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Abstract

Mesenchymal stem cells (MSCs) are currently being investigated as candidate cells for regenerative medicine approaches for the
repair of damaged articular cartilage. For these cells to be used clinically, it is important to understand how they will react to the
complex loading environment of a joint in vivo. In addition to investigating alternative cell sources, it is also important for the
structure of tissue-engineered constructs and the organization of cells within them to be developed and, if possible, improved. A
custom built bioreactor was used to expose human MSCs to a combination of shear and compression loading. The MSCs were
either evenly distributed throughout fibrin-poly(ester-urethane) scaffolds or asymmetrically seeded with a small proportion seeded
on the surface of the scaffold. The effect of cell distribution on the production and deposition of cartilage-like matrix in response
to mechanical load mimicking in vivo joint loading was then investigated. The results show that asymmetrically seeding the scaffold
led to markedly improved tissue development based on histologically detectable matrix deposition. Consideration of cell
location, therefore, is an important aspect in the development of regenerative medicine approaches for cartilage repair. This is
particularly relevant when considering the natural biomechanical environment of the joint in vivo and patient rehabilitation
protocols. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
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1. Introduction Mesenchymal stem cells have been harvested from a num-
ber of tissues, including adipose tissue and bone marrow as-

Cell based therapies, based on the use of autologous or pirate, and have been shown to undergo osteogenic,

donor cells, often but not exclusively in combination with adipogenic and chondrogenic differentiation (Johnstone
biomaterials are being developed and used clinically ¢ @l 1998; Pittenger et al., 1999; Zuk et al., 2002;
(Shin'oka et al, 2001; Cherubino et al., 2003; Atala Musumeci et al., 2011, 2014). The ability to utilize bone
et al., 2006; Raya-Rivera et al., 2011). One of the areas MarToW MSCs for cartilage repair would allow the collec-
in which they have had an impact is the repair of articular tion of cells through an aspiration, rather than the initial

cartilage through autologous chondrocyte implantation harvesting operation required for ACI, as well as decreasing
(ACI) (Brittberg et al., 1994). the problems associated with donor site morbidity after car-

tilage harvesting. If MSCs are to progress towards a clinical
application a better understanding of how these cells might
behave in vivo is required (Johnstone et al., 2013).

The standard method of inducing chondrogenic dif-

However, the use of autologous chondrocytes leads to
problems such as donor site morbidity, dedifferentiation
during in vitro expansion and the production of fibro-
cartilaginous repair tissue, as well as the need for multiple e Reha )
operations (Holtzer et al., 1960; Benya and Shaffer, 1982; ferentiation of MSCs in vitro is to culture the cells in a
LaPrade et al., 2008; Matricali et al., 2010). This has led to three-dlrnfenswnal environment and in the presence of
interest in using mesenchymal stem cells (MSGs) as an al- transforming growth factor beta (TGF-B) (Johnstone et al.,
ternative for chondrocytes in cell based articular cartilage 1998) but not in the presence of mechanical stimulation,

repair (Gardner et al., 2013; Musumeci et al., 2011, 2014). 2@ key influence within the joint env1ror.1ment. Previous

work has shown that MSCs can be directed towards
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Li et al. (2010a) showed that the application of multi-axial
load leads to the endogenous production of TGF-f1 by
MSCs within the loaded scaffolds, which then drives the
deposition of cartilage-like matrix. Subsequent work ap-
plied the two components of the load (compression and
shear), both individually and, in combination, and showed
that the shear component of the load was critical for the
induction of chondrogenesis (Schatti et al., 2011). The most
common clinical solution for cartilage repair is currently
microfracture, where bone marrow is released into the
defect by producing holes in the subchondral bone
(Steadman et al., 2001). This results in progenitor cells
contained within a fibrin clot , a situation broadly mimicked
using the culture model system described above. Therefore,
being able to study the behaviour of these cells in a
mechanical environment that mimics the one they might
naturally encounter allows for a greater understanding of
how these cells might act within a scaffold or defect in vivo.
The present study further investigates the response of
MSCs to physiologically relevant multi-axial mechanical
load that mimics the mechanical environment of an
articulating joint. The aim was to investigate whether in-
duction of chondrogenesis and the deposition of cartilage-
like matrix by MSCs in response to multi-axial load could
be improved by asymmetrically seeding scaffolds with a
small proportion of the total number of cells seeded onto
the scaffold’s loaded surface. Rather than take a classical
tissue-engineering approach, whereby stimuli and mate-
rials are chosen purely on the basis of maximum matrix pro-
duction, the present study has taken a more regenerative
medicine approach. With this in mind human cells were
embedded in a clinically approved material (fibrin) and
the only stimulus applied is mechanical, which is possible
clinically by way of the applied rehabilitation protocol after
surgery. The model used, human progenitor cells embedded
in a fibrin gel, would then also offer potential insights into
the role of rehabilitation protocols on graft maturation after
microfracture for cartilage repair. The MSCs were seeded
onto the loaded surface in order to directly expose them to
the shear component of the load, which has previously been
shown to be important for the induction of MSC chondro-
genesis as a result of multi-axial mechanical loading.

