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Abstract

Soil microorganisms are important components of agricultural ecosystems; they are impor-

tant in agricultural soil nutrient cycle and are easily affected by soil tillage. The response of

soil microbial community to tillage is very complex, and the effect of the no tillage and resi-

due mulching method on soil microbial diversity remains unclear. In 2019, the soil was col-

lected from an experimental field after 10 years of continuous cultivation in the black soil

area of the Sanjiang Plain in Northeastern China. In this study, the diversity and composition

of the soil bacterial community and their relationship with soil properties were explored via

high-throughput sequencing under no tillage with four residue mulching treatments. No till-

age with 60% residue mulching (NTR3) significantly increased the alpha diversity of the rhi-

zosphere soil bacteria and changed the composition of the bacterial community—consistent

with changes in soil physicochemical properties. Proteobacteria, Acidobacteria, and Actino-

bacteria were the dominant phyla in the sample soil. Soil physicochemical properties

explained 80.6% of the changes in soil diversity and composition, of which soil organic car-

bon, soil pH, and soil temperature were the principal contributors. Our results suggest that

no tillage and residue mulching is conducive to increasing soil organic carbon and soil nutri-

ent content, which is a beneficial conservation tillage measure for black soil protection in

Sanjiang Plain of Northeast China. The no tillage with residue mulching, especially 60% resi-

due mulching, alters soil bacterial community and highlights the importance of soil physico-

chemical properties in shaping the diversity and composition of the soil bacterial community.

Our findings contribute to a broad understanding of the effects of no tillage and residue

mulching on bacterial community differences and provide a scientific basis for the optimiza-

tion of no tillage measures and sustainable utilization of the black soil of the Sanjiang Plain

in Northeastern China.
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Introduction

Soil microorganisms are the most important active components in a soil ecosystem. About 80–

90% of the biochemical reaction for soil structure maintenance, organic matter decomposition,

inorganic compound transformation, nitrogen fixation and so on are mediated by microor-

ganisms [1, 2]. Abundant microbial communities can maintain the stability of soil ecosystems

[3]; however, soil microorganisms are sensitive to the soil environment, especially the changes

caused by tillage—where a soil’s physicochemical properties change, leading to disturbances in

the soil microbial diversity [4, 5]. Therefore, the influence of tillage practices on soil microbial

diversity has attracted considerable attention [6].

No tillage and residue mulching is a farming system rapidly developed in recent years, and

it has demonstrated positive effects on the ecological balance and on the societal and economic

development. Straw returning has significant positive effects on soil organic carbon (SOC) fix-

ation, mineralization, and atmospheric CO2 concentration regulation [7, 8]. In addition, straw

returning can improve soil fertility [9], enhance soil water storage and preservation capacity

[10], and adjust the characteristics of farmland microenvironment. After residue is returned,

abundant carbon, nitrogen, and energy sources are provided for microorganism [11]. This cre-

ates an enriched microenvironment for microorganisms and influence the community com-

positions and metabolic functions of soil microorganisms further [2, 12]. Moreover, soil

microorganisms act as the key factor in crop production, soil nutrient cycling, and soil sustain-

ability [13]. Soil microorganisms are the driving force for material transformation in soil. The

transformation includes ammonification, nitrification, denitrification, nitrogen fixation, cellu-

lose decomposition, and humus decomposition and synthesis, as well as the transformation of

phosphorus, sulfur, iron and other elements [14, 15]. Moreover, cellulose, hemicellulose and

lignin are decompose by microorganisms into glucose, short-chain fatty acids, amino acids

and CO2, which potentially aids agricultural crop growth [16].

As shown in most studies, no tillage can increase microbial biomass and abundance in plo-

wed layers, especially in the topsoil [17, 18], subsequently improving the microbial diversity

[19]. Plant rhizosphere—a special region formed by the intersecting of plant and soil ecosys-

tems—is considered the second genome of plants [20, 21]. Due to the close relationship

between the microorganisms in rhizosphere soil and the soil ecology [22, 23], conservation till-

age has significant positive effects on the rhizosphere soil environment [24, 25]. However, con-

sidering the differences in climate, soil types, and agricultural management practices, the

regulation mechanism of no tillage with regard to microbial diversity in the rhizosphere soil

requires further clarification. Furthermore, most studies thus far have focused on comparing

different tillage methods, whereas only a few have considered the optimization of no tillage

farmland management measures.

The black soil area in Northeastern China is called the “cornerstone” to guaranteeing the

national food security in China. However, this region faces excessive cultivation and predatory

management of the soil [26] as well as other problems such as high land-use intensity, single

planting structure, and serious soil degradation [27]. This leads to excessive consumption of

farmland productivity and an imbalance between cultivation and compensation.

In recent years, as the black land conservation tillage mainly popularization technology

model, no tillage and residue mulching is highly valued for the strategic protection of black

soil. However, no consensus has been achieved regarding the application of residue mulching

to cold regions at high altitudes [28, 29]. Although residue mulching is important for water

retention and soil temperature reduction [30], it can easily result in delayed emergence and

slow growth of seedlings in cold regions due to insufficient accumulated temperature [31]. In

addition, most previous studies on no tillage in cold regions focused on comparing of different
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tillage methods, with only a few being on the management measures optimization of no tillage

with residue mulching.

Here, we hypothesize that by changing the soil physicochemical conditions, no tillage and

residue mulching method affects the habitat of soil microorganisms and alters the composi-

tions and potential functions of the microbial communities in the rhizosphere soil. Therefore,

in this 10-year-long experiment, the effects of no tillage and residue mulching on the soil phys-

icochemical properties and bacterial diversity were analyzed through high-throughput

sequencing.

Therefore, the purpose of this study was to

1. Compare the differences of the bacterial communities in rhizosphere soil through different

residue mulching methods under no tillage;

2. Explicitly state the way residue mulching affects soil physicochemical properties and bacte-

rial community diversity in rhizosphere soil further; and

3. Ascertain the best residue mulching method suitable for no tillage in the black soil area of

Northeastern China and optimize no tillage cultivation technology for cold regions.

Materials and methods

Study site

This experiment was conducted in the experimental field of Jiamusi Branch of Heilongjiang

Academy of Agricultural Sciences (45˚560N–48˚280N, 129˚290E–135˚50E) in Northeastern

China from 2010 to 2020. This region has a continental monsoon climate in the middle tem-

perate zone. Here, the winter is long, and the summer is short; the annual average temperature

is 3˚C, annual average precipitation is 530 mm, the sunshine duration is 2525 h, the effective

accumulated temperature is 2590˚C, and the frost-free period is about 130 days. The altitude

of the test site is 53 m, and the test soil was meadow soil with a 30-cm-thick layer of black soil.

The basic properties of the 0–20 cm of soil layer are as follows: soil organic matter, 28.07 g�kg-

1; total nitrogen (TN), 1.40 g�kg-1; total phosphorus (TP), 0.87g�kg-1; total potassium (TK),

19.59 g�kg-1; alkali-hydrolyzed nitrogen, 110.11 mg�kg-1; available phosphorus, 56.24 mg�kg-1;

and available potassium, 172.83 mg�kg-1
.

