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Abstract: With the rapid accumulation of gene expression data, gene functional mod-

ule identification has become a widely used approach in functional analysis. However, 

tools to identify organelle functional modules and analyze their relationships are still 

missing. We present a soft thresholding approach to construct networks of functional modules using gene expression 

datasets, in which nodes are strongly co-expressed genes that encode proteins residing in the same subcellular localiza-

tion, and links represent strong inter-module connections. Our algorithm has three steps. First, we identify functional 

modules by analyzing gene expression data. Next, we use a self-adaptive approach to construct a mixed network of func-

tional modules and genes. Finally, we link functional modules that are tightly connected in the mixed network. Analysis 

of experimental data from Arabidopsis demonstrates that our approach is effective in improving the interpretability of 

high-throughput transcriptomic data and inferring function of unknown genes. 
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1. INTRODUCTION 

 With emerging high-throughput sequencing and pheno-
typing techniques [1, 2], gene functional module analysis has 
been extensively applied to explore the system-level func-
tionality of gene groups in microorganisms, plants, animals 
and humans [3-5]. A gene functional module can be consid-
ered as a separated substructure of a biological network [6], 
i.e., a group of genes that are related by one or more types of 
biological interactions such as gene co-expression/co-
regulation, protein-protein interaction and functional associa-
tion [7]. In principle, a functional module is topologically 
and functionally separable from other modules, suggesting 
that genes in the same module often have tighter relations 
among themselves than with genes of other modules. These 
relationships could be better revealed when the network to-
pology is visualized [6]. Zooming in from a whole network 
to functional modules allows biological researchers to focus 
on meso-scale gene groups with specific functions and inter-
actions, thus generating testable hypotheses for unknown-
function genes more effectively [8].  

 Functional module analysis is particularly useful for ex-
ploring organelle functions [9]. In cell biology, an organelle 
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is a specialized subcellular compartment that has a specific 
set of functions, and is usually enclosed within its own lipid 
bilayer [10]. While some organelles are part of the en-
domembrane system and can receive and send materials 
through membranous vesicle trafficking, others rely on pro-
teins and enzymes that are regulated at transcriptional, post-
transcriptional and allosteric mechanisms [11].  

 Organelles need to communicate with each other to col-
laborate and perform complex functions that they cannot do 
individually [11], and the complex interactions between or-
ganelles are often vital for the survival of organisms [12]. 
However, the underlining mechanism of how organelles co-
ordinate their functions in a cell is still largely unknown [13, 
14]. A systematic study of functional modules among multi-
ple functionally-associated organelles in a cell may provide 
key information to understand how organelles coordinate 
their functions. 

 The existing computational work to study organelle-
organelle or organelle-nucleus interactions largely relies on 
gene co-expression analysis. For instance, to examine func-
tional association between mitochondrial and nuclear proteins 
in humans, gene expression correlation tests have been per-
formed to identify genes encoding nuclear proteins (called 
nuclear genes in the following text) whose expressions are 
significantly correlated with genes encoding organelle proteins 
(called organelle genes in the following text). In such studies, 
nuclear genes positively-correlated with mitochondrial genes 
are often thought to be involved in transcriptional regulation, 
and negatively-correlated genes are more likely to be involved 
in translation of the mitochondrial genes [15].  
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 While the current organelle interaction models have re-
vealed significant information, they basically ignore the fact 
that gene expression correlations may vary vastly among 
proteins that target to the same organelle [15]. For example, 
under osmotic stress conditions, ribosome genes in Arabi-
dopsis thaliana, a model plant, are strongly co-expressed, 
but genes that encode endoplasmic reticulum (ER) proteins 
are weakly co-expressed (Pearson correlation values being 
0.89 and 0.64 respectively, (see Table 1) for the overview of 
the Pearson correlation values of all organelles under seven 
abiotic stresses) [16]. Many organelles perform a variety of 
biochemical functions, so it is not surprising that genes en-
coding these proteins display different levels of gene expres-
sion correlation coefficients. Therefore, it makes more sense 
biologically to identify functional modules within each or-
ganelle and then connect these modules to build a network.  

 Functional modules need to be studied in context, as 
high-level biological functions often need the collaboration 
of multiple organelles to accomplish [12]. For example, ex-
ploring functional modules in sensory organelles has suc-
cessfully revealed the role of cilia-related trafficking in 
higher organisms [9]. In this article, we introduce a new 
computational approach to construct networks of organelle 
functional modules in silico using transcriptomics data. Al-
though by definition the nucleus is also a type of organelle, 
for simplicity here we only refer to subcellular compartments 
other than the nucleus as organelles. Analysis of Arabidopsis 
gene expression data under seven abiotic stresses demon-
strates that constructing a summary map of functional mod-
ules has significantly improved the interpretability of high-
throughput transcriptomic data.  

