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Abstract
Mesenchymal stem cells  (MSCs) were applied to the therapy for degenerative diseases, 
immune, and inflammation. In tumor microenvironments (TME), different sources of MSCs 
showed that tumor‑promoting and ‑ inhibiting effects were mediated by different signaling 
pathways. Cancer‑associated MSCs  (CaMSCs) could be recruited from bone marrow or 
local tissues and mainly showed tumor‑promoting and immunosuppressive effects. The 
transformed CaMSCs preserve the characteristics of stem cells, but the properties of 
regulating TME are different. Hence, we specifically focus on CaMSCs and discuss the 
detailed mechanisms of regulating the development of cancer cells and immune cells. 
CaMSCs could be a potential therapeutic target in various types of cancer. However, the 
detailed mechanisms of CaMSCs in the TME are relatively less known and need further 
study.
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CD73, CD90, CD105, and lack CD34, CD45, CD19, CD14, 
and HLA‑DR,  (iii) MSC must have the ability to differentiate 
to adipocytes, osteoblasts, and chondrocytes  [2]. Due to 
the potential for therapy, MSCs were applied to the clinical 
trials in many areas, including immune rejection  (34.32%), 
degenerative diseases  (18.65%), orthopedics  (15.79%), 
autoimmunity  (10.53%), severe inflammation  (8.35%), and 
others (12.36%) [3]. Briefly, MSCs obtain genetic stability, poor 
immunogenicity, tissue repair property, and immunomodulation 
ability. However, not all of MSCs have benefits for diseases, 
there are some unhealthy MSCs or educated‑MSCs, especially 
cancer‑associated MSCs  (CaMSCs), which may contribute to 
the progression of diseases. Compared to normal MSCs, the 
role and function of CaMSCs were studied much less.

The role of normal mesenchymal stem 
cells and cancer‑associated mesenchymal 
stem cells in cancer development

The functions of normal MSCs in cancer are controversial. 
In general, most of the BM‑MSCs and AT‑MSCs obtained 
tumor‑promoting effects, but UCB‑MSCs inhibited 
tumor progression, however, all of those MSCs showed 

Introduction

T he tumor microenvironments  (TME) are complex and 
regulate tumor progression. TME includes stroma/

fibroblasts cells, vascular/endothelial cells, mesenchymal 
stem cells  (MSCs), immune cells, and secreted factors, 
such as cytokines  [1]. Among the cell components in TME, 
MSCs play critical roles in enhancing the malignancies by 
direct interacting with cancer cells or affecting the other 
cell components, such as immune cells. Cancer‑associated 
MSCs  (CaMSCs) are unique MSCs and are educated by 
cancer cells. The studies of CaMSCs were focused on primary 
culture of cancer‑associated MSC from cancer tissues, and 
indirectly  (by conditioned medium of CaMSCs) or directly 
interact with cancer cells as well as immune cells. Only a few 
studies surveyed the CaMSCs in clinical specimens. In this 
review, we will discuss the roles of CaMSCs affecting cancer 
cells and immune cells and the mechanisms in various types 
of cancer.

Characterization of mesenchymal stem 
cells

MSCs could be derived from bone marrow  (BM‑MSCs), 
adipose tissue  (MSCs), umbilical cord, or its blood  (UC/
UCB‑MSCs), and other adult tissues. The minimal criteria 
for defining MSCs include  (i) MSCs must be plastic‑adhering 
and spindle‑shaped morphology,  (ii) MSCs must express 
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immunosuppressive effects. Tumor‑promoting MSCs could 
enhance tumor growth, angiogenesis, metastasis, cancer stemness, 
and drug resistance by secreting different cytokines and growth 
factors [4‑7]. CaMSCs obtained the same or similar properties to 
enhance the development of cancer itself. Besides, MSCs could 
differentiate into cancer‑associated fibroblasts  (cancer‑associated 
fibroblasts  [CAFs]) to contribute to the tumor 
microenvironment  (TME) favored tumor progression  [8]. The 
sources of CaMSCs may be recruited from bone‑marrow or 
tissue‑specific normal MSCs  [8,9] and educated by cancer cells. 
CaMSCs displayed intermediate and slow cell cycle behavior and 
increased number in the G0‑G1 phase compared with BM‑MSCs, 
supporting a role for quiescent CaMSCs in tumor dormancy 
regulation [10]. In summary, CaMSCs, regardless of their sources, 
show tumor‑promoting effects by regulating cancer cells and the 
TME as shown in Table 1.