2. Materials and methods

2.1. Preparation of poly(ester-urethane) scaffolds

The poly(ester-urethane) was prepared following a one-
step solution poly-condensation and fabricated into a
porous structure via a salt leaching-phase inverse tech-
nique as described previously (Boissard et al., 2009).
The poly(ester-urethane) porous sponge was water-jet
cut (CUTEC AG, Basel, Switzerland) into cylindrical
scaffolds 8 mm diameter and 4 mm high, with a porosity
above 80% and interconnected macropores ranging from
90 um to 300 um. The scaffolds were then sterilized with
ethylene oxide in a cold cycle (37°C) and degassed under
vacuum for 5 days.
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2.2. Isolation of MSCs

Mesenchymal stem cells were isolated from bone marrow as-
pirates collected during routine operations with full-ethical
approval (KEK-ZH-NR: 2010-0444/0). The MSCs were from
four different marrow aspirates from vertebral bodies (two
female aged 18 years and 49 years, two male aged 22 years
and 76 years) and one from tibial plateau (males aged 48
years). Mononuclear cells were isolated from whole bone
marrow of each donor using Ficoll density separation
(Sigma-Aldrich, Buchs, Switzerland). Isolated mononuclear
cells were then seeded at a density of 50 000 cells/cm? and
left to attach for 96 h in alpha minimum essential medium
(aMEM) (Gibco, Carlsbad, CA, USA), 10% MSC tested fetal
bovine serum (FBS) (Pan Biotech, Aidenbach, Germany), 5 -
ng/ml basic fibroblast growth factor (bFGF) (Peprotech,
Rocky Hill, CN, USA) and 1% penicillin/streptomycin
(Gibco). MSCs isolated from vertebral bodies were used for
the main body of experiments, while MSCs isolated from
the tibial plateau were used for cell tracking experiments.

2.3. Cell culture, cell membrane labelling and scaffold
seeding

Proliferation of MSCs was carried out using «MEM 10%
FBS with 5 ng/ml bFGF. Passage 3 cells were seeded into
8 X 4 mm fibrin—poly(ester-urethane) scaffolds (fibrin
from Baxter, Vienna, Austria) (Li et al., 2009). The
number and position of cells seeded into each scaffold var-
ied by group (Figure 1). One group of scaffolds contained
4 million cells seeded throughout the scaffold (Uniform).
A second group of scaffolds were seeded asymmetrically
with 3.6 million cells distributed within the scaffold, and
400 000 cells were allowed to adhere to the loaded
surface of the scaffold (Asymmetric). For the final set of
scaffolds (Surface-Only), the scaffolds were filled with
fibrin alone, 400 000 cells were then allowed to adhere
to the upper face of the scaffolds (Figure 1).

The scaffold seeding procedure was originally de-
scribed by Li et al. (2009). In order to seed cells within
scaffolds the required number of culture expanded MSCs
were first resuspended in 33 mg/ml fibrinogen and trans-
ferred to the sterilized cap of an Eppendorf tube. The
fibrin cell mixture was then rapidly mixed with an equal
volume of 1 unit/ml thrombin. A poly(ester-urethane)
scaffold was then firmly pressed into the Eppendorf lid
using a pair of sterile forceps; removing the pressure from
the scaffold allowed the poly(ester-urethane) sponge to
regain its original shape and in doing so draw the fibrin
cell mixture into the scaffold. The scaffolds were then
incubated at 37°C for 1 h to allow polymerization of the
fibrin hydrogel. This method has been used previously in
a number of studies by this group and results in a
homogeneous distribution of cells throughout the scaffold
(Li et al., 2009, 2010a; Schatti et al., 2011; Neumann
et al., 2013).