Experimental design

A randomized complete block design was adopted in this experiment, and soybean–maize

rotation was used as the cropping system. The experimental plot area was 24.3 m2 (6 × 4.05

m2). The field microplots were built in October 2009; 1-m-deep grooves were dug around each

microplot and blocked with linoleum papers. The interspaces between them were filled with

soil to ensure the independence of the microplot. In total, four treatments were set: no tillage

with all crop residues removed at harvest (NTR1), no tillage and 30% crop residues chopped

and spread evenly on the soil surface (NTR2), no tillage and 60% crop residues chopped and

spread evenly on the soil surface (NTR3), and no tillage and all crop residues chopped and

spread evenly on the soil surface (NTR4). Each treatment was repeated three times. Crop resi-

dues were treated as follows: all residue in the field was collected after annual crop harvest; it

was dried and then cut into 10-cm-long pieces. These pieces were then sprinkled onto the soil

surface evenly.

For 100% residue mulching treatment, 12,000 kg�hm-2 maize residue (dry matter) was used;

moreover, residue consumption was converted according to this standard for other treat-

ments. Cropping pattern was conventional planting, where seeds were sown in artificial
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furrows. The row spacing was 45 and 65 cm in soybean and maize, respectively, whereas the

basic seedling number of soybean and maize was 75,000 and 335,000 plants per hectare,

respectively. Fertilizer composition for soybean and maize crops were as follows: pure N, 60

kg�hm-2; pure P2O5, 120 kg�hm-2; and pure K2O, 80 kg�hm-2. Moreover, urea (138 kg�hm-2)

was used as top-dressed nitrogen for maize at the 7-leaf stage. Soil closed chemical weeding

and no tillage management was applied during growth periods. In addition, the cropping sys-

tem was set as harvesting once a year.

Soil sampling and soil property analysis

Soil samples were collected in August 2019 after 10 years of continuous cultivation. In brief,

we randomly selected maize crops with a similar growth at the V12 period and shook off big

clots to brush and collect the rhizosphere soil that was tightly attached to the root surface [32].

The collected samples were then stored at −80˚C until the soil bacterial diversity was deter-

mined. In addition, after the soil around the rhizosphere was collected and mixed, about 500 g

of the soil was separately collected and stored 4˚C until microbial biomass and soil chemical

properties were determined using the method of quartering after air drying. These experi-

ments were repeated three times per experimental plot.

Soil temperature was determined on an automatic temperature recorder (TR-71U, Japan).

Soil moisture content was measured after oven drying as follows. Soil pH was measured in a

mixture of soil and deionized water at 1:2.5 (w/v) by using a pH meter (SevenCompact S220,

Shanghai, China). A routine method was used to determine soil bulk density (BD) [33]. More-

over, SOC and soil TN were determined using the Walkley–Blakck [34] and Kjeldahl [35]

methods. For soil TP and TK, soil was first digested using HF-HNO3 and then analyzed

through molybdate colorimetric measurement and flame photometry, respectively [36]. Soil

microbial biomass was elucidated through chloroform fumigation and K2SO4 extraction [37].

DNA isolation and Polymerase Chain Reaction (PCR) conditions

Total soil microbial DNA was extracted from four soil samples using the E.Z.N.A. Soil DNA

Kit (Omega Bio-Tek, Norcross, GA, USA), according to the manufacturer’s protocol. Each

sample testing was repeated three times, and about 0.5 g of the soil was used for each repeti-

tion. The extracted DNA was analyzed on Nanodrop-2000 (Thermo Fisher Scientific, Wil-

mington, DE, USA) and stored at −20˚C.

With purified DNA as template and the set of general primers (338F: 50-ACTCCTACGG-
GAGGCAGCA-30 and 806R: 50-GGACTACHVGGGTWTCTAAT-30), PCR amplifications were

performed on the V3–V4 highly variable region of bacterial 16S RNA gene.

The PCR reaction system included the DNA template (2 μL), Q5 reaction buffer (5×, 5μL),

Q5 High-Fidelity GC buffer (5×, 5 μL), forward and reverse primer (10 μM, 1 μL each), Q5

High-Fidelity DNA Polymerase (5 U/μL, 0.25 μL), and dNTPs (2.5 mM, 2 μL), all diluted to

25 μL using ddH2O.

Moreover, the PCR procedure was performed as follows: pre-denaturation for 2 min at

98˚C, followed by 25 cycles of denaturation for 15 s at 98˚C, annealing for 30 s at 55˚C, and

extension for 30s at 72˚C and then a final extension for 5 min at 72˚C. The target fragment of

PCR product was recovered using a DNA recovery kit (Tiangen) and was quantitatively

detected based on the fluorescence quantitation (SystemQuantif-Luor-ST). According to the

requirements of library construction, the samples were mixed at equal proportions and sent to

Beijing Biomarker Technologies (Beijing, China) for sequencing on a HiSeq 2500 PE2500

(Illumina, USA).

PLOS ONE No tillage and residue mulching for soil bacterial community diversity regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256970 September 10, 2021 4 / 18

https://doi.org/10.1371/journal.pone.0256970


Date processing and bioinformatics analysis

The paired-end reads obtained through sequencing were spliced using FLASH (version 1.2.7,

http://ccb.jhu.edu/software/FLASH/)) [38] and filtered using Trimmomatic (http://www.

usadellab.org/cms/?page=trimmomatic) [39]. Next, chimeras were removed using UCHIME

(version 8.1, http://drive5.com/uchime) to obtain high-quality Tag sequences. Based on

USEARCH (version 10.0), operational taxonomic units (OTUs) were filtered with 0.005% of

the number of sequenced reads as the threshold. The OTUs were clustered at the level of 97%

similarity. Taxonomy was assigned to all OTUs by searching against the Silva databases

(Release128, http://www.arb-silva.de) using uclust within QIIME (version 1.8.0). Mothur (ver-

sion v.1.30, http://www.mothur.org/) was used to analyze alpha diversity, including Chao1,

ACE, and Shannon and Simpson diversity indexes. Beta analysis was performed on QIIME

(version 1.9.1), whereas PCoA was performed based on the UniFrac algorithm and using R

(version 2.15.3). SPSS (version 21.0; SPSS Inc., Chicago, IL, USA) was used for univariate anal-

ysis of variance (i.e., one-way ANOVA), with the significant level set at 0.05.

Results

Soil physicochemical properties

After 10 years of continuous no tillage mulching, the soil physicochemical properties of each

treated microplot changed significantly (Table 1). Soil temperature, soil pH, SOC, and soil TN

were significantly different among different treatments (P< 0.05). With an increase in straw

mulch amounts, soil pH and temperature demonstrated a decrease. By contrast, SOC and soil

TN were higher after NTR3 and NTR4 than after NTR1. However, no significant difference

was found with regard to soil moisture content, BD, and TP (P> 0.05).

Soil microbial biomass

Significant differences were detected among the treatments in soil microbial biomass carbon

(MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) con-

tent (P < 0.05; Table 2). Soil MBC and MBN contents after NTR3 were the highest, and they

were higher than those after NTR1 and NTR2. Soil MBP content ranged from 0.78 to 1.42

mg�kg-1, which were highest in NTR4. The microbial entropy after NTR2, NTR3, and NTR4

was significantly higher than that after NTR1; moreover, soil MBC and MBN after NTR3 was

the highest among the treatments.