Cancer‑associated mesenchymal stem cells 
in brain tumor

Gliomas CaMSCs increased the proliferation and 
stemness of glioma stem Cells through the interleukin  (IL)‑6/

gp130/STAT3 pathway  [11]. In the GL261 syngeneic glioma 
mouse model, CaMSCs expressed C‑X‑C chemokine receptor 
type 4 (CXCR4) and CXCR6. These CaMSCs were accumulated 
at a later stage of brain tumor from 2 weeks (0.5 ± 0.1%) after 
tumor inoculation to 3 weeks (31 ± 3.2%) grown tumors. The 
CaMSCs, which were identified as CD44, CD9, and CD166 
triple‑positive populations, were also shown in glioblastoma 
multiforme  (GBM) specimens  [12]. The Korean group first 
identified mesenchymal stem‑like cells  (MSLCs, CD90+, and 
CD31‑) in glioma specimens  [13]. Mesenchymal stem‑like 
cells  (MSLCs) promoted the invasion of GBM cells into 
parenchymal brain tissue through complement component 
C5a/p38/ZEB1 axis. Intriguingly, the survival time was 
significantly shorter in the 4‑step‑MSLCs‑isolatable‑MSLCs 
GBM patients than in the nonisolatable‑MSLCs patients. The 
MSLCs isolatable GBM patients also showed higher CD44, 
YKL40, and C5a expression  [14]. However, the specimen 
amount was not related to MSLC isolation and detection [15]. 
These results revealed that the CaMSCs from brain tumors 
may differ from other tissues, but play the same role: 
promoting cancer development.

Table 1: The roles and signaling pathways of cancer‑associated mesenchymal stem cells s in promoting cancer progression
Cancer types Study subjects/issues Signaling pathway In vivo experiments
Breast Proliferation, stemness EGF/EGFR/Akt Ca: MSC=2:1

Chemoresistance IL‑6/STAT3 No in vivo experiments
Colon Proliferatio, migration, invasion, tumorigenesis, metastasis IL‑6/Notch‑1/CD44 Ca: MSC=1:1

Proliferation, migration, invasion, tumorigenesis miR‑30a+miR‑222/MIA3 Without coinjection
Colorectal EMT, migration, stemness, angiogenesis, tumorigenesis IL‑6/JAK2/STAT3 Ca: MSC=1:1
Gastric Proliferation, migration, tumorigenesis PDGF‑DD Ca+MSC‑CM

Migration, invasion, tumorigenesis NF‑κB p65 Ca+MSC‑CM
Angiogenesis, tumorigenesis NF‑κB/VEGF Ca+MSC‑CM
Proliferation, migration, angiogenesis IL‑8 No in vivo experiments
Migration, tumorigenesis exsosomal miR‑221 Ca: MSC=3.3:1
Migration, EMT, Metastasis Wnt/β‑catenin Ca+MSC‑CM
Proliferation, migration, Invasion, EMT, stemness, 
angiogenesis, tumorigenesis

YAP Ca+MSC‑CM

Proliferation, metastasis, metabolism G6PD‑NF‑κB‑HGF Ca+MSC‑CM
Escape from senescence p53, p21 Ca+MSC‑CM

GBM Invasion C5a/p38/ZEB1 Ca: MSC=1:1
Glioma Proliferation, stemness IL‑6/gp130/STAT3 Ca: MSC=1:1
Head and 
neck