2. BACKGROUND 

 Methods to infer functional modules from multiple types 
of biological datasets have been extensively described [17-
20]. In general, there are two categories of approaches to 
discover functional modules.  

 In the first category, functional modules are detected 
from well-constructed biological networks, similar to detect-
ing communities in a social network [21]. Heuristic methods 
have been proposed to identify tightly interacted nodes in a 
network by devising a network scoring function and then 

finding all high-score subnetworks [17-20]. While the 
aforementioned algorithms detect non-overlapped modules, 
they fail to detect highly overlapping functional modules 
[21]. To this end, a soft clustering approach was presented to 
identify overlapping functional modules based on the idea of 
iteratively executing Markov clustering [21]. This soft clus-
tering method was shown to outperform many approaches in 
terms of accuracy in functional module inference [21].  

 In the second category, functional modules are directly 
detected from high-throughput biological datasets in a matrix 
format without using biological networks. For example, 
functional modules are expected to be identified directly 
from a matrix of gene expression data instead of a network. 
It is standard to use the Pearson correlation coefficient 
(PCC) as a co-expression measurement, and to apply a 
threshold on PCC such that genes are connected if they have 
a significant pairwise expression profile association across 
various environmental perturbations [22-24]. However, this 
is a hard thresholding strategy that may cause loss of infor-
mation and is sensitive to the choice of the hard threshold [2, 
23]. As an alternative approach, algorithm WGCNA was 
proposed for soft thresholding, which weighs each gene pair 
and then uses average linkage hierarchical clustering to iden-
tify gene groups with highly correlated gene expression pro-
files across multiple conditions [2].  

 Some of the current functional module identification ap-
proaches use well-constructed gene networks as input, but 
for most organisms these networks are unavailable. Some 
other approaches treat every gene equally and disregard the 
fact that gene correlation coefficients may vary dramatically 
in different organelles. Therefore, traditional approaches are 
unfit for organelle functional module discoveries. Further-
more, none of these algorithms study the relationships 
among functional modules, because identifying such type of 
relationships, especially to separate causative events from 
their effects, is often difficult [25, 26].  

 In-network association pattern discovery has been exten-
sively studied in both social and biological networks. These 
studies include mining frequent subgraphs to extract com-
munication patterns in data centers [27], inferring friendship 
network structure by using mobile phone data [28], and iden-
tifying spreading pattern of influenza epidemic [29]. The 

Table 1. Averaged Pearson correlation values of all the Arabidopsis genes in each organelle or nucleus under 7 abiotic stress con-

ditions. NA means there are less than 5 significantly expressed genes. 

Treatment Nucleus Mitochondria Chloroplast ER Golgi Vacuole Vesicle Ribosome Peroxisome 

Cold 0.57 0.57 0.59 0.62 0.59 0.60 0.46 0.49 0.69 

drought 0.54 0.50 0.46 0.46 0.47 0.48 NA 0.66 0.56 

salt 0.58 0.59 0.66 0.68 0.65 0.61 NA 0.60 0.69 

wounding 0.52 0.51 0.50 0.52 0.53 0.51 NA 0.38 0.57 

osmotic 0.64 0.71 0.76 0.64 0.67 0.70 0.58 0.89 0.75 

heat 0.47 0.50 0.49 0.48 0.50 0.51 0.42 0.63 0.54 

UV 0.53 0.58 0.60 0.61 0.57 0.57 0064 0.62 0.54 
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discovered association patterns are tightly associated with 
node or edge topological properties, such as betweenness 
and node degree [30]. Applying these algorithms to the net-
work of organelle functional modules may discover in-
network associations, which can be explored further for a 
variety of purposes. 

 In this article, we present a new platform to construct and 
analyze networks of organelle functional modules. Our plat-
form has the following advantages: 

1. It can identify functional modules in organelles and nu-
cleus using gene expression data. It does not require a 
biological network as input, which could be difficult to 
build due to vastly different gene expression correlation 
levels in different organelles. 

2. Our soft thresholding algorithm allows us to build a net-
work of functional modules for nucleus and multiple 
functionally associated organelles. The connections be-
tween functional modules of the nucleus and other or-
ganelles may reveal regulatory or signal transduction 
events. 

