently, ML 
models of various architectures have been used to analyze com-
plex biomolecular conformational motions (24, 42, 43), yet rela-
tively few studies have analyzed the benefits of different ML 
models across one system. One study suggested that neural net-
works are better suited to learn complex conformational motions 
compared to simpler models, including decision trees (44), while 
another argued the opposite (24). At first glance, given the reduc-
tion in accuracy from the NNs to the GBDTs (Table S4), our results 
would agree with the conclusions of the former study. Yet, we sus-
pect that the arguably simpler decision tree architecture serves as 
a form of regularization that helps the model learn generalizable 
behavior at the minor expense of accuracy. Along these lines, and 
in an effort to enhance the inhibitory ranking predictions, we fil-
tered out noisy and unimportant features based on feature im-
portance, simplifying the feature landscape while preserving 
class-defining correlations. Transforming these pairs into PC vec-
tors further simplified the landscape, allowing the GBDT model to 
learn the inhibitory ranking behavior with striking similarity to 
experimental Nb activities. Our findings suggest that a combin-
ation of “regularization” through feature and architecture engin-
eering is beneficial when characterizing complex configurational 
motions on the basis of discrete functional outcomes.

Several assumptions were made that could impact the validity 
of our conclusions. First, in order to make MD simulations of 
Nb-bound Sap tractable, we assumed that the isolated Nb-binding 
site (i.e. D1D2) explores conformational states similarly to the bind-
ing site in context with the rest of the monomer and lattice. This as-
sumption is likely reasonable when Sap is monomeric because the 
domains are connected by flexible linkers and conformationally de-
coupled from the rest of the monomer (see the atomic model of the 
monomer (4, 5)). Indeed, comparison of PMFs of AAMD simulations 
of a whole SapAD monomer unbound and Nb692-bound reveal that 
D1D2 does sample remarkably similar conformational states (with 
probabilities of inhibition of 0.07 ± 0.01 and 0.71 ± 0.04 for non-
bound and Nb692-bound, respectively) as simulations when D1D2 
is isolated (see Fig. S5), suggesting that analysis of the conformation-
al sampling of isolated D1D2 is warranted. In addition, we have re-
cently resolved an atomic model of the Sap lattice (45) that shows 
D1, the first domain of the binding site, noncovalently binding to 
D6 in the lattice, which may affect the conformational sampling 
of D1 (and D2). However, we performed AAMD simulations of a sin-
gle SapAD monomer in its lattice conformation unbound and 
Nb692-bound, which reveal that the binding of Nb692 destabilizes 
the D1–D6 interface (Fig. S10), likely due to our observed rigidifica-
tion of D1D2 induced by inhibitory Nbs. We intend to test whether 
this behavior leads to SapAD lattice depolymerization in future 
CGMD work.

The second major assumption was that features important for 
GBDT predictions correspond to the physical forces driving inhib-
ition. To minimize the likelihood that important features do not 
correlate with inhibitory action, it was of critical importance that 
we first show that our GBDT model reproduces our experimental 
observations as closely as possible, even though experimental 
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ranking was not explicitly enforced. By comparing SHAP-defined 
top features (i.e. the most important for prediction) across models 
with various Nbs withheld from training, we found that top fea-
tures are relatively conserved, supporting our conclusion that 
these important features do indeed correlate with inhibitory action. 
In the future, it may be possible to test the importance of identified 
pair correlations by cross-linking residues with cross-linking agents 
of tuned lengths. Instead, we plan to develop CG models of SapAD 

(46–48) and deploy lattice-scale CGMD simulations to rigorously 
test how perturbing the GBDT-identified pair correlations influence 
lattice stability, assembly, and depolymerization. In parallel, we 
plan to iteratively use and retrain our GBDT model to engineer 
new Nbs with enhanced inhibitory activity against Sap and in the 
process elucidate the connection between Nb sequence and inhibi-
tory activity with a larger curated library of Nbs.