Tumorigenesis No data Ca: MSC=1:1
EMT, metastasis IL‑8/CPNE7/NF‑κB Ca: MSC=1:1

Liver Proliferation, migration, invasion, tumorigenesis, metastasis DNM3OS/KDM6B/TIAM1 Without coinjection
EMT, stemness, tumorigenesis lncRNA‑MUF/ANXA2 Ca: MSC=1:10 to 1:10000

Lung Migration, invasion, partial EMT, stemness, tumorigenesis, 
metastasis

No data Ca: MSC=1:1 Ca: MSC=1:5

Melanoma Tumorigenesis NF‑κB Ca: MSC=2.5:1
Osteosarcoma Stemness IL‑6 No in vivo experiments

Stemness NF‑κB No in vivo experiments
Ovarian Stemness BMP2/SMAD Ca: MSC=1:1

Stemness and chemoresistance HH/BMP4 Ca: MSC=1:1
Stemness, chemoresistance, EMT PDGF‑BB/PDGFR‑β CSC: MSC=1:3
Migration, invasion, metastasis EZH2/WT1 Ca: MSC=1:1

Prostate Migration, invasion, vascular mimicry TGF‑β1 No in vivo experiments
EMT: Epithelial mesenchymal transition, GBM: Glioblastoma multiforme, Ca: Cancer cells, MSC: Mesenchymal stem cells, CM: Conditioned medium, 
IL: Interleukin, miR: MicroRNA, PDGF: Platelet‑derived growth factor, lncRNA: Long noncoding RNA, TGF: Transforming growth factor, BMP: Bone 
morphogenetic proteins, G6PD: Glucose‑6‑phosphate dehydrogenase, HGF: Hepatic growth factor, NF‑κB: Nuclear factor‑κB, HH: Hedgehog, BMP: Bone 
morphogenetic protein
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Cancer‑associated mesenchymal stem cells 
in breast cancer

CaMSCs promoted breast cancer cell proliferation and 
increased mammosphere formation through EGF/EGFR/Akt 
pathway [16]. Furthermore, CaMSCs promote the proliferation 
and migration of the MCF‑7 cell line in  vitro  [17]. Most 
important, CaMSCs enhanced chemoresistance by secreting 
IL‑6 and activating the downstream STAT3 signaling 
pathway [18]. Those in vitro and in vivo studies suggested that 
breast CaMSCs promote tumor progression and may result in 
poor prognosis.

Cancer‑associated mesenchymal stem cells 
in the colon and colorectal cancer

Colon CaMSCs increased tumor progression of colon cancer 
cells through the IL‑6/NOTCH‑1/CD44 axis [19]. Besides, the 
exosomal microRNA  (miR)‑30a and miR‑222 derived from 
colon CaMSCs promoted proliferation, migration, invasion, 
and tumorigenesis through downstream target MIA3  [20]. 
Colorectal CaMSCs promote epithelial‑mesenchymal 
transition  (EMT), migration, stemness, angiogenesis, and 
tumorigenesis through IL‑6/JAK2/STAT3 signaling  [21]. The 
CaMSC‑conditioned medium  (CM) could promote colorectal 
cancer cells’ escape from senescence through p53/p21 
pathway  [22]. The mechanisms of how colorectal CaMSCs 
regulate tumor progression are still lacking and need further 
study.