Soil bacterial community diversity

The bacterial diversity sequencing was performed on an Illumina HiSeq sequencing platform.

In total, 854,576 reads were generated in 12 samples after sequencing, and 820,664 clean tags

Table 1. Effects of no tillage and residue mulching treatments on soil physiochemical properties.

Treatment Moisture (%) BD (g cm3) Temp (˚C) pH SOC (g�kg-1) TN (g�kg-1) TP (g�kg-1) TK (g�kg-1)

NTR1 18.62±0.60 a 1.31±0.05 a 24.92±0.07 a 6.26±0.01a 13.98±0.09 c 1.28±0.01 b 0.93±0.01 a 19.41±0.08 c

NTR2 19.17±1.09 a 1.42±0.06 a 24.35±0.02 b 6.17±0.04 a 14.53±0.05 b 1.36±0.02 a 0.92±0.02 a 19.98±0.04 a

NTR3 20.86±0.13 a 1.47±0.09 a 24.04±0.07 c 5.91±0.05 b 16.84±0.14 a 1.43±0.02 a 0.90±0.01 a 19.77±0.02 b

NTR4 20.23±0.46 a 1.51±0.02 a 23.74±0.02 d 5.83±0.06 b 17.12±0.03 a 1.41±0.04 a 0.92±0.01 a 19.45±0.07 c

BD, soil bulk density; SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; NTR1, no tillage and all crop residue removed; NTR2, no

tillage and 30% crop residue mulching; NTR3, no tillage and 60% crop residue mulching; NTR4, no tillage and all crop residue mulching. Values are shown as

means ± SD of three biological replicates. Different letters indicate significant differences (ANOVA, P < 0.05, Tukey’s HSD post-hoc analysis).

https://doi.org/10.1371/journal.pone.0256970.t001
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were generated after double-ended reads were spliced and filtered (S1 Table). Through cluster-

ing operation, bioinformatic statistical analysis was performed on the 97% OTU similarity,

where 1438 OTUs were generated from 12 samples (ranging from 1286 to 1400). According to

the RDP classification of all OTUs, the bacterial groups can be divided into 20 phyla, 66 classes,

140 orders, 221 families, 391 genera, and 432 species (S2 Table).

The Good’ s coverage index of each sample was >0.996, and the precipitation curves were

close to the saturated phase, indicating that the sequencing depth of each sample reached a suf-

ficient level, which could accurately reflect the overall microbial community libraries of soil

bacteria. For all treatments, the distribution order of all OTUs was as follows: NTR3 > NTR2

> NTR1 > NTR4; here, more OTUs commonly existed in NTR3 and NTR4 (Fig 1).

Furthermore, the numbers and diversities of microorganism species contained in samples

were represented through alpha diversity analysis. As shown in Fig 2 and S3 Table, the distri-

bution order of the ACE and Chao1 index richness for all the treatments was as follows:

NTR3 > NTR2 > NTR1 > NTR4 and NTR3 > NTR1 > NTR2 >NTR4, respectively. More-

over, the Shannon index was significantly higher after NTR3, NTR2, and NTR1 than after

NTR4, whereas the Simpson indexes was significantly after NTR4 and NTR1 than after NTR3.

Thus, NTR3 was beneficial to the enhancement of the bacterial richness and diversity of the

rhizosphere soil.

Analysis of beta diversity and bacterial community composition

On the basis of the comparisons of the taxonomic diversity of bacterial communities among

the samples at the phylum level, the top 10 dominant bacterial phyla were Proteobacteria

(37.17%–40.29%), Acidobacteria (13.91%–16.15%), Actinobacteria (11.77%–14.37%), Gem-

matimonadetes (6.64%–8.40%), Bacteroidetes (5.48%–10.18%), Chloroflexi (5.50%–6.25%),

Verrucomicrobia (2.91%–6.15%), Patescibacteria (1.77%–2.52%), Planctomycetes (0.53%–

2.39%), and Cyanobacteria (0.40%–2.59%)—accounting for 95.89%–97.07% of the relative

abundance of bacterial communities (Fig 3; S4 Table). As shown in the above results, the bacte-

rial communities at the phylum level were similar among the soil samples; however, the rela-

tive abundances of the bacterial communities differed significantly within each other,

especially after NTR3 and NTR4—where the relative abundance of the phyla Proteobacteria,

Actinobacteria, Bacteroidetes, and Chloroflexi increased and that of Acidobacteria, Gemmati-

monadetes, and Verrucomicrobia decreased. In addition, the relative abundance of the phyla

Patescibacteria, Planctomycetes, and Cyanobacteria was increased after NTR2 (P< 0.05).

The PCoA results demonstrated that there were differences in bacterial community struc-

ture among the soil samples. In the unweighted and weighted UniFrac distance analysis for

bacterial community structure, PCo1 explained 54.33% and 43.93% of the total variance,

Table 2. Effects of no tillage and residue mulching treatments on soil microbial biomass.

Treatment MBC (mg�kg-1) MBN (mg�kg-1) MBP (mg�kg-1) MQ (%) MB C/N

NTR1 179.30±5.33c 24.04±2.24d 0.78±0.02d 1.28b 6.57bc

NTR2 205.48±7.92b 29.82±2.31c 0.95±0.11c 1.41a 6.89b

NTR3 248.63±2.89a 36.52±1.09a 1.23±0.07b 1.48a 7.71a

NTR4 239.47±4.97a 33.36±1.76b 1.42±0.04a 1.40a 6.97b

MBC, microbial biomass C; MBN, microbial biomass N; MBP, microbial biomass P; MQ, microbial quotient; MB C/N, microbial biomass C/N. NTR1, no tillage and all

crop residue removed; NTR2, no tillage and 30% crop residue mulching; NTR3, no tillage and 60% crop residue mulching; NTR4, no tillage and all crop residue

mulching. Values are shown as means ± SD of three biological replicates. Different letters indicate significant differences (ANOVA, P < 0.05, Tukey’s HSD post-hoc

analysis).

https://doi.org/10.1371/journal.pone.0256970.t002
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respectively, and PCo2 explained 15.76% and 17.83% of the total variance, respectively (Fig 4A

and 4B). The spatial distance of soil samples treated using NTR1 and NTR2 was relatively

small, whereas the spatial separation between NTR3 and NTR4 was highly obvious; this result

indicated that bacterial community structure of rhizosphere soil microdomain in both the

NTR3 and NTR4 treatments were significantly different from those in NTR1.