To seed MSCs on the scaffold surface 400 000 cells were
resuspended in 100 pl of chondropermissive medium. This
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Uniform:

Asymmetric:
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Surface Only:

Figure 1. (a) Schematic showing the different seeding patterns used during this work. In Uniform 4 million cells were evenly seeded throughout scaffolds. In Asymmetrically
seeded scaffolds, 3.6 million cells were seeded evenly throughout the scaffold and 400 000 cells seeded on the loaded surface of the scaffold. Surface Only scaffolds were not
seeded with cells within the scaffold but only with 400 000 cells on the loaded surface. (b) Schematic showing the multi-axial loading device used in the present study. The
hip ball is lowered onto the white disc representing the scaffold. Compression is generated by raising and lowering the ball, and sliding friction is generated by rotating the ball,
allowing for a sliding motion over the scaffold. [Colour figure can be viewed at wileyonlinelibrary.com]

suspension was then dripped on top of the fully polymer-
ized fibrin poly(ester-urethane) scaffold and left for 20
min for the cells to adhere. Scaffolds were then transferred
to polyether ether ketone holders for the remainder of the
culture period.

Six scaffolds were seeded with a mixture of unlabelled
cells and cells labelled with the fluorescent cell membrane
dye PKH26. The role of the fluorescent label was to estab-
lish the morphology and location of MSCs in both free-
swelling and loaded scaffolds after 4 weeks in culture.
The MSCs were labelled with PKH26 according to the man-
ufacture’s protocol (Sigma-Aldrich). Two group one scaf-
folds were seeded with 4 million labelled cells that were
evenly distributed throughout the scaffold. Asymmetric
scaffolds were seeded with 3.6 million unstained cells in-
side the scaffold and 400 000 labelled cells on top of the
scaffold. Two final scaffolds were seeded as Surface-Only
seeded scaffolds with 400 000 labelled cells on top of other-
wise acellular fibrin-filled scaffolds. Scaffolds were then
either mechanically loaded or kept in free-swelling culture.

Once seeded, the scaffolds were cultured in
chondropermissive medium consisting of; Dulbecco’s
modified Eagle medium 4.5g/1 glucose (Gibco), sodium
pyruvate 0.11 g/1 (Sigma-Aldrich), L-ascorbic acid 2-
phosphate sesquimagnesium salt hydrate 50 pg/ml
(Sigma-Aldrich), dexamethasone 1 X 107 m (Sigma-
Aldrich), insulin transferrin and selenium 1% (Cyangen,
Guangzhou, China), non-essential amino acids 1% (Gibco),
Primocin 0.1% (Invitrogen, San Diego, CA, USA) and 6-
aminocaproic acid 5 um (Sigma-Aldrich) to reduce fibrin
degradation (Kupcsik et al., 2009). The media were changed
three times a week, collected and pooled for analysis.
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2.4. Mechanical loading

Control scaffolds were kept in free-swelling culture for the
entire culture period (4 weeks). Designated scaffolds were
loaded using a custom-made multi-axial load bioreactor
based on tribological principals (Wimmer et al., 2004).
Loaded scaffolds were exposed to 20 cycles of 10%
compression superimposed on top of a 10% pre-strain and
shear loading (+ 25°) at 1Hz for 1 h a day, five times a
week. The application of multi-axial mechanical load to
fibrin—poly(ester-urethane) scaffolds in this system has
been described previously (Zahedmanesh et al., 2014).

2.5. Sample collection

After 4 weeks of culture, the eight scaffolds from each
group were harvested for analyses. Samples were homog-
enized in TRI reagent (Molecular Research Centre Inc.,
Cincinnati, OH, USA) for RNA isolation, digested in 0.5
mg/ml proteinase K at 56°C for 16 h (Roche, Basel,
Switzerland) for biochemical analysis or fixed in an mini-
mum of 20 % the volume of the scaffold in 70% methanol
for a minimum of 48 h (Brenntag, Miilheim Germany) for
histological processing.