Cancer‑associated mesenchymal stem cells 
in gastric cancer

GC‑MSCs were first isolated from gastric cancer 
tissues  (13 out of 20) in 2009  [23]. GC‑MSC conditioned 
medium  (GC‑MSCs‑CM) promoted gastric cancer cell 
proliferation, migration, and tumor growth through 
secreted platelet‑derived growth factor  (PDGF)‑DD  [24]. 
They also enhanced angiogenesis and tumorigenesis by a 
nuclear factor  (NF)‑κB and vascular endothelial growth 
factor  (VEGF) and could be inhibited by Curcumin, a 
bioactive compound  [25,26]. GC‑MSC‑CM treatment 
enhanced the proliferation, migration, and angiogenesis 
of gastric cancer cells, which was more potent than 
adjacent noncancerous tissues  (GCN‑MSCs) or BM‑MSCs. 
IL‑8  secretion is strikingly high in the GC‑MSCs‑CM 
and anti‑IL‑8 antibodies could attenuate the gastric 
cancer‑promoting effects  [27]. GC‑MSCs‑CM also 
contained YAP and contributed to cancer progression, 
including proliferation, migration, invasion, EMT, 
angiogenesis, and tumorigenesis  [28]. Resveratrol  (RES) 
pretreated GC‑MSCs reduced the production of IL‑6, 
IL‑8, MCP‑1, and VEGF from CM, resulting in reduced 
migration, EMT, and metastasis by attenuating Wnt/
β‑catenin signaling  [29]. Other than cytokines and 
growth factors, GC‑MSCs could enhance the migration 
and tumorigenesis of gastric cancer cells through the 
exosomal miR‑221  [30]. Besides, downregulation of 
miR‑155‑5p induced BM‑MSC to acquire a GC‑MSC‑like 
phenotype and function depending on NF‑κB p65 

activation. NF‑kappa B p65  (NF‑κB p65) and inhibitor 
of NF‑kappa B kinase subunit epsilon  (IKBKE/IKKε) 
were identified as targets of miR‑155‑5p. GC‑MSCs 
enhanced the migration and invasion of cancer cells 
in  vitro, and GC‑MSCs‑CM enhanced tumor growth 
in  vivo  [31]. Moreover, GC‑MSCs highly expressed 
glucose‑6‑phosphate dehydrogenase  (G6PD) and facilitated 
the proliferation and metastasis of gastric cancer through 
the metabolic G6PD‑NF‑κB‑HGF  (hepatic growth 
factor)‑HK2  (Hexokinase 2) axis coordinates  [32]. In 
summary, the GC‑MSCs were studied more, and not only 
cytokines and growth factors but miRNAs and exosomal 
miRNAs from GC‑MSCs‑CM could promote tumor 
progression.

Cancer‑associated mesenchymal stem cells 
in head and neck cancer

The frequency of CD90‑positive cells, representing 
CaMSCs, is significantly higher in tumors than in 
control specimens  [33]. Head‑and‑neck squamous cell 
carcinoma  (HNSCC) could enhance the expression of 
IL‑8 in CaMSCs, on contrary, CaMSCs further promoted 
tumorigenesis of HNSCC  [34]. CaMSCs derived from oral 
squamous cell carcinoma  (OSCC) promoted the EMT and 
metastasis of OSCC cells by IL‑8/CPNE7/NF‑κB axis  [35]. 
The studies of CaMSCs in HNSCC are relative few, and 
detailed mechanisms are needed to further elucidate.

Cancer‑associated mesenchymal stem cells 
in liver cancer

Hepatocellular carcinoma  (HCC)‑associated MSCs 
promoted HCC proliferation, migration, invasion, 
tumorigenesis, and metastasis via a long non‑coding (lnc) RNA, 
DNM3OS, and downstream KDM6B and TIAM1 axis [36] 
and enhanced EMT, stemness, and liver tumorigenesis through 
a novel lncRNA, lncRNA‑MUF, and downstream Annexin A2 
and Wnt/β‑catenin signaling. Besides, lncRNA‑MUF targets 
miR‑34a, resulting in the activation of EMT genes  [37]. The 
studies of CaMSCs in HCC are few but novel, suggesting that 
the mechanisms of how CaMSCs regulate cancer cells are 
multiple and complex.