Relationship between soil physicochemical properties and soil bacterial

community structure

Furthermore, redundancy analysis was performed to determine the relationship between soil physi-

cochemical properties and soil bacterial community diversity. As shown in Fig 5, axes 1 and 2

explained 52.29% and 16.48% of the total variance in soil bacterial community structure, respec-

tively (S5 Table). Of the bacterial community compositions, Proteobacteria and Actinobacteria were

significantly positively correlated with SOC, soil TN, and soil moisture content;

Fig 1. Venn diagrams showing the shared and unique OTUs after different no tillage and crop residue mulching treatments. NTR1, no tillage and all

crop residue removed; NTR2, no tillage and 30% crop residue mulching; NTR3, no tillage and 60% crop residue mulching; NTR4, no tillage and all crop

residue mulching.

https://doi.org/10.1371/journal.pone.0256970.g001
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Gemmatimonadetes, Cyanobacteria, and Acidobacteria were significantly positively correlated with

soil pH, TP, TK, and temperature; and Patescibacteria and Verrucobacteria were significantly posi-

tively correlated with soil temperature and TK. In addition, our testing results indicated that soil

SOC (P = 0.068), soil pH (P = 0.081), and soil temperature (P = 0.098) were the three most impor-

tant contributors to bacterial community variation (S6 Table). Moreover, the degree of the contribu-

tion of soil physicochemical properties to soil bacterial community variance was in the following

order: SOC> soil pH> soil temperature> soil TK> soil BD> soil TN> soil moisture> soil TP.

Discussion

Effects of on soil properties

In the present study, different residue mulching methods in a soybean–maize rotation system

over 10 consecutive years were found to have varied effects on the soil physicochemical and

Fig 2. The diversity and richness of soil bacterial according to the Chao1 (a), ACE (b), Shannon (c), and Simpson (d) indexes after different no tillage and crop

residue mulching treatments. NTR1, no tillage and all crop residue removed; NTR2, no tillage and 30% crop residue mulching; NTR3, no tillage and 60% crop residue

mulching; NTR4, no tillage and all crop residue mulching. Boxplots with different letters above the boxes denote significantly different means (P< 0.05).

https://doi.org/10.1371/journal.pone.0256970.g002
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biological properties. Although soil temperature, SOC, soil pH, soil TN, and soil TK varied sig-

nificantly among treatments, the largest differences were noted in soil temperature and SOC

(Table 1).

Previous studies have shown that residue mulching can not only increase SOC retention by

reducing the fluctuation of surface soil temperature and water content but also reduce the ero-

sion of SOC by reducing surface runoff [8, 10]. However, whether SOC synchronously

increases with an increase in residue returning quantity remains controversial. Many scholars

have reported that with as the amount of straw returning increases, SOC content and carbon

pool activity increases and positively correlates with the amount of residue returning and the

number of years of returning [40, 41]; this result is consistent with the current results. How-

ever, Bai et al. [42] found that residue mulching did not have a superposition effect on the

improvement of SOC in interannual paddy–upland rotation farmland and that SOC did not

increase synchronously with an increase in residue returning amount because excessive

Fig 3. Relative abundance of top 10 soil bacterial phyla for all samples after different no tillage and crop residue

mulching treatments. NTR1, no tillage and all crop residue removed; NTR2, no tillage and 30% crop residue mulching;

NTR3, no tillage and 60% crop residue mulching; NTR4, no tillage and all crop residue mulching. The stacked bar graph

represents relative abundance of the major phyla.

https://doi.org/10.1371/journal.pone.0256970.g003
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Fig 4. Summary of principal coordinate analysis of soil bacterial composition after different no tillage and crop residue mulching treatments based on the (a)

weighted and (b) unweighted UniFrac distances. NTR1, no tillage and all crop residue removed; NTR2, no tillage and 30% crop residue mulching; NTR3, no tillage

and 60% crop residue mulching; NTR4, no tillage and all crop residue mulching.

https://doi.org/10.1371/journal.pone.0256970.g004

Fig 5. Summary of redundancy analysis, showing the relationships between soil parameters and soil bacterial

community structure. Red lines represent soil parameters, blue lines represent the bacterial phylum-level taxonomy,

and graphics of different colors represent soil samples from all replicates (n = 3) of each crop residue mulching

treatment. Numbers after treatment abbreviations denote the experimental replication. BD, soil bulk density; SOC, soil

organic carbon; TN, total nitrogen; TP, total phosphorus; TK, total potassium; NTR1, no tillage and all crop residue

removed; NTR2, no tillage and 30% crop residue mulching; NTR3, no tillage and 60% crop residue mulching; NTR4,

no tillage and all crop residue mulching.

https://doi.org/10.1371/journal.pone.0256970.g005
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residue mulching reduced soil pH and decomposition rate of straw—all of which was not con-

ducive to SOC accumulation.

The input of exogenous organic matter can accelerate the microbial decomposition rate of

organic carbon sources, ensure high microbial biomass content, and strengthen the assimila-

tion and fixation of microorganisms [43]. Because long-term continuous no tillage and residue

mulching does not disturb the soil, and plant residues accumulate on the soil surface in succes-

sive years; this cause considerable changes in soil biological characteristics [44] In the current

study, soil MBC, MBN, and MBP contents significantly increased under no tillage and residue

mulching (Table 2). The reason for this difference is that soil microorganisms are mainly het-

erotrophic populations, and their life activities involve consuming a certain amount of energy.

Treatment with a large amount of residue mulch provides sufficient energy for microorgan-

isms to maintain life activities.

Some studies have also suggested that too high an amount of residue returning can adversely

impact the metabolic activity of soil microbial carbon sources [45], which may be related to fac-

tors such as the soil type, soil fertility, and climatic conditions of the test site. Due to the high

organic matter content of black soil in Northeastern China, excessive residue returning can lead

to an imbalance in soil carbon and nitrogen ratio, resulting in competition between microorgan-

isms and plants for nitrogen. This can thus inhibit microbial metabolic activity. Therefore, in this

study, when the amounts of residue returning increased from 60% to 100%, soil MBC and micro-

bial quotient decreased, suggesting that no tillage with 60% crop residue mulching led to the

strongest microorganisms assimilation—beneficial for SOC turnover.

Effects on soil bacterial diversity and community composition

The species diversity indexes are crucial indicators of microbial community content [46]. In

this study, the alpha diversity of soil bacterial community was evaluated by ACE, Chao1, Shan-

non, Simpson, and OTU Richness indexes. After 10 years of consecutive no tillage and residue

mulching for the soybean–maize rotation system, the OTU Richness, ACE, Chao1, and Shan-

non indexes were higher for NTR3 than for other treatments (Fig 2); these results indicated

that NTR3 can improve the availability of substrate, increase bacterial diversity and richness,

and maintain high ecosystem stability. The reasons underlying these results may be that the

addition of straw brings much easily usable organic matter to the soil and promotes the growth

of nutrient-rich microorganisms in the soil. This improves bacterial community diversity in

the soil.

Some studies have also shown that soils rich in organic carbon have lower species diversity

of bacterial community [47]. In the current study, the diversity and richness indexes after

NTR4 were significantly lower than those after the other treatments, possibly because residue

mulching amounts for NTR4 was higher, such that most of the residue mulch was difficult to

decompose within a short time and thus could not be easily used by soil microorganisms, but

the easily decomposed organic carbon, in turn, lead to competition among microorganisms

and thus promoted growth of certain kinds of microorganisms considerably, such that the

growth of other microorganisms was retarded; as a result, there was a decrease in microbial

diversity.

Soil microbial community composition is closely related to soil health, an important index

for soil quality [48]. In this study, under different residue mulching methods for 10 consecu-

tive years, soil bacterial community composition was affected significantly, where only some

specific soil bacteria were enriched and domesticated.