3. Through analysis of experimental data obtained from 
Arabidopsis thaliana, we demonstrate the effectiveness 
of our method over the hard threshold approaches in in-
terpreting Arabidopsis gene expression datasets. 

3. METHOD 

 We propose a new algorithm to discover organelle-to-
organelle and organelle-to-nucleus functional associations. 
Our method has three steps (see Fig. 1). First, we identify 
functional modules by analyzing gene expression data. Sec-
ond, we use a self-adaptive thresholding approach to connect 
each functional module with the rest of the genes, resulting 
in a mixed network. Finally, we identify strong links be-
tween functional modules in the mixed network. 

 

 

Fig. (1). Workflow to construct the network of organelle functional 

modules. 

 Different from the method proposed by Amar and Shamir 
2014 [12], which connects two functional modules by check-
ing whether their genes are directly connected in an extra 
dataset (often being protein-protein interactions or genetic 
interactions), we examine functional module connectivity via 
the third party, i.e., genes not in any functional modules. A 
clear advantage of our method is that it does not rely on extra 
datasets. Using extra dataset may cause information loss and 
limit the use of the tool only to well-studied organisms, since 
pair-wise gene interaction datasets usually have much fewer 
number of genes than gene expression datasets.  

3.1. Organelle Functional Module Identification 

 In order to identify organelle and nuclear functional mod-
ules, we first denote the subcellular localization information to 
every Arabidopsis gene by selecting twelve organelle terms in 
the cellular component category of Gene Ontology [31] (Table 

S1), and associating a gene with an organelle if the gene is 
contained in the annotation gene set of the corresponding or-
ganelle term (after gene annotation propagation in GO). We 
notice that the vast majority of organelle (such as mitochon-
drial and plastid) proteins are encoded in the nucleus, synthe-
sized by cytosolic ribosomes and subsequently imported into 
the organelles via active protein transport systems. Protein 
targeting is usually highly specific. However, despite the pro-
found differences in the organelle import machineries, a cer-
tain number of proteins are imported into multiple organelles. 
Specifically, the proportion of the cross-organelle genes in the 
Arabidopsis genome is constantly low in all the abiotic treat-
ment data (see details in Table S2). Therefore, for genes that 
appear in multiple organelles, we make a copy of them for 
each corresponding organelle. Genes that lack location infor-
mation are discarded. 

 In the next step, we identify functional modules in each 
organelle using algorithm WGCNA, where each module is a 
cluster of densely interconnected genes in the same organ-
elle. WGCNA firstly measures the similarities between gene 
expression profiles across all conditions using PCC and 
normalize them using jackknifed correlation coefficient. The 
normalized similarities are then transformed into an adja-
cency matrix. To avoid unnecessary loss of information, 
WGCNA uses two soft adjacency functions instead of a hard 
threshold. Next, an average linkage hierarchical clustering 
approach is used to group genes with coherent expression 
profiles. On the hierarchical clustering tree, a height cutoff is 
chosen to cut branches off the tree, resulting in gene func-
tional modules, i.e., sets of highly co-expressed genes. The 
choice of the height cut-off is guided by the topological 
overlap matrix plot [2]. For each functional module, 
WGCNA computes its eigengene expression profile for fur-
ther use.  

 Finally, a GO enrichment test using GOTermFinder [32] 
is applied to all the functional modules identified by 
WGCNA. The background set of the enrichment test is all 
the significantly expressed genes in the input gene expres-
sion dataset. A functional module is considered to be func-
tionally enriched if there exists at least one GO biological 
process term with its adjusted p-value less than 0.05. Only 
the enriched functional modules are outputted to the next 
step. 

3.2. Mixed Network of Functional Modules and Genes 

 After identifying all the GO enriched functional modules, 
we connect them to construct a network of organelle func-
tional modules. A straightforward approach is to use the soft 
adjacency matrix built by WGCNA to connect the functional 
modules. However, a clear drawback of the soft adjacency 
matrix is that it is not clear what the direct neighbors of a 
given functional module are. In particular, when neighbors 
of a functional module need to be explicitly listed, we have 
to binarize the values in the adjacency matrix. This is 
equivalent to the standard approach of hard thresholding the 
co-expression similarities, which are clearly not applicable to 
the identification of associations of organelle functional 
modules, since gene correlation coefficients vary greatly 
across all organelles (as shown in Table 1). Therefore, the 
WGCNA soft adjacency matrix cannot be directly used.  