2.6. Glycosaminoglycan and DNA quantification

1,9-Dimethyl methylene blue (DMMB) Sigma-Aldrich,
Buchs, Switzerland) was used to determine the amount
of glycosaminoglycan (GAG) retained within scaffolds
from proteinase K-digested samples, and the amount that
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was released from the scaffolds into the collected culture
media (Farndale et al., 1986). This method uses a stan-
dard curve of chondroitin 4-sulfate sodium salt from
bovine trachea (Fluka, St Louis, MO, USA). The standard
concentrations used were; 0.01, 0.005, 0.0025, 0.00125,
0.000625 and 0.0003125 mg/ml; 50 pl of each standard
was used. The standards were made up in chondropermissive
media and a blank of chondropermissive media was used.
Into each of the wells containing standard and sample was
added 200 pul DMMB (Sigma-Aldrich). The absorbance of
the wells at 535 nm was then read immediately using the
Victor 3 Micro Plate Reader (Perkin Elmer, Waltham,
MA, USA).

The quantification of GAG in each proteinase K sample
was identical to that used for media samples, except that
20 pl of sample and standard were used not 50 pl. The
blank used was phosphate-buffered saline (PBS) and
standards (0.0113, 0.00568, 0.00284, 0.00142, 0.00071
and 0.000355 mg/ml) were prepared using PBS.

The DNA content of scaffolds was quantified using
Hochst 33258 dye (Polysciences Inc., Warrington, PA,
USA) (Labarca and Paigen, 1980). The standard curve
was made using calf thymus DNA (Lubio Science, Luzern,
Switzerland) in PBS, the concentrations used were: 10, 5,
2.5,1.25, 0.625 and 0.3125 ug/ml; 40 pl of blank as well
as of each standard and sample was pipetted into a white
96-well plate and 160 ul of 0.01% Hochst dye solution
(Polysciences Inc.) added, the plate was then wrapped
in aluminium foil and incubated at room temperature
for 20 min. Measurements were then made at 360 nm
excitation and 465 nm emission using the Victor 3 Micro
Plate Reader (Perkin Elmer).

2.7. Histology and immunohistochemistry

Methanol-fixed samples were frozen in OCT compound (R.
Jung GmbH, Nussloch, Germany) before being sectioned
(12 pum thick) on a cryotome (Carl Zeiss AG, Oberkochen,
Germany). Following sectioning, samples were stained with
Safranin O (Chroma, Miinster, Germany), counterstained
with Weigert’s haematoxylin (Merck, Whitehouse Station,
NJ, USA) and fast green (Fluka).

The presence of collagen types I, II and X in sections
was determined using the following primary antibodies:
COL-1 (C2456; Sigma-Aldrich), CIICI (Developmental
Studies Hybridoma Bank, University of Iowa, Iowa City,
IA, USA) and COL-10 (C7974; Sigma-Aldrich). For all an-
tibodies, except COL-10, a biotinylated horse anti-mouse
secondary antibody was then used to detect the primary
antibody (Vector Laboratories, Burlingame, CA, USA).
For COL-10, samples were incubated with a biotinylated
goat anti-mouse IgM secondary antibody (Vector Labora-
tories, Burlingame, USA).

Slides were brought to room temperature and washed
in distilled water for 10 min before native peroxidase ac-
tivity was blocked with 0.3% H,0, (Fluka) in methanol
(Brenntag) for 30 min. Slides were then air dried and
washed twice for 5 min in 0.1% Tween-20 PBS. Slides
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were incubated in 0.05-0.5 units/ml hyaluronidase
(Sigma-Aldrich) in 0.1% Tween 20 PBS at 37°C for 30
min before being washed three times for 5 min in 0.1%
Tween-20 PBS. Sections were then blocked with an appro-
priate serum for 1 h at room temperature. For COL-1 and
CIICI this required horse serum diluted 1:20 in 0.1%
Tween-20 PBS; COL-10 required goat serum diluted
1:20 in 0.1% Tween-20 PBS (Vector Laboratories). Follow-
ing the block step, the serum was removed without wash-
ing and immediately replaced with the primary antibody.
The sections were incubated with the primary antibodies
for 30 min at room temperature. The following dilutions
with 0.1% Tween-20 were used for the antibodies: COL-
1 1:2000, CIICI 1:6, 5C6 1:5, C7974 1:2000, MAB240
1:50. Negative controls were incubated with 0.1% Tween-
20 PBS. Slides were then washed three times for 5 min with
0.1% Tween-20 PBS, before being incubated with the
biotinylated anti-mouse 1gG secondary antibody diluted
1:200 in 0.1% Tween-20 PBS except for C7974, which
required an anti-mouse IgM diluted 1:200. Following this
incubation, samples were washed again in 0.1% Tween-20
and then incubated with ABC solution (Vector Laborato-
ries) for 30 min at room temperature, washed again and
then incubated with ImmPACT DAB (Vector Laboratories,
Burlingame) for 4 min before being place into distilled
water. Samples were the counterstained with Mayer’s
haematoxylin (Sigma-Aldrich) for 20 s and blued in tap
water for 5 min. Samples were dehydrated in 50%, 70%,
96%, 100%, 100% ethanol before being cleared in xylene
and mounted with Eukitt (Sigma-Aldrich).