Cancer‑associated mesenchymal stem cells 
in lung cancer

Lung CaMSCs were highly expressed α‑smooth muscle 
actin, hypoxic inducing factor‑1α, matrix metalloproteinase 
11, VEGF, CXCL12, transforming growth factor  (TGF)‑β1, 
TGF‑βRII, IL6, and tumor necrosis factor  (TNF) α, the 
markers referred to CAFs, suggesting that differentiation 
of CaMSCs were toward to CAF‑related phenotype  [38]. 
Besides, CaMSCs derived from lung cancer enhanced 
migration, invasion, partial EMT, stemness, tumorigenesis, 
and metastasis of A549  cells  [39]. Primary lung cancer cells 
secreted C‑C motif chemokine ligand 3  (CCL3) and further 
stimulated IL‑6, CCL2, intercellular adhesion molecule 1, 
and vascular cell adhesion molecule 1 expression in CaMSCs. 
The coculture of cancer cells and CaMSCs facilitated those 
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gene expressions and could be disrupted by the lipid‑lowering 
drug simvastatin [40]. These data suggested that the cytokines 
secreted from CaMSCs play important roles in cancer cells 
and possibly in immune cells.

Cancer‑associated mesenchymal stem cells 
in melanoma

IL‑17 and interferon  (IFN)γ could transform BM‑MSCs 
into CaMSCs and further promote tumor progression in 
B16F0 syngeneic melanoma mouse model. The expression 
of CCL2, CCL5, CCL7, and CCL20 was increased after the 
transformation of CaMSCs, resulting in the activation of the 
NF‑κB signaling pathway. These phenomena could be arrested 
by retinoic acid treatment  [41]. The syngeneic melanoma 
mouse model is beneficial to the studies of TME, especially 
for immune cells.

Cancer‑associated mesenchymal stem cells 
in osteosarcoma

CaMSCs of osteosarcoma promoted the proliferation, 
migration, and stemness of osteosarcoma cells via IL‑6 [42] 
and NF‑κB signaling pathway  [43]. Detailed mechanisms are 
needed to further elucidate. Exosomes in the osteosarcoma 
microenvironment are also discussed for their role in 
tumor growth, metastasis, chemoresistance, therapy, and 
diagnosis  [44]. BM‑MSC‑derived extracellular vesicles 
can promote cell migration, proliferation, and invasion of 
osteosarcoma via autophagy or the Wnt/beta‑catenin signaling 
pathway  [45,46]. Osteosarcoma tumor cells can educate 
CaMSC to promote tumor progression. Tumor secreting 
TGF‑beta affected CaMSC secreting IL‑6 to promote tumor 
progression  [47]. Osteosarcoma tumor cells can secret 
exosomes to resist chemo drugs  [48], which are mediated 
by a number of miRNAs  [49]. Conversely, exosomes also 
can harbor anti‑tumor capabilities  [50]. The miR150 derived 
in MSC‑exosomes can target IGF2BP1 to reduce cancer cell 
proliferation and migration  [51]. For diagnosis, osteosarcoma 
patients‑derived exosomes‑specific repetitive element DNA 
sequence can be used  [52]. In summary, the use of exosomes 
for the therapy and diagnosis of osteosarcoma still needs 
further exploration.

Cancer‑associated mesenchymal stem cells 
in ovarian cancer

Ovarian CaMSCs was arisen from the normal stroma 
of local tissue but not from BM, and they could be further 
enhanced by hypoxia condition  [9]. These CaMSCs highly 
expressed bone morphogenetic protein  (BMP) proteins, 
especially BMP2, and could enhance the population of cancer 
stem cells  (CSCs) and increase tumorigenesis  [53]. Ovarian 
cancer cells secreted Hedgehog (HH) and further activated the 
production of BMP4 from CaMSCs, resulting in the increase 
of CSCs and chemoresistances  [54]. CaMSCs cocultured 
with CSCs could enhance the stemness, chemoresistances, 
and EMT by PDGF‑BB/PDGFR‑β signaling  [55]. 
A  recent study proved that ovarian cancer cells induced 
mesenchymal‑epithelial‑transition  (MET) of host stromal cells 