The results of our PCoA based on weighted and unweighted UniFrac distances showed that

the compositions of bacterial communities after NTR1 and NTR2 were similar, whereas those
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after NTR3 and NTR4 treatments varied significantly (Fig 4). Thus, no tillage with a large

amount of crop residue mulching formed a nutrient-rich soil environment, which changed

rhizosphere soil microbial system and significantly affected rhizosphere bacterial community

composition.

The results of relative abundance analysis of bacterial taxonomic components demon-

strated that the most important bacterial phylum in this study was Proteobacteria, followed by

Acidobacteria and Actinobacteria—similar to previously reported results [49]. In the current

study, no significant effect was noted on the dominant population types. This result may be

due to the newly generated microorganisms under different residue mulching methods for 10

consecutive years not having formed a dominant flora. Here, dominant flora formation may

take several decades or longer.

The relative abundance of eutrophic bacteria, such as Proteobacteria, Actinobacteria, and

Bacteroidetes, were improved at different extents by NTR3 and NTR4 mulched with a large

amount of residue. Alphaproteobacteria in Proteobacteria could utilize refractory carbon

sources in acidic environment and degrade into small intermediate molecules to provide nutri-

ents for other microorganisms [50]. Actinobacteria could utilize available carbon sources to

grow rapidly and accelerate the turnaround and utilization of SOC [51]. The increase in the

abundance of these phyla would contribute to the degradation of hard-to-decompose organic

matter and the efficient utilization of carbon sources. In this research, the abundance of Acido-

bacteria and Verrucomicrobia was reduced in the NTR3 and NTR4 treatments. The reason

maybe that, Acidobacteria and Verrucomicrobia, belonging to the oligotrophic groups [52],

maintain a low growth rate in almost all environments as well as a poor ability to absorb and

metabolize or degrade substances that are low in nutrients. Therefore, in soils of the treatments

with rich nutrients substances, these oligotrophic microorganisms were less competitive with

nutrient-rich microorganisms, subsequently resulting in a decrease in their relative

abundance.

The abundance of the top 10 bacteria with low relative abundance, namely Verrucomicro-

bia, Patescibacteria, Planctomycetes, and Cyanobacteria, increased to varying degrees after

NTR2—indicating that 30% of residue mulching in the soil environment was conducive to the

growth and reproduction of bacteria with low abundance—and improved the homogeneity of

the bacterial community.

Regulation of soil traits on bacterial diversity and composition

Residue mulching or litter affects soil pH, soil moisture, soil compactness, SOC content, and

other physicochemical properties [9, 53]; this results in differences in bacterial community

diversity and structure in the plant rhizosphere soil [2]. In this study, we found that long-term

conservation tillage using no tillage and residue mulching indirectly shaped the composition

of soil bacterial communities by changing soil physicochemical properties. SOC, soil pH, and

soil temperature were the main driving factors affecting soil bacterial diversity and composi-

tion (Fig 5; S6 Table), and different soil physicochemical properties had varied roles in regulat-

ing bacterial diversity and composition.

SOC, a large carbon source for soil microorganisms, and its turnover is closely related to

soil bacteria community composition [54], significantly affects soil microbial community

structure [55, 56]. Our results were consistent with previous work, this is because no-tillage

straw mulching not only reduces the fluctuation of surface temperature, but also facilitates the

accumulation of soil organic matter, which is conducive to the survival of soil microorganisms

[57, 58]. Meanwhile, SOC is generally positively correlated with the activities of microbial, and

soil microorganisms play an important role in soil organic matter degradation and nutrient
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cycling [59]. Proteobacteria and Bacteroidetes are considered copiotrophs, which prefer a

high-nutrient environment and maintain a high nutrient availability when the soil environ-

ment is conducive to the growth of soil microorganisms [60, 61]. Li et al. [62] indicated that

the relative abundance of Actinobacteria is closely related to increases in carbon source con-

tent. Yu et al. [63] found that after 6 continuous years of residue mulching, SOC content in the

soil increased, the relative abundance of Chloroflexi in the soil was significantly higher than

that residue removal treatment. These results corroborate the current results. The residue

mulching significantly increased SOC, providing carbon source substrate for the bacterial

growth and reproduction. SOC had a significant positive correlation with the relative abun-

dance of Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi.

Soil pH has been identified as a major contributor to microbial diversity and community

composition in many studies [64]. This is because many soil characteristics, including soil

nutrient availability, ion concentration in soil solution, and organic carbon properties, are

often directly or indirectly related to soil pH [65], and these factors may result in changing of

soil microbial composition. Another reason maybe that soil pH directly affects the habitat of

soil microorganisms, thus changing the composition of soil microbial community [66]. In the

current study, the relative abundance of Gemmatimonadetes, Cyanobacteria, and Acidobac-

teria was significantly correlated with pH. Cederlund et al. [67] reported that the adaptability

of Gemmatimonadetes to the soil environment was related to the carbon and nitrogen envi-

ronment, and the relative abundance of Gemmatimonadetes increased significantly after a res-

idue mulching treatment [2], possibly because residue returning changed the environment of

soil carbon and nitrogen, which indirectly affected soil pH. This drove the change of relative

abundance of Gemmatimonadetes. Most studies have reported that the differences in the rela-

tive abundance of Acidobacteria was attributable to soil pH differences; moreover, the relative

abundance of Acidobacteria was significantly and negatively correlated with soil pH [68, 69].

In the current study, Acidobacteria abundance was significantly and positively correlated with

soil pH, which was consistent with the results of the research on sweet potato continuous crop-

ping [70] and the study on diversity of bacterial community in cotton field [71]. This result

may be related to the difference in response to soil environmental factors between different

Acidobacteria subgroups or even between Acidobacteria in the same subgroup [68, 72]. In

terms of rhizosphere potency, compared with non-rhizosphere soil, the pH of rhizosphere soil

is lower (organic acid secreted), which is conducive to the growth of some subgroups of Acido-

bacteria. However, the high-nutrient environment in the rhizosphere is not conducive to the

colonization and reproduction of Acidobacteria. The distribution of Acidobacteria in plant

rhizosphere results from the comprehensive action of various factors in the rhizosphere micro-

environment. Therefore, the relationship between Acidobacteria in rhizosphere soil and soil

pH cannot be said sweepingly.

The changes in soil temperature could directly affect the growth, mineralization rate,

enzyme activity and community composition of soil microorganisms [73]. Meanwhile, the

increasing of soil temperature could indirectly affect soil microbial community through affect-

ing the primary productivity of plant, the carbon input underground, soil water and nutrient

availability. In this study, most bacterial phyla were significantly and positively correlated with

soil temperature, while the relative abundance of Proteobacteria, Actinobacteria, and Bacteroi-

detes had a significant negative correlation with it. The reason here was that straw mulching

increased SOC storage by reducing the fluctuation of soil temperature and water content,

which was beneficial to improve the abundance of eutrophic bacteria.

Taken together, our results indicated that changes in soil physicochemical properties due to

long-term different residue mulching methods represented an important reason for differ-

ences in soil microbial structural diversity.
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Conclusions

The diversity and composition of the soil bacterial community in residue mulching soil were

significantly different from those in residue removal soil after 10 years of no tillage in a black

soil region of Northeastern China. Residue mulching method showed indirect quantitative

effects on diversity and composition of bacteria by altering SOC, soil pH, and soil temperature.