2.8. Reverse transcription and real-time polymerase chain
reaction (PCR)

RNA was isolated from samples in TRI reagent (Molecular
Research Centre Inc.) as per the manufacturer’s instructions.
Reverse transcription was then performed using random
hexamer primers and TagMan reverse transcription re-
agents (Applied Biosystems, Carlsbad, CA, USA).
Real-time PCR was performed using the applied biosci-
ences StepOnePlus real-time PCR system (Applied
Biosystems). Primers for collagen type I, collagen type II,
collagen type X and aggrecan mRNA were synthesized
by Microsynth AG (Balgach, Switzerland), (see the
Supplementary material online, Table S1). Primers for
Sox9 and 18s were purchased from Applied Biosystems.
The level of gene expression for each gene was determined
relative to day O control 18s rRNA via a AACT comparison.

2.9. Statistical analysis

The data presented represents data from three (real-time
PCR) or four individual experiments (GAG/DNA and
TGF-B1 analysis) each carried out with with MSCs from
a different donor. Experiments were performed in quadru-
plicate (real-time PCR and TGF-B1 analysis) or triplicate
(GAG/DNA). Statistical analysis was performed GraphPad
Prism 6 software (GraphPad Software Inc., La Jolla, CA,
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USA). Two-factor analysis of variance (ANOVA) and
Bonferroni’s test were used on log-transformed data for
comparison between more than two groups. A P-value of
less than 0.05 was considered statistically significant.

3. Results

3.1. Fluorescent membrane labelling

Fluorescent cell labelling was used to detect the location
of seeded cells after 4 weeks of culture (Figure 2). In
Uniform scaffolds, where all cells seeded within the scaffold
were labelled, the labelled MSCs were present around the
four edges of the scaffold but not within the centre of the
scaffold (Figure 2). Previous work in this model system
has shown homogeneous seeding of scaffolds immediately
after seeding and at day 7 of culture (Zahedmanesh et al.,
2014); therefore, the loss of cells from the centre of the
scaffolds appears to occur as a result of longer periods
of culture.

In Asymmetric and Surface-Only seeded scaffolds, the
cells seeded on to the scaffold surface were labelled
whereas cells seeded within the scaffold itself were not.
In these two groups, the labelled cells clearly remain on
the upper surface of the scaffold after 28 days of culture.
In Asymmetric and Surface-Only control scaffolds, la-
belled cells were distributed throughout the surface layers
of the scaffolds. However, in Asymmetric loaded scaffolds,
the distribution of labelled cells was restricted to the up-
permost layer of the scaffold surface with few detectable
cells visible below this region. This was not replicated in
Surface-Only loaded conditions. The change in cell distri-
bution between Asymmetric control and loaded scaffolds

Uniform

Control

Load

Asymmetric

--

0. F. W. Gardner et al.

suggests that the application of multi-axial load modifies
the distribution of cells seeded on the scaffold surface in
this model.

3.2. Safranin O staining

In order to show the deposition of sulphated GAGs,
scaffolds were stained with Safranin O (Figure 3a—f).
Positive Safranin O staining was present along the upper
surface of Uniform loaded scaffolds and stronger positive
staining was present in the same region of Asymmetric
loaded scaffolds. No staining was observed in Uniform or
Asymmetric control scaffolds or any of the Surface-Only
scaffolds.