by epigenetic alterations, such as DNA hypermethylation, 
chromatin accessibility, and differential histone modifications. 
These educated stromal cells were transformed to CaMSCs 
and further enhanced the migration, invasion, and metastasis 
of ovarian cancer cells, which were mediated by EZH2 and 
WT1 [56]. These results suggested that ovarian CaMSCs were 
arisen from local stromal tissues, not from BM, and majorly 
enhanced chemoresistances of ovarian cancer cells through 
BMP signaling and epigenetic modifications.

Cancer‑associated mesenchymal stem cells 
in prostate cancer

TGF‑β1 is a crucial molecule to attract BM‑MSC 
recruitment both to prostate cancer cells as well as to 
tumor stroma components. Moreover, cancer cells and 
CaMSCs secreted TGF‑β1 is important to induce MSC 
transdifferentiation into CAF‑like cells. CaMSCs enhanced the 
invasiveness of prostate cancer and acquired vascular mimicry 
ability compared to noneducated MSCs. In addition, differing 
from normal MSC, CAF‑like MSC performs vascular mimicry 
and recruits monocytes, which can be further polarized to M2 
macrophages within the PCa environment  [8]. The percentage 
of CaMSCs, identified by CD73, CD90, and CD105 
triple‑positive cells, in prostate cancer tissues was around 1%, 
and these primary CaMSCs highly expressed programmed 
death‑ligand 1  (PD‑L1) and PD‑L2. The CaMSCs could be 
further licensed by treating IFN‑γ and TNF‑α, resulting in 
the increases in PD‑L1 and PD‑L2 [57]. These data suggested 
that prostate CaMSCs could differentiate into CAFs and may 
obtain immunosuppressive effects.

The interaction between cancer‑associated 
mesenchymal stem cells and immune cells

Different sources of CaMSCs all showed 
immunosuppressive effects, and the targets include 
macrophages, T‑cells, and natural killer  (NK) cells. Breast 
CaMSCs highly expressed FAPα and increased pulmonary 
metastasis by recruitment of M2 tumor‑associated 
macrophages  (TAM), which were identified by F4/80 and 
CCR2‑positive population  [58]. GC‑MSC‑primed M2 
macrophages promoted the migration, invasion, and EMT of 
gastric cancer cells through secretion of IL‑6 and IL‑8, and 
the JAK2/STAT3 signaling pathway [59].

Neuroblastoma CaMSCs exhibited greater 
immunosuppressive capacity on activated T‑lymphocytes at 
a 1:2  (MSC: PBMC  [peripheral blood mononuclear cells]) 
ratio compared with BM‑MSCs  [60]. CaMSCs derived from 
HNSCC inhibited CD4+  and CD8+  T‑cell proliferation via 
indoleamine 2,3 dioxygenase activity  [33]. GC‑MSCs derived 
IL‑8 induced PD‑L1 expression in gastric cancer cells via 
STAT3/mTOR‑c‑Myc signal axis, resulting in resistance to 
CD8+ T cells cytotoxicity [61]. Increased PD‑L1 could further 
enhance CSC properties and tumorigenesis by interacting 
with the CCCTC‑binding factor  [62]. CD4+  T cell primed 
GC‑MSCs facilitated the tumor growth of gastric cancer cells 
through mTOR signaling  [63]. IL‑15 derived from GC‑MSCs 
enhanced stemness, EMT, and migration of gastric cancer cells 
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as well as increased regulatory T‑cells  (Treg) ratio through 
STAT3 and STAT5, respectively [63].