Organelle 
Functional Modules

Map of Organelle 
Functional Modules

Mixed Network of  
Functional Modules 

and Genes

step 1 step 2 step 3



430    Current Genomics, 2016, Vol. 17, No. 5 Peng et al. 

 To solve this problem, we identify the relationships be-

tween organelle functional modules by constructing a mixed 

network. The mixed network has two types of nodes: func-
tional modules and individual genes that do not belong to 

any functional modules. The latter type of nodes is important 

because they may indicate the coordination pattern between 
functional modules.  

 In a mixed network, two nodes are connected if they are 

significantly correlated in gene expression. Specifically, we 
calculate PCC pair-wisely for all the nodes (for functional 

modules, their eigengene expressions are used), and then 

compare this PCC with a soft threshold (see discussion be-
low). If a PCC value is greater than its soft threshold, the 

corresponding entry in the adjacency matrix Madj is 1, other-

wise, it is 0. To efficiently construct the mixed network, we 
set Madj(i,j) to 0 if the PCC value of node i and j is smaller 

than a user-provided lower-bound threshold. The lower-

bound threshold is set to avoid high computational cost in 
network construction. It is based on the assumption that an 

organelle association network, similar to the other biological 

networks, is a sparse network [33].  

 The key challenge here is to define a reasonable soft 

thresholding criterion to determine whether an edge in Madj 

should be preserved or deleted. It has been found that genes 
that encode proteins functional in the same biological proc-

ess or pathway are often well co-expressed [34, 35]. For ex-

ample, in a pathway including a functional module m and a 
gene g, the gene expression correlations between the genes 

in m is similar to�that�between g and at least one gene in m. 

In the context of a�mixed network where pathways are not 
well defined, we assume the probability that both functional 

module m and gene g are in the same pathway is anti-

correlated with the distance between m and g. We construct 
the mixed network in two steps. 

Step 1. Determine the Core Threshold 

 Given a functional module m, we determine its core 
threshold (CT) using Equation 1: 

( ) max( ( ), ( , ( )))CT m sim m sim m neighbor m=
         (1) 

where sim(m) is the averaged PCC value in functional mod-
ule m when the genes in m are sparsely connected, meaning 

that the number of nodes and the number of edges are com-

parable (in our experiment, we set the ratio of the two to be 
1:1). Function neighbor(m) returns all the direct neighbor 

genes of m after applying the user-provided lower-bound 

threshold. The direct neighbor genes of m are genes which 
PCC scores with m are greater than the lower-bound thresh-

old. Function sim(m, neighbor(m)) is the averaged PCC 

value between the eigengene expression profile of m and its 
neighbors. sim(m), the first part of Equation 1 is the internal 

PCC of a functional module, and the second part 

(sim(m,neighbor(m))) is added to avoid high false positives 
when the functional module internal PCC value is too small.  

Step 2. Constructing a Mixed Network 

 Next, we compute a soft threshold for each gene pair (or 
gene-module pair) using gene expression values and the 
topological character of the mixed network. Mathematically, 

we define soft threshold ST for functional module m and 
gene g as the sum of two components, shown in Equation 2: 

( , ) ( , ) ( ) (1 ( , ))ST m g ic m g CT m ic m g HT= � + � �          (2) 

where HT is a user-provided hard threshold and CT(m) is the 
core threshold of m (Equation 1). We assume that the chance 
for both functional module m and gene g to be in the same 
pathway decreases gradually as the distance between them 
increases. Therefore, the influence coefficient function 
ic(m,g) is defined as a transformed sigmoid function such 
that the influence of functional module m decreases from one 
to zero with the increasing distance from m. Mathematically, 
ic(m,g) is defined in Equation 3: 

( , ) 5* ( )

1
( , )

1 dist m g CT m
ic m g

e �
=

+           (3) 

where dist(m,g) is the length of the shortest path between m 
and g; and CT(m) is the core threshold of m (Equation 1).  

 Here HT is used to identify genes far from a module. For 
example, if gene g is 10 steps away from module m, then 
ic(m, g) is close to 0, i.e. ST(m,g) � HT. An illustrative ex-
ample of soft thresholding is shown in (Fig. 2). The soft 
threshold ST changes gradually as the distance between an 
organelle functional module and a gene increases. For the 
functional module represented by the green line, its CT is 
smaller than HT, so the ST gradually increases from CT to 
HT as the distance from m to g increases. For another func-
tional module (blue line), its CT is greater than HT. There-
fore, its ST smoothly decreases from CT to HT.  

 

 

Fig. (2). An example of the soft thresholding approach. The soft 

threshold ST changes gradually with the change of distance between 

an organelle functional module and a gene. 