Soil bacterial richness and diversity were improved after no tillage with 60% residue mulching,

demonstrating potential to improve soil health, and this was the most suitable residue mulch-

ing quantity in the black soil area of Sanjiang Plain. We suggest strip tillage is more suitable for

100% residue returned to the field in the cold region of northeast China.

Our findings enhance the understanding of the role of no tillage and residue mulching in

maintaining soil fertility and altering soil bacterial community in cold regions. The current

findings provide a scientific basis for the optimization of no tillage measures in the black soil

area of Sanjiang Plain in Northeastern China.
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zuela-Encinas C, et al. Relative impacts of tillage, residue management and crop-rotation on soil bacte-

rial communities in a semi-arid agroecosystem. Soil Biol Biochem. 2013; 65: 86–95.

3. Waldrop MP, Holloway JM, Smith DB, Goldhaber MB, Drenovsky RE, Scow KM, et al. The interacting

roles of climate, soils, and plant production on soil microbial communities at a continental scale. Ecol-

ogy. 2017; 98(7): 1957–1967. https://doi.org/10.1002/ecy.1883 PMID: 28464335

4. Dick RP. A review: long-term effects of agricultural systems on soil biochemical and microbial parame-

ters. Agric Ecosyst Environ. 1992; 40(1–4): 25–36.

5. Liu C, Li L, Xie J, Coulter JA, Zhang R, Luo Z, et al. Soil bacterial diversity and potential functions are

regulated by long-term conservation tillage and straw mulching. Microorganisms. 2020; 8(6): 836.

https://doi.org/10.3390/microorganisms8060836 PMID: 32498450

6. Sengupta A, Dick WA. Bacterial community diversity in soil under two tillage practices as determined by

pyrosequencing. Microb Ecol. 2015; 70(3): 853–859. https://doi.org/10.1007/s00248-015-0609-4

PMID: 25930203

7. Sapkota TB, Mazzoncini M, Bàrberi P, Antichi D, Silvestri N. Fifteen years of no till increase soil organic

matter, microbial biomass and arthropod diversity in cover crop-based arable cropping systems. Agron

Sustain Dev. 2012; 32(4): 853–863.

8. Zhang P, Li H, Jia Z, Wang W, Lu W, Zhang H, et al. Effects of straw returning to field on soil organic car-

bon and carbon mineralization in semi-arid areas of southern Ningxia of China. J Agro-Environ Sci.

2011; 30(12): 2518–2525.

9. Karlen DL, Eash NS, Unger PW. Soil and crop management effects on soil quality indicators. Am J

Altern Agric. 1992; 7(1–2): 48–55.

10. Moraru PI, Rusu T. Soil tillage conservation and its effect on soil organic matter, water management

and carbon sequestration. J Food Agric Environ. 2010; 8(3–4): 309–312.

11. Partey S T, Preziosi R F, Robson G D. Improving maize residue use in soil fertility restoration by mixing

with residues of low C-to-N ratio: effects on C and N mineralization and soil microbial biomass. J Soil

Sci Plant Nutr. 2014; 14(3): 518–531.

12. Mathew RP, Feng Y, Githinji L, Ankumah R, Balkcom KS. Impact of no-tillage and conventional tillage

systems on soil microbial communities. Appl Environ Soil Sci. 2012; 2012: 1–10.

13. Roger-Estrade J, Anger C, Bertrand M, Richard G. Tillage and soil ecology: partners for sustainable

agriculture. Soil Tillage Res. 2010; 111(1): 33–40.

14. Luo Z, Ma J, Chen F, Li X, Yang Y. Adaptive Development of Soil Bacterial Communities to Ecological

Processes Caused by Mining Activities in the Loess Plateau, China. Microorganisms. 2020; 8(4): 477.

https://doi.org/10.3390/microorganisms8040477 PMID: 32230763

15. Pankhurst CE, Lynch JM. 12 The role of soil microbiology in sustainable intensive agriculture. Advances

in Plant Pathology. 1995; 11: 229–247.

16. Sjberg G, Nilsson SI, Persson T, Karlsson P. Degradation of hemicellulose, cellulose and lignin in

decomposing spruce needle litter in relation to N. Soil Biol Biochem. 2004; 36(11): 1761–1768.

17. Huang M, Jiang L, Zou Y, Xu S, Deng G. Changes in soil microbial properties with no-tillage in Chinese

cropping systems. Biol Fertil Soils. 2013; 49(4): 373–377.

18. Feng Y, Motta AC, Reeves DW, Burmester CH, Van Santen E, Osborne JA. Soil microbial communities

under conventional-till and no-till continuous cotton systems. Soil Biol Biochem. 2003; 35(12): 1693–

1703.

19. Govaerts B, Mezzalama M, Unno Y, Sayre KD, Luna-Guido M, Vanherck K, et al. Influence of tillage,

residue management, and crop rotation on soil microbial biomass and catabolic diversity. Appl Soil

Ecol. 2007; 37(1–2): 18–30.

20. Berendsen RL, Pieterse CM, Bakker PA. The rhizosphere microbiome and plant health. Trends Plant

Sci. 2012; 17(8): 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 PMID: 22564542

21. Jones DL, Hinsinger P. The rhizosphere: complex by design. Plant Soil 2008; 312(s1-2): 1–6.

PLOS ONE No tillage and residue mulching for soil bacterial community diversity regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256970 September 10, 2021 15 / 18

https://doi.org/10.1002/ecy.1883
http://www.ncbi.nlm.nih.gov/pubmed/28464335
https://doi.org/10.3390/microorganisms8060836
http://www.ncbi.nlm.nih.gov/pubmed/32498450
https://doi.org/10.1007/s00248-015-0609-4
http://www.ncbi.nlm.nih.gov/pubmed/25930203
https://doi.org/10.3390/microorganisms8040477
http://www.ncbi.nlm.nih.gov/pubmed/32230763
https://doi.org/10.1016/j.tplants.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22564542
https://doi.org/10.1371/journal.pone.0256970


22. Tiquia SM, Lloyd J, Herms DA, Hoitink HA, Michel FC Jr. Effects of mulching and fertilization on soil

nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of

TRFLPs of PCR-amplified 16S rRNA genes. Appl Soil Ecol. 2002; 21(1): 31–48.

23. Alami MM, Xue J, Ma Y, Zhu D, Gong Z, Shu S, et al. Structure, diversity, and composition of bacterial

communities in rhizospheric soil of Coptis chinensis Franch under continuously cropped fields. Diver-

sity. 2020; 12(2): 57.

24. Aslam Z, Yasir M, Yoon HS, Jeon CO, Chung YR. Diversity of the bacterial community in the rice rhizo-

sphere managed under conventional and no-tillage practices. J Microbiol. 2013; 51(6): 747–756.

https://doi.org/10.1007/s12275-013-2528-8 PMID: 24385351

25. Wang Z, Liu L, Chen Q, Wen X, Liu Y, Han J, et al. Conservation tillage enhances the stability of the rhi-

zosphere bacterial community responding to plant growth. Agron Sustain Dev. 2017; 37(5): 44.