Our primary conclusion is that inhibitory Nbs promote the 
sampling of a D1D2 conformational state that is rarely observed 
in Nb-free D1D2 (Fig. S8), with increased inhibitory action associ-
ated with increased population. The conformational state is asso-
ciated with a restriction of clamping and induction of twisting 
motions acting on D1 at the D1D2 hinge compared to Nb-free 
D1D2. It is worth discussing if similar motions can be leveraged 
as a therapeutic target in other S-layers. Within the genus 
Bacillus, S-layer proteins share assembly domains composed of 6 
to 8 Ig-like (or β-strand rich) domains despite the low sequence 
identity across species (4, 7, 49, 50). Other S-layer proteins from 
Haloferax volcanii (51), Deinococcus radiodurans (52), Caulobacter 
crescentus (53), and Clostridium difficile (6) also contain assembly do-
mains consisting of at least two β-strand rich domains. The preva-
lence of multiple β-strand rich domains as a common structural 
motif across known S-layer structures, in which we presume the 
conformational flexibility between domains is essential for pro-
ductive lattice assembly, implies that Nb-induced clamping of 
inter-domain hinges may generalize beyond the Sap S-layer pro-
tein from B. anthracis. We anticipate that our computational 
framework that combines high-dimensional AAMD data with ex-
plainable ML classifiers will extend to these other S-layer systems, 
and furthermore, be adaptable to investigate stratified motions in 
other protein–ligand or antibody–antigen complexes.

Methods
AA molecular dynamics
The atomic structure of D1D2 was isolated from the solved atomic 
model of SapAD in the Protein Data Bank (PDB: 6HHU) (5). The Nb 
Nb684 was included in this structure, and its binding position was 
used as the template for all subsequent Nbs except for Nb692, 
which used the corresponding X-ray structure solved in this 
study. Atomic structures of all remaining Nbs were obtained using 
homology modeling using Modeller (54). Nbs were aligned to the 
Nb684 binding position using VMD 1.9.4 (55) by superposing all 
Cα atoms over their corresponding Cα in Nb684. Overlapping 
atoms were perturbed using an in-house Python script to reduce 
steric clashes before energy minimization.

Nb-D1D2 AAMD simulations were run with GROMACS 2021 (56) 
using the CHARMM36m forcefield (57) and TIP3P water (58) with a 
timestep of 2 fs. Each system was placed in a box with periodic 
boundary conditions and a 2 nm buffer distance between the pro-
tein complex and all sides of the box. The systems were solvated 
in water with 150 mM NaCl, then energy-minimized using the 
steepest descent algorithm with a force tolerance of 500 kJ/mol/ 
nm. A constant NVT (i.e. canonical) equilibration was performed 

for 5 ns at 300 K using the V-rescale thermostat (59) with a damp-
ing constant of 0.1 ps applied to the entire system. Then, a con-
stant NPT (i.e. isobaric-isothermal) equilibration was performed 
for 1 ns at 300 K using the same thermostat but a damping con-
stant of 0.5 ps for both protein and solvent and held at 1 bar using 
a Berendsen barostat (60) with a damping constant of 5.0 ps. In 
both equilibrations, all Cα atoms were restrained with a force con-
stant of 1,000 kJ/mol, allowing the solvent to relax. A 50 ns con-
stant NVT equilibration step was performed restraining D1D2 
and nonbinding-end Nb Cα atoms to allow the CDRs to relax 
into the binding site. Finally, 1 µs constant NVT production simu-
lations were conducted at 300 K with a damping constant of 2.0 ps 
for six independent replicas of every Nb-D1D2 system and eight 
replicas for nonbound D1D2. Protein configurations were saved 
every 10 ps for each trajectory.

Data featurization and ML
Pairwise distance featurization
Prior to featurization, D1D2 was isolated from each AAMD simula-
tion using GROMACS, then mapped into CG resolution using the 
OpenMSCG python package (61). Each domain was mapped to 
30 CG sites using the Essential Dynamics Coarse-Graining method 
(39), and the linker region was mapped with a 1:1 residue to CG site 
resolution. The first 200 ns of each trajectory were discarded to re-
move any nonequilibrated statistics from the training data. After 
processing, each (Nb-)D1D2 trajectory was transformed into 
900-dimensional datasets of inter-domain pair distances using 
MDTraj (62).

The 200-component PCA model was trained on the top 200 (via 
SHAP) inter-domain pair distances from all nonbound D1D2 sim-
ulations. Prior to training, the distances were transformed using 
the StandardScaler from Scikit-learn (63), trained on the non-
bound dataset. The explained variance per eigenvalue revealed 
two spectral gaps (the first after PC1 and the second after PC3), 
with the first three PCs capturing 84% of the total explained vari-
ance. The 200-component TICA model was also trained on the 
same scaled top 200 inter-domain pair distances using 
DeepTime (64). A lag time of 10 ns was chosen for model training.