 Computationally, we adopt the breadth-first search algo-
rithm [36] to construct the mixed network G(m) for each 
functional module m (see details in function Gener-
ateMixedNetwork in Algorithm 1). In the algorithm, we start 
with G(m) that only has one node, i.e., m, and then iteratively 
add genes and links to the boundary gene set of G(m) (see 
Definition 1). In the kth iteration, a mixed network G(m) 
includes functional module m and the k gene. For any gene 
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(g) not in G(m), we compute the edge correlation coefficient 
between g and all the genes in the boundary gene set of 
G(m). If at least one edge correlation coefficient value is 
greater than ST(m,g), we add g and the corresponding links 
into the mixed network G(m). Particularly, for edge e be-
tween genes g1 and g2, which are in the boundary gene set, 
we add e to G(m) if its edge correlation coefficient value is 
greater than ST(m,g1) or ST(m,g2). In our experiment, we stop 
the iteration when the ic(m,g) decrease to 0.05. 

 

 
Algorithm 1. Generating a mixed network for each functional 

module using a soft thresholding strategy. 

 

 
Algorithm 2. Integrating all the mixed networks using a voting 

process. 

 
 
Definition 1. Boundary gene set. Given a mixed network 
G(m), the boundary genes are the genes whose distance to m 
is greater than any of its neighbors in G(m). 

 An illustrative example is shown in (Fig. 3). Given a 
functional module m, the initial mixed network G(m) has 
only one node m and the initial boundary gene set is {m}. 
Given two threshold CT(m) = 0.954 and HT = 0.980, we 
iteratively add nodes and edges to G(m). In the first iteration, 
ST = 0.955 according to Eq 2. We check all the nodes that 
are connectable to the boundary gene set and identify two 
edges <m, a> and <m, b>. Since their weights are both larger 
than ST, nodes a, b and edges <m, a>, <m, b> are added to 
G(m). In the next iteration, the boundary gene set is updated 
to to {a, b}. We check the edges between the boundary 
genes, i.e. a and b, and all the nodes that are connectable to 
the boundary gene set. The process continues until no genes 
can be added to G(m). 

 

 

Fig. (3). An example of the soft thresholding algorithm. Nodes in 

dark color represent the boundary gene set in each iteration. The 

leftmost network represents the adjacency matrix Madj after 

applying the user-given lower bound threshold. The numbers on the 

edges indicate the weights of the edges (PCC values). 

 We construct the final mixed network with all the gene 
modules in two steps. First, we generate all the single-
module mixed networks. Second, we adopt a voting process 
to integrate all the single-module mixed networks (see de-
tails in function VoteMixedNetworks in Algorithm 2). The 
soft threshold list of each edge has k elements, which can be 
divided to two groups depending on whether a soft threshold 
is greater or smaller than the PCC value of the edge. If the 
summed difference between the PCC and the soft thresholds 
in the former group is larger than that in the latter group, we 
add the edge to the final mixed network. 

3.3. Network of Organelle/Nucleus Functional Modules 

 After establishing the final mixed network, we build a 
network of organelle/nuclear functional modules to explore 
how nuclear genes regulate the expression of organelle genes 
and how organelle genes are coordinately expressed. For 
simplicity, we require that in the network each organelle 
functional module connects to at most one nuclear functional 
module, while a nuclear functional module can connect to 
multiple organelle functional modules. Subsequently, a nu-
clear functional module becomes a hub node surrounded by 
organelle functional modules. 

 In addition to GO based sematic similarity [37-39] be-
tween all corresponding gene pairs, we adopt three network 
topological measurements to measure organelle-nuclear 
functional module connection, i.e., maximal flow [40], 
minimum edge cut [41], shortest path length [42] in the 
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mixed network. For fair comparison, we rescale the values in 
each measurement to the same range (between 0 and 100) 
and add up all of the four rescaled values. Note that we re-
verse the shortest path length, because the shorter the path 
between two functional modules, the more likely they have 
coordinated functions. If a final score is above 75% percen-
tile of all the values, we connect the corresponding organelle 
and nuclear functional modules.  

4. EXPERIMENTAL RESULTS 

 We next determine whether this method can be applied to 
transcriptomic data obtained from Arabidopsis plants under 
various stress conditions. The responses of the model plant 
Arabidopsis thaliana to abiotic stresses are accompanied by 
significant changes in transcriptome composition of genes 
that encode both nuclear and organellar proteins [16]. In or-
der to obtain a comprehensive view of how stresses may 
coordinately change the expression of organelle and nuclear 
genes, we analyzed the effects of salt, osmotic, cold, UV, 
drought, wounding, and heat stresses using publically avail-
able microarray data.  