PBMCs pretreated with GC‑MSCs‑CM significantly 
enhanced the migration, EMT, and liver metastases of gastric 
cancer. The proportion of Treg cells was increased and the 
T‑helper  (Th) 17  cells were reduced in PBMCs pretreated 
with GC‑MSCs‑CM, resulting in the immunosuppressive 
TME  [64]. CaMSCs coculture with cervical cancer cells 
induced CD73 expression and adenosine production in an 
MSC ratio‑dependent manner, and could be reversed by 
anti‑hTGF‑β1 neutralizing antibodies  [65]. Adenosine could 
suppress the proliferation and activation of CD8+ T cells [66].

Ovarian CaMSCs are inversely correlated with the 
intratumoral CD8+  T cells but positively correlated with 
TAMs, resulting in decreases in the response to anti‑PD‑L1 
immune checkpoint inhibitor treatment. Furthermore, these 
immunosuppressive immune cells expressed high levels 
of transforming growth factor β‑induced protein, which 
suppresses NK cell activity and HH inhibitor therapy could 
reverse CaMSC effects [67].

In a B16F10 syngeneic melanoma mice model, tumor 
conditioning licenses MSCs inhibited T‑cell proliferation 
by blocking cysteine export from dendritic cells through 
IL‑10‑STAT3 signaling  [68], which could be blocked by 
nontoxic neem leaf glycoprotein  [69]. GC‑MSCs inhibited 
the degranulation capacity, perforin production, and 
cytotoxicity of NK cells by upregulating the expression of 
fructose‑bisphosphatase 1  [70]. Lung CaMSCs inhibited 
the cytotoxicity of NK cells by expression of IL6 and 
prostaglandin E2  [71]. In general, CaMSCs enhanced M2 
macrophages and Treg and reduced CD4+, CD8+  T cells, 
and NK cells, resulting in an immunosuppressive TME, 
thus promoting carcinogenesis and inhibiting the effects of 
immunotherapy [Table 2].

Perspective
CaMSCs enhance tumor progression through the same 

signaling, such as IL‑6 and NF‑κB, as BM‑MSCs or other 
sources of local tissues. Besides, there are more novel 

mechanisms, such as lncRNAs and miRNAs that were 
discovered and may have stronger effects on cancer cells as 
well as immune cells. However, the mechanisms are relatively 
less known, especially in endometrial cancer, pancreatic 
cancer, renal cell carcinoma, and other cancers which were 
not mentioned in this review. CaMSCs were shown in the 
specimens with low proportion and maintained high similarity 
with normal MSCs; thus, it is important for potential 
therapies to selectively target CaMSCs or CaMSC‑dependent 
signaling pathways. Furthermore, there are some MSCs, such 
as UCB‑MSCs, function as anti‑tumor progression, which 
may generate the issues that how to transform CaMSCs into 
anti‑tumor MSCs by modifications.

Conclusion
From these data of CaMSCs studies, the primary CaMSCs 

need to examine before senescence  (usually before passage 
8  [P8]). In most of the studies, the authors finished the 
experiments around P5 to P7. CaMSCs were shown in the 
cancer specimens with a relatively low percentage, which 
is around 1% to 5% defined by CD73, CD90, and CD105 
triple‑positive cells. However, the in  vivo studies may take 
them as CAFs and mixed with cancer cells at high ratios, such 
as 1:1 or more  [Table  1]. On the contrary, in most studies 
of GC‑MSCs, CaMSCs‑CM had shown significant results, 
representing that CaMSCs could regulate cancer cells through 
direct interaction or paracrine effects.

CaMSCs play a pivotal role in TME, including 
differentiating into CAFs and affecting cancer cells as well 
as immune cells through various signaling pathways. Besides, 
cancer cells and immune cells may feedback regulation of 
CaMSCs to facilitate tumor progression. CaMSCs could be a 
direct therapeutic target or by modification as drug‑delivery 
vehicles [72]. In conclusion, further investigations of CaMSCs 
are needed to accumulate to fully understand the mechanisms 
of CaMSCs regulating TME for reaching the purpose of 
therapy in various cancers.
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