26. Han XR, Zou WX, Yan J, Li N, Li YH, Wang JG, et al. Ecology in agriculture and long-term research

guide protection of black soil and agricultural sustainable development in Northeast China. Bull Chin

Acad Sci. 2019; 34(3): 362–370. (in Chinese)

27. Liu XB, Zhang XY, Wang YX, Sui YY, Zhang SL, Herbert SJ, et al. Soil degradation: a problem threaten-

ing the sustainable development of agriculture in Northeast China. Plant Soil Environ. 2010; 56(2): 87–

97.

28. Shi X, Li F, Pubu D, Gao J, Li Y, Qu Z. Effects of straw mulching on tillage soil temperature and growth

of spring highland barley in high altitude cold region. Trans Chin Soc Agric Machinery. 2016; 47(2):

151–160. (in Chinese)

29. Zhang W, Wang C, Liang Y, Li Y. Effect of crop residue cover on soil temperature in cold and dry farm-

ing areas. Trans Chin Soc Agric Eng. 2006; 22(5): 70–73. (in Chinese)

30. Shi X, Li F, Pubu D, Gao J, Li Y, Qu Z. Effects of straw mulching on tillage soil temperature and growth

of spring highland barley in high altitude cold region. Trans Chin Soc Agric Machinery. 2016; 47(2):

151–160. (in Chinese)

31. Wang QJ, Zhang JT, Gai ZJ, Cai LJ, Liu JQ, Zhao GF, et al. Effect of long-term straw mulching and no-

tillage on physical properties of meadow soil in cold region. J Appl Ecol. 2018; 29(9): 2943–2948. (in

Chinese) https://doi.org/10.13287/j.1001-9332.201809.025 PMID: 30411570

32. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, et al. Bulk and rhizosphere soil bacterial

communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and sea-

sonal shifts revealed. Appl Environ Microbiol. 2001; 67(10): 4742–4751. https://doi.org/10.1128/AEM.

67.10.4742-4751.2001 PMID: 11571180

33. Zhang GL, Gong ZT. Soil survey laboratory methods. Beijing: Science Press; 2012. (in Chinese)

34. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL,

Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods

of soil analysis: Part 3 Chemical methods, 5.3. American Society of Agronomy, Inc.; 1996. pp. 961–

1010.

35. Bremner JM. Nitrogen-total. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabata-

bai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis: Part 3 Chemical methods, 5.3.

American Society of Agronomy, Inc.; 1996. pp. 1085–1121.

36. LU RK. Analytical methods for soil and agro-chemistry. Beijing: China Agricultural Science and Tech-

nology Press; 2000. (in Chinese)

37. Wu JS, Lin QM, Huang QY. Microbial biomass determination and its application. Beijing: Meteorologi-

cal Press; 2006. (in Chinese)

38. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies.

Bioinformatics. 2011; 27(21): 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 PMID:

21903629

39. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor-

matics. 2014; 30(15): 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

40. Gao H, Peng C, Zhang X, Li Q, Zhu P, Wang L. Effects of corn straw returning amounts on carbon

sequestration efficiency and organic carbon change of soil and aggregate in the black soil area. Sci

Agric Sin. 2020; 53(22): 4613–4622. (in Chinese)

41. Lou Y, Xu M, Wang W, Sun X, Zhao K. Return rate of straw residue affects soil organic C sequestration

by chemical fertilization. Soil Tillage Res. 2011; 113(1): 70–73.

42. Bai J, Chen Z, Ding Y, Zhang L, Zhao Y. Effect of different straw incorporation rates on crops yields and

soil fertility in the paddy-upland rotation system. Chin J Soil Sci 2017; 48(5): 1185–1191. (in Chinese)

43. Sun F, Zhang W, Xu M, Zhang W, Li Z, Zhang J. Effects of longterm fertilization on microbial biomass

carbon and nitrogen and on carbon source utilization of microbes in a red soil. Chin J Appl Ecol. 2010;

21(11): 2792–2798. (in Chinese)

PLOS ONE No tillage and residue mulching for soil bacterial community diversity regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256970 September 10, 2021 16 / 18

https://doi.org/10.1007/s12275-013-2528-8
http://www.ncbi.nlm.nih.gov/pubmed/24385351
https://doi.org/10.13287/j.1001-9332.201809.025
http://www.ncbi.nlm.nih.gov/pubmed/30411570
https://doi.org/10.1128/AEM.67.10.4742-4751.2001
https://doi.org/10.1128/AEM.67.10.4742-4751.2001
http://www.ncbi.nlm.nih.gov/pubmed/11571180
https://doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1371/journal.pone.0256970


44. Liu Y, Wang S, Li J, Qin D, Zhang M, Nie J, et al. Effects of cotton straw returning on soil available nutri-

ents and microbial characteristics. Acta Agron Sin. 2016; 42(7): 1037–1046. (in Chinese)

45. Zhou D, Wang G, Wu X, Li J, Jin C, Wang E. Microbial community diversity and nutrient release of

straws under different straw returning amounts. Chin J Soil Sci. 2018; 49(4): 848–855. (in Chinese)

46. Singh D, Shi L, Adams JM. Bacterial diversity in the mountains of south-west China: climate dominates

over soil parameters. J Microbiol. 2013; 51(4): 439–447. https://doi.org/10.1007/s12275-013-2446-9

PMID: 23990294

47. Li W, Shao X, Wu M, Liang W. Microbial community characteristic of soils with different vegetation in

tidal flat in hangzhou bay. Wetland Sci. 2013; 11(4): 413–420. (in Chinese)

48. Karlen DL, Veum KS, Sudduth KA, Obrycki JF, Nunes MR. Soil health assessment: Past accomplish-

ments, current activities, and future opportunities. Soil Tillage Res. 2019; 195: 104365. https://doi.org/

10.1016/j.still.2019.104365

49. Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, et al. High throughput sequencing analysis of biogeographical

distribution of bacterial communities in the black soils of northeast China. Soil Biol Biochem. 2014; 70:

113–122.

50. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG. The effect of nutrient deposition on bac-

terial communities in Arctic tundra soil. Environ Microbiol. 2010; 12(7): 1842–1854. https://doi.org/10.

1111/j.1462-2920.2010.02189.x PMID: 20236166

51. Zeng J, Liu X, Song L, Lin X, Chu H. Nitrogen fertilization directly affects soil bacterial diversity and indi-

rectly affects bacterial community composition. Soil Biol Biochem. 2016; 92: 41–49.

52. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, et al. The under-recog-

nized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem. 2011; 43(7):

1450–1455. https://doi.org/10.1016/j.soilbio.2011.03.012 PMID: 22267877

53. Liu E, Teclemariam SG, Yan C, Yu J, Gu R, Liu S, et al. Long-term effects of no-tillage management

practice on soil organic carbon and its fractions in the northern China. Geoderma. 2014; 213: 379–384.

54. Su Y, He Z, Yang Y, Jia S, Shen A. Author Correction: Linking soil microbial community dynamics to

straw-carbon distribution in soil organic carbon. Scientific Reports. 2020; 10(1). https://doi.org/10.1038/

s41598-020-68527-9 PMID: 32632249

55. Dong WY, Zhang XY, Dai XQ, Fu XL, Yang FT, Liu XY, et al. Changes in soil microbial community com-

position in response to fertilization of paddy soils in subtropical China. Appl Soil Ecol. 2014; 84: 140–

147.