 We implemented the organelle functional module net-
work construction method using python version 2.7.5 (http:// 
www.python.org/download/releases/2.7.5) and package net-
workx-1.9.1 (http://networkx.github.io). The experiments 
were run on an Ubuntu 13.10 computer with 4 GB RAM.  

4.1. Experimental Data and Preprocessing 

 The Arabidopsis abiotic gene expression data set was 
downloaded from GEO website under accession number 
GSE 13584. The Gene Ontology data set and the Arabidop-
sis gene annotation data set were downloaded from the Gene 
Ontology website dated on July 2013.  

 In the abiotic gene expression data analysis, three bio-
logical replicates for abiotic stress lines under either salt, 
osmotic, cold, heat, UV, wounding, or drought were com-
pared against three biological replicates of mock control 
lines at the same time points. Statistically significant differ-
ences in gene expression between treatment and control 
plants were detected at a fold change of 2 and FDR of 0.01 
using the LIMMA (Bioconductor) package [43].  

 We denoted the subcellular localization information in 

Gene Ontology to every significantly expressed gene un-

der each stress condition, and discarded the genes that 
lack location information. We also discarded organelles 

such as glyoxysome and lysosome, since glyoxysome is a 

type of peroxisome and has only one significantly ex-
pressed gene in our datasets, and plants do not have 

lysosomes. 

4.2. Organelle Functional Module Identification 

 We identified functional modules in each organelle using 

algorithm WGCNA, where each module is a cluster of 
densely connected genes in the same organelle. The parame-

ters of WGCNA that we used are as follows:  

1) The parameters in function adjacency: softPower = 6, 
type = “signed hybrid”; 

2) Hierarchical clustering function: flashClust, method = 

“average”; 

3) We used “cutreeDynamic” function to identify all the 

functional modules. The parameters are pamStage = 
FALSE, deepSplit =4, and minClusterSize = 5. 

 For each functional module, we computed its eigengene 

expression profile. We then applied GO enrichment test on 
all the functional modules. The GO enrichment test shows 

that 50.0% of the functional modules identified by WGCNA 

are GO enriched (see summary in Table 2 and detailed gene 
lists in Supplementary Table S3). 

4.3. Mixed Network of Functional Modules and Genes 

 We generated a mixed network for each stress condition. 

In our experiment, the lower bound threshold of PCC and 

HT were set to be 0.95 and 0.98 respectively for all stress 
conditions.  

 (Table 3) shows the number of nodes and edges of each 

mixed network, and the number of functional modules. The 
number of significantly expressed genes is the highest under 

osmotic and the lowest under drought conditions. Therefore, 

the osmotic mixed network is the largest among all the seven 
networks, whereas the drought network is the smallest. The 

Table 2. Number of modules WGCNA detected and number of GO enriched modules in each organelle or nucleus under 7 abiotic 

stress conditions. For x/y filled in each cell, x represents number of modules WGCNA detected, and y indicates number of 

GO enriched modules. 

Treatment Nucleus Mitochondria Chloroplast ER Golgi Vacuole Vesicle Ribosome Peroxisome 

Cold 34/92 7/28 30/43 7/9 7/15 7/18 1/1 3/3 3/4 

drought 15/34 4/12 9/15 1/4 3/5 3/6 0/0 1/1 1/1 

salt 18/48 8/15 17/27 4/5 1/8 4/11 0/0 3/3 3/3 

wounding 10/38 6/10 8/17 2/4 4/6 1/6 0/0 0/0 1/1 

osmotic 28/63 12/25 19/32 8/9 6/11 11/13 1/1 4/4 3/3 

heat 32/81 16/28 23/43 6/8 7/10 10/14 0/0 6/6 2/2 

UV 47/100 12/22 20/42 5/9 7/13 11/20 0/0 4/5 4/4 
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network of UV has the highest number of nuclear and organ-
ellar functional modules (in total 105 functional modules). 

 Among all the mixed networks, the drought network is 
composed of one large and several small subnetworks. The 
largest connected subnetwork was visualized in (Fig. 4) us-
ing Cytoscape version 3.02 [44]. Network topological analy-
sis shows that it is a scale-free network with an r

2
 value of 

0.84 (see degree distribution in Fig. 5). The network has six 
nuclear functional modules (see yellow colored nodes in Fig. 
5), and three of them are closely connected to a mitochon-
drial and a chloroplast functional module. Gene Ontology 
analysis reveals that the genes in the closely connected func-
tional modules are enriched in signal transduction and im-
mune response (adjusted p-value<0.05).  