Machine learning
The GBDTs were trained built using LGBMClassifier from LightGBM 
(65). All other models were built using TensorFlow 2 (66). Training 
data for each model were balanced by Nb class and randomly 
sampled with replacement to obtain a 60/20/20 split of train, valid-
ation, and test samples, resulting in just over 100,000 train samples 
for each dataset. Three classes were predicted by the models: first 
that the sample came from a simulation with no Nb, second that 
there was a noninhibitory Nb bound, and third that there was an 
inhibitory Nb bound. These classes were one-hot encoded for all 
models except the GBDT, which were integer encoded. The output 
of every ML model was the probability that the sample was taken 
from any one of the three classes. The categorical cross entropy 
loss was minimized in all cases except for the GBDT, which mini-
mized multi-logloss. Additional details on each of the four ML mod-
els are provided in Tables S3 and S7 and as text in the 
Supplementary Material.

ML model analysis
SHAP analysis
SHAP analyses were conducted using the TreeExplainer from the 
SHAP python library (67). Here, 5,000 samples were used for the 
background, and 50,000 samples were used for the SHAP analysis. 
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Each SHAP analysis was run five times, each with different 
randomized datasets to ensure reproducibility of SHAP values.

Nb ranking
Nb systems were ranked by block-averaging the inhibitory class 
predictions per frame in blocks of 25 ns to remove autocorrela-
tions, then averaging those blocked samples and calculating 
SEM using SciPy (68). Ranking score (as reported in Fig. 4A) was cal-
culated using Equation 1:

Ranking score =


(predicted position score

− true position score)2
, (1) 

where the “position score” is the score associated with a given 
ranking position (1 to 5) in the order of inhibitory Nbs from lowest 
to highest activity. The assigned positions and scores are shown in 
Table 1.

Cloning for recombinant production in 
Escherichia coli
The domains 1 and 2 of B. anthracis Sap (from E125 to G384; 
UniprotKB: P49051) were cloned into a pASK-IBA3C plasmid and 
Hisx6 N-terminally tagged. We used the synthetic codon-optimized 
SapAD previously described in Fioravanti et al. (4) as a PCR template 
using oligos p373 and p374. The DNA fragment was cloned using 
Gibson assembly into a linearized pASK-IBA3C vector using oligos 
p321 and p322. For cloning purposes, all the strains were grown 
in lysogeny broth at 37 °C and supplemented with 100 µg/mL of 
Ampicillin when required. All plasmids were sequence-verified 
(Eurofins) using primers p305 and p306. All plasmid and primers 
used in this study are listed in Table S5.

Protein expression and purification of Nbs and 
Sap domains
The Sap-binding Nbs have been expressed and purified as previ-
ously described (4). Sap D1D2 was expressed in E. coli BL21 (DE3) 
grown in Terrific broth (TB) supplemented with 100 µg/mL of 
ampicillin at 37 °C and induced with 200 µg/L anhydrotetracy-
cline when OD600 reached 0.6. At this point, the temperature 
was set to 23 °C and cells were left to express overnight. The 
next day, cells were harvested by centrifugation and pellets 
were kept at −20 °C. Frozen pellets were resuspended in 100 mL 
of lysis buffer (50 mM Hepes pH 8, 300 mM NaCl, 1 mM MgCl2, 
DNase, lysozyme and ethylenediaminetetraacetic acid-free pro-
tease inhibitor cocktails [ROCHE]) at 4 °C and lysed by five cycles 
of 15 s sonication. The lysate was centrifuged for 30 min at 
30,000×g and 4 °C. The cleared supernatant containing D1D2 
was loaded onto a 1 mL Ni-NTA affinity chromatography column 
(HisTrap FF crude, GE Healthcare). The column was washed with 
five column volumes with Buffer A (30 mM NaCl, 10 mM Hepes 
pH 8, 10 mM Imidazole) and eluted with a linear gradient of 
Buffer B (300 mM NaCl, 10 mM Hepes pH 8, 1 M Imidazole). 
Eluted protein was concentrated and loaded onto a Superdex 
200 16/60 size-exclusion column (SEC) (GE Life Sciences) that 

was equilibrated with SEC buffer (10 mM Hepes pH 8 and 
100 mM NaCl) at 4 °C. The fractions corresponding to the D1D2 
protein were concentrated, flash-frozen in small aliquots in li-
quid nitrogen, and stored at −80 °C. After purification, the sam-
ples were run on a sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS-PAGE) to evaluate their purity.