3.3. Immunohistochemistry

Immunohistochemistry showed that collagen type II was
in found only in Uniform and Asymmetric loaded scaffolds
(Figure 3m-r). The labelling was stronger in Asymmetric
loaded scaffolds compared to Uniform loaded scaffolds,
matching the pattern of staining seen with Safranin O.

Collagen type I was deposited around the edges of all
scaffolds in a pattern that matched the distribution of cells
within the scaffolds. In both Uniform and Asymmetric
there was an increase in collagen type I deposition in
response to mechanical load; however, in Surface-Only,
scaffolds the deposition was greater in control scaffolds
(Figure 3g-1).

Non-specific staining by the antibody used for collagen
type X immunohistochemistry of the fibrin component of
the scaffolds led to high levels of background labelling, thus
interpretation requires caution (Figure 3s-x). However,

Surface Only

Figure 2. Fluorescent images showing the location of labelled cells after 4 weeks of load. Images (a), (b) and (c) show control scaffolds from Uniform, Asymmetric and Surface
Only seeded scaffolds respectively, while images (d), (e) and (f) show loaded scaffolds. Red fluorescence shows the membranes of labelled cells, blue shows nuclei counterstained
with 4/,6-diamidino-2-phenylindole (DAPI) (n = 1). Bar, 200 pm. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 3. Images showing the surface of scaffolds stained with Safranin O and immunohistochemical labelling for collagen type I, collagen type II and collagen type X after 4
weeks of culture. Images (a), (b) and (c) show Safranin O-stained control scaffolds from Uniform, Asymmetric and Surface Only seeded scaffolds, respectively, while images
(d), (e) and (f) show Safranin O-stained loaded scaffolds. Images (g), (h) and (i) show control scaffolds labelled for collagen type I, and images (j) (k) and (1) show loaded scaf-
folds. Images (m), (n) and (o) show control scaffolds labelled for collagen type II and images (p), (q) and (r) show loaded scaffolds. Images (s), (t) and (u) show control scaffolds
labelled for collagen type X and images (v), (w) and (x) show loaded scaffolds. [Colour figure can be viewed at wileyonlinelibrary.com]

areas in Uniform and Asymmetric loaded scaffolds that In Uniform and Asymmetric seeding there was a trend
stained positively for sulphated GAG and collagen type I towards increased total GAG in response to mechanical
do not stain for collagen type X. load (Figure 4), although this did not reach significance.

There was a significant difference between the total GAG
production of control and loaded scaffolds in Uniform
3.4. Glycosaminoglycan and DNA quantification and Asymmetric scaffolds compared with Surface-Only
scaffolds (P < 0.05). Calculation of the GAG/DNA ratio in
After 4 weeks in culture the DNA content of all Uniform each group trended towards an increased ratio in Uniform
and Asymmetrical scaffolds remained higher than Surface and Asymmetric loaded scaffolds but this was not significant
Only scaffolds (P < 0.05) (Figure 4). (Uniform control mean #+ SD, 0.03844 + 0.01265 mg/ug;
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Figure 4. Biochemical analysis of scaffolds after 4 weeks in culture. (a) Hochst 33528
dye was used to quantify the DNA in proteinase K digests of scaffolds. (b)
Dimethylmethylene blue (DMMB) was used to determine the total amount of
sulphated glycosaminoglycan (GAG) produced by mesenchymal stem cells (MSCs)
from both the collected culture media and proteinase K scaffold digests. (c) The
GAG/DNA ratio was calculated from total DNA and GAG values to show the production
of GAG relative to the MSCs present in each group. Error bars represent standard de-
viation. Statistical significance was defined as P < 0.05; *P < 0.05, **P < 0.001 and
***P <0.0001
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group 1 control 0.05084 = 0.01421 mg/ug; Asymmetric
control 0.05216 = 0.02214 mg/ug; surface-only control
0.05628 = 0.01683 mg/ug) (Figure 4).

3.5. Real-time PCR

Collagen type I expression trended towards an increase with
load, however, there were no significant increases within
groups when comparing load and control (Figure 5a).

Collagen type II expression was only detected in loaded
groups. As a result, collagen type II expression was normal-
ized to Uniform loaded scaffolds (Figure 5b). There was
significantly greater expression in Asymmetrical than in
Surface-