Table 3. Number of nodes, edges and functional modules of each mixed network under 7 abiotic stress conditions. 

Treatment #Nodes #Edges #Nucleus-Modules #Organelle-Modules 

Cold 3064 32301 34 62 

drought 550 1236 14 16 

salt 1562 8938 12 37 

wounding 791 2620 8 18 

osmotic 3318 37412 28 62 

heat 1341 3150 27 58 

UV 2209 8810 45 60 

 

 

Fig. (4). The mixed network of Arabidopsis thaliana under drought conditions. In the network, blue colored nodes are genes that do not 

belong to any functional modules, yellow colored nodes are nuclear functional modules, and nodes in other colors are organelle functional 

modules as indicated. A higher-resolution figure is available in supplemental document. 
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 The distribution of PCC values of all the edges shown in 
(Fig. 6) reveals that at least half of the existing edges will be 
deleted if a hard threshold approach is applied (HT=0.98), 
making all the weakly co-expressed functional modules into 
orphan nodes. With our soft thresholding approach, even 
using the same threshold (HT=0.98), we could adaptively 
connect the weakly co-expressed organelle functional mod-
ules to the rest of the network.  

 

 

Fig. (6). Distribution of PCC values for all the edges in the mixed 

network of drought, where ST ranges from 0.955 to 0.980 and HT is 

fixed at 0.980. 

 Surprisingly, unlike the network of drought, the mixed 
networks of cold, osmotic, UV, salt, wounding and heat con-
ditions each have two or three large and similar-sized sub-
networks (see Suppl Fig. S1-S6), suggesting a different pat-
tern of genomic response under these stress conditions.  

 We generated multiple networks under drought treatment 
using different LT and HT thresholds, in order to test the 

sensitivity of our algorithm. First, we fixed the HT threshold 
as 0.98 and varied LT from 0.8 to 0.95 by 0.05 (see Table 
S4). Second, we fixed the LT threshold as 0.95 and varied 
HT from 0.96 to 0.99 by 0.01 (see Table S5). Third, we fixed 
LT as 0.8 and varied HT from 0.85 to 0.98 (see Table S6). 
The results show that when one of the thresholds is selected 
appropriately, our algorithm is not sensitive to the change of 
the other one (see Table S4 and 5). However, if both thresh-
olds are improperly set, the network can change a lot (see 
Table S6). 

 We compared our mixed networks with the networks 
generated by using a hard threshold. To ensure fair compari-
son, the hard-threshold networks have the same number of 
genes as our networks. First, we compared the number of 
chloroplast genes in the hard-threshold network vs. our net-
work. The result shows that our network can remains more 
organelle genes than the hard-threshold network under all the 
abiotic stress conditions (see Table S7). Second, we counted 
the number of genes involved in the GO enriched functional 
modules in our networks and compared it with that in the 
hard-threshold networks. The result shows that our algorithm 
can constantly identify more GO enriched genes than the 
hard-threshold networks (see Fig. S8). 

4.4. Network of Functional Modules 

 On the mixed network of each stress condition, we meas-
ured the connections between the organelle and the nuclear 
functional modules pair-wisely using the method described 
in subsection 3.3. For each stress condition, we generated a 
hub-like functional module network, in which the center 
nodes are nuclear functional modules, the surrounding nodes 
are organelle functional modules, and the edges represent 
strong functional associations between them. The network of 
functional modules may lead to new hypotheses on how or-
ganelles are co-regulated or signal transduction events be-
tween nucleus and organelles.  

 

Fig. (5). Degree distribution of the mixed network of drought. The r
2
 of power law curve fitting is 0.84. 
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 Our data analysis results support some of the previous 
reports on nuclear regulation in stress conditions. For exam-
ple, the network of functional modules in drought consists of 
one nuclear functional module and three organelle functional 
modules (chloroplast, mitochondria and Golgi), forming a 
star graph (Fig. 7). The centered nuclear functional module 
contains 11 transcription factors (see the full gene lists in 
Table 4), among them bZIP60 (AT1G42990) is a transcrip-
tion factor activated under conditions that induce unfolded 
protein response (UPR), a signaling pathway that up-
regulates the expression of ER-chaperones [45]. After its 
activation and translocation into the nucleus, bZIP60 regu-
lates the expression of genes that encode components of the 
UPR [46, 47]. Our model predicts that some of the genes in 
the Golgi, mitochondrial and chloroplast functional modules 
may be targets of bZIP60 and/or other proteins in the nuclear 
module. 