Crystallization, structure determination, and 
analysis
Crystallization screens were performed using freshly purified 
Sap D1D2 alone or in combination with nanobody Nb692 or 
Nb694 using 1.2-fold molar excess and the mixture was concen-
trated using an AMICON 10 kDa molecular weight cut-off. 
Optimal crystals of D1D2 alone appeared after 14 days in a condi-
tion of the Morpheus kit (Molecular dimensions) containing 
0.09 M Halogens, 0.1 M Buffer System 1 6.5 (pH) and 37.5% v/v 
Precipitant Mix 41 at 144 mg/mL. Crystals of the complex D1D2 
with Nb694 appeared after 30 days in a condition of the Midas 
plus screen (Molecular dimensions) containing 0.2 M 
Ammonium Chloride, 0.1 M Hepes (pH 7.5), and 25% v/v 
Glycerol Ethoxylate at 60 mg/mL. Finally, crystals of the D1D2 
in complex with Nb692 appeared after 5 days in a condition of 
the Midas plus kit containing 0.2 M Ammonium chloride, 0.1 M 
Hepes (pH 7.5) and 25% v/v Glycerol ethoxylate at 50 mg/mL. 
In all cases, the drop containing the crystals was supplemented 
with 15% glycerol and the crystals were mounted in nylon loops 
and flash-cooled in liquid nitrogen. X-ray diffraction data were 
collected at 100 K using the Beamlines Proxima 2 and Proxima 
1 at the Soleil synchrotron (Gif-sur-Yvette, France) and 
Diamond Light Source (Didcot, UK) on beamline I04. Data were 
processed with Autoproc (69) and the structure was determined 
by molecular replacement using phaser from the Phenix suite 
(70) and the D1D2 and Nbs from PDB 6QX4 as a search model. 
The structure was refined through iterative cycles of manual 
model building with COOT (71) and reciprocal space refinement 
with phenix.refine (72) and Buster (73). The crystallographic sta-
tistics are reported in Table S6.

Sap depolymerization assay
To classify the Nbs based on their depolymerization activity, we 
incubated 5 μM of purified SapAD with varying concentrations of 
Nbs (2, 4, 6, and 8 μM) in phosphate buffered saline buffer for 
30 min at 25 °C with shaking at 100 rpm. A control sample with 
SapAD incubated without Nbs was included to estimate the 
monomeric Sap. Following incubation, 200 μL of each mixture 
was placed into a 100 kDa concentrator (Merck Amicon Ultra 
Centrifugal Filter, #UFC5100) and centrifuged for 5 min at 
10,000×g to recover 10 μL of the flow-through containing depoly-
merized (monomeric) Sap. The sample was then diluted 1:10, and 
2 μL was spotted onto a nitrocellulose membrane and allowed to 
dry for 5 min. The membrane was blocked with 5% skimmed milk 
for 1 h, and then incubated with mouse serum anti-Sap poly-
clonal antibody (previously characterized in Fioravanti et al. (4)) 
at a 1:1,000 dilution for 1 h with shaking. This was followed by 
three washes in TBS-Tween buffer (Tris-HCl pH 8, 10 mM; NaCl 
150 mM; Tween 20, 0.05% v/v) for 5 min each. As a secondary 
antibody, we used IRDye 800CW Goat anti-Mouse IgG 
Secondary Antibody (Licorbio #926-32210) at a 1:10,000 dilution 
and incubated for 1 h at room temperature with shaking. The 
washing steps were repeated as described above. Finally, the 
membrane was developed using Odyssey M Imagers, and the re-
sults were analyzed using the Li-cor Empiria Studio Software to 

Table 1. True positions and scores associated with each inhibitory 
Nb in order of increasing inhibitory activity.

Nb704 Nb707 Nb683 Nb702 Nb692

Position 1 2 3 4 5
Score −2 −1 0 1 2
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measure the intensity of the fluorescent signal (Sap signal AU). 
The experiments were repeated three independent times.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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