56. Hu Y, Xiang D, Veresoglou SD, Chen F, Chen Y, Hao Z, et al. Soil organic carbon and soil structure are

driving microbial abundance and community composition across the arid and semi-arid grasslands in

northern China. Soil Biol Biochem. 2014; 77: 51–57.

57. Sheehy J, Regina K, Alakukku L, Six J. Impact of no-till and reduced tillage on aggregation and aggre-

gate-associated carbon in Northern European agroecosystems. Soil Tillage Res. 2015; 150: 107–113.

58. Dai Z, Hu J, Fan J, Fu W, Hao M. No-tillage with mulching improves maize yield in dryland farming

through regulating soil temperature, water and nitrate-N. Agriculture Ecosystems & Environment, 2021,

309:107288. https://doi.org/10.1016/j.agee.2020.107288

59. Li Y, Li Z, Cui S, Liang G, Zhang Q. Microbial-derived carbon components are critical for enhancing soil

organic carbon in no-tillage croplands: A global perspective. Soil Tillage Res. 2021; 205: 104758.

https://doi.org/10.1016/j.still.2020.104758

60. Jenkins SN, Rushton SP, Lanyon CV, Whiteley AS, Waite IS, Brookes PC, et al. Taxon-specific

responses of soil bacteria to the addition of low level C inputs. Soil Biol Biochem. 2010; 42(9): 1624–

1631.

61. Fazi S, Amalfitano S, Pernthaler J, Puddu A. Bacterial communities associated with benthic organic

matter in headwater stream microhabitats. Environ Microbiol. 2010; 7(10): 1633–1640.

62. Li C, Yan K, Tang L, Jia Z, Li Y. Change in deep soil microbial communities due to long-term fertilization.

Soil Biol Biochem. 2014; 75: 264–272.

63. Yu D, Wen Z, Li X, Song X, Wu H, Yang P. Effects of straw return on bacterial communities in a wheat-

maize rotation system in the North China Plain. PLoS One. 2018; 13(6): e0198087. https://doi.org/10.

1371/journal.pone.0198087 PMID: 29879153

64. Zhalnina K, Dias R, de Quadros PD, Davis-Richardson A, Camargo FA, Clark IM, et al. Soil pH deter-

mines microbial diversity and composition in the park grass experiment. Microb Ecol. 2015; 69(2): 395–

406. https://doi.org/10.1007/s00248-014-0530-2 PMID: 25395291

65. Zhang YY, Wu W, Liu H. Factors affecting variations of soil pH in different horizons in hilly regions.

PLoS ONE. 2019; 14(6):e0218563. https://doi.org/10.1371/journal.pone.0218563 PMID: 31216328

PLOS ONE No tillage and residue mulching for soil bacterial community diversity regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256970 September 10, 2021 17 / 18

https://doi.org/10.1007/s12275-013-2446-9
http://www.ncbi.nlm.nih.gov/pubmed/23990294
https://doi.org/10.1016/j.still.2019.104365
https://doi.org/10.1016/j.still.2019.104365
https://doi.org/10.1111/j.1462-2920.2010.02189.x
https://doi.org/10.1111/j.1462-2920.2010.02189.x
http://www.ncbi.nlm.nih.gov/pubmed/20236166
https://doi.org/10.1016/j.soilbio.2011.03.012
http://www.ncbi.nlm.nih.gov/pubmed/22267877
https://doi.org/10.1038/s41598-020-68527-9
https://doi.org/10.1038/s41598-020-68527-9
http://www.ncbi.nlm.nih.gov/pubmed/32632249
https://doi.org/10.1016/j.agee.2020.107288
https://doi.org/10.1016/j.still.2020.104758
https://doi.org/10.1371/journal.pone.0198087
https://doi.org/10.1371/journal.pone.0198087
http://www.ncbi.nlm.nih.gov/pubmed/29879153
https://doi.org/10.1007/s00248-014-0530-2
http://www.ncbi.nlm.nih.gov/pubmed/25395291
https://doi.org/10.1371/journal.pone.0218563
http://www.ncbi.nlm.nih.gov/pubmed/31216328
https://doi.org/10.1371/journal.pone.0256970


66. Behnke G D, Kim N, Zabaloy M C, Riggins CW, Villamil MB. Soil Microbial Indicators within Rotations

and Tillage Systems. Microorganisms. 2021; 9(6): 1244. https://doi.org/10.3390/

microorganisms9061244 PMID: 34201118

67. Cederlund H, Wessén E, Enwall K, Jones CM, Juhanson J, Pell M, et al. Soil carbon quality and nitrogen

fertilization structure bacterial communities with predictable responses of major bacterial phyla. Appl

Soil Ecol. 2014; 84: 62–68.

68. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N. A comprehensive survey of soil

acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 2009; 3(4): 442–

453. https://doi.org/10.1038/ismej.2008.127 PMID: 19129864

69. Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, et al. Soil bacterial and fungal

communities across a pH gradient in an arable soil. ISME J. 2010; 4(10): 1340–1351. https://doi.org/

10.1038/ismej.2010.58 PMID: 20445636

70. Gao Z, Hu Y, Han M, Xu J, Ma Z. Effects of continuous cropping of sweet potatoes on the bacterial com-

munity structure in rhizospheric soil. BMC microbiology. 2021; 21(1). https://doi.org/10.1186/S12866-

021-02120-671

71. Yang L, Tan L, Zhang F, Gale WJ, Cheng Z, Sang W. Duration of continuous cropping with straw return

affects the composition and structure of soil bacterial communities in cotton fields. Can J Microbiol,

2018; 64(3). https://doi.org/10.1139/cjm-2017-0443 PMID: 29227747

72. Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM. Acidobacterial community

responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol. 2013;

83(3): 607–621. https://doi.org/10.1111/1574-6941.12018 PMID: 23013447

73. Xu M, Li X, Kuyper TW, Xu M, Zhang J. High microbial diversity stabilizes the responses of soil organic

carbon decomposition to warming in the subsoil on the Tibetan Plateau. Global Change Biology, 2021;

27(10). https://doi.org/10.1111/gcb.15553 PMID: 33560552

PLOS ONE No tillage and residue mulching for soil bacterial community diversity regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0256970 September 10, 2021 18 / 18

https://doi.org/10.3390/microorganisms9061244
https://doi.org/10.3390/microorganisms9061244
http://www.ncbi.nlm.nih.gov/pubmed/34201118
https://doi.org/10.1038/ismej.2008.127
http://www.ncbi.nlm.nih.gov/pubmed/19129864
https://doi.org/10.1038/ismej.2010.58
https://doi.org/10.1038/ismej.2010.58
http://www.ncbi.nlm.nih.gov/pubmed/20445636
https://doi.org/10.1186/S12866-021-02120-671
https://doi.org/10.1186/S12866-021-02120-671
https://doi.org/10.1139/cjm-2017-0443
http://www.ncbi.nlm.nih.gov/pubmed/29227747
https://doi.org/10.1111/1574-6941.12018
http://www.ncbi.nlm.nih.gov/pubmed/23013447
https://doi.org/10.1111/gcb.15553
http://www.ncbi.nlm.nih.gov/pubmed/33560552
https://doi.org/10.1371/journal.pone.0256970