 

 

Fig. (7). The network of functional modules under drought 

conditions. Gene Ontology analysis reveals that these genes are 

enriched in signal transduction and immune system process. 

 

Table 4. The lists of genes in the nuclear functional modules and the three organelle functional modules in Figure 7. 

Nucleus-1 Golgi_Apparatus-1 Chloroplast-3 Mitochondria-3 

AT5G52760 AT2G47770 AT1G18740 AT1G73500 

AT1G42990 AT5G59220 AT5G44070 AT5G61810 

AT4G17230 AT1G27200 AT3G14050 AT5G43150 

AT3G50260 AT3G28340 AT2G26530 AT2G35710 

AT5G26920 AT3G50760 AT1G66090 AT1G21790 

AT3G46110 AT1G29330 AT1G72520 AT1G50740 

AT1G77450 AT5G67210 AT5G54300 AT5G06320 

AT1G73805 AT2G23810 AT5G63790 AT5G10695 

AT5G63790 AT5G06320 AT3G48090 AT3G06500 

AT2G17040 AT4G19120 AT5G56980 AT4G01950 

AT2G22080 AT5G47910 AT4G23810 AT1G02390 

AT1G76650 AT1G43910 AT1G27770 AT4G36500 

AT2G46510 AT3G25600 AT1G61890 AT3G55840 

AT5G59550 AT5G37770 AT5G66210  

AT1G74430 AT2G20370   

AT3G08720 AT4G30280   

AT3G15210 AT1G05170   

AT4G18880    

AT3G16720    

AT4G23810    

AT5G52750    

AT4G14365    

AT5G62020    

AT4G35110    

 



436    Current Genomics, 2016, Vol. 17, No. 5 Peng et al. 

 

Fig. (8). The network of functional modules under osmotic stress consists of three major star graphs. Color represents different type of 

organelles. Each star graph has multiple types of organelles, suggesting organelles need to interact with each other to deliver complex 

functions, and according to Gene Ontology the three star graphs have distinct functions. 

 The network of functional modules under osmotic stress 
consists of three major star graphs that each contains more 
than ten functional modules (Fig. 8). Here, a nuclear func-
tional module connects to functional modules in six to seven 
organelles. Gene Ontology analysis reveals that the genes in 
(Fig. 8A) are enriched in primary metabolic process and or-
ganic substance biosynthetic process, whereas genes in (Fig. 
8B) are enriched in vesicle-mediated transport, Golgi vesicle 
transport, intracellular transport, cellular catabolic process 
and vacuolar transport. Genes in (Fig. 8C) are enriched in 
fatty acid beta-oxidation, lipid oxidation, lipid modification 
and fatty acid catabolic process. ATH1 (AT4G32980) was 
found in nuclear functional module No. 28, which is con-
nected to ribosome, mitochondria and chloroplast functional 
modules. ATH1 encodes a transcription factor in chlorophyll 
biosynthetic and chlorophyll metabolic processes [48, 49], 
suggesting that some of the genes in the chloroplast modules 
may be targets for ATH1.  

 There are only one or two major star graphs under the 
other stress conditions (see Suppl Fig. S7-12). Under all the 
stress conditions a nuclear functional module always con-

nects to multiple types of organelles, suggesting that these 
different organelles may need to coordinate their function in 
various stress conditions [11]. 

4. CONCLUSION 

 With the rapid accumulation of omics data, gene func-
tional module identification has become a powerful approach 
in gene function analysis. However, gene expression correla-
tion coefficients change greatly among genes that encode 
proteins localized to different organelles. It is not suitable to 
use a fixed and relatively high threshold to discover connec-
tions between weakly co-expressed organelle gene groups.  

 In this article, we hypothesize that for an organelle func-
tional module, the in-module gene expression correlation 
should be similar to that of the genes directly connected to 
the functional module, and the influence of the module to the 
other genes gradually decreases as the distance between 
them increases. Subsequently, we propose a soft threshold-
ing approach to construct networks of functional modules 
under seven stress conditions, where nodes are co-expressed 
genes in the same subcellular location and edges represent 
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inter-module connections. Compared with studying each 
individual functional modules separately, the ability to con-
struct a summary map of all functional modules allows us to 
improve the interpretability of the transcriptomics data. 

 The experiment results on Arabidopsis abiotic stress data 
sets show that our method is able to identify biologically 
interesting organelle and nuclear functional module connec-
tions from high-throughput transcriptomic data. With our 
new method to group and link genes, we may be able to 
identify new functions of genes in certain processes and re-
veal mechanisms that underlie the communication between 
organelles.  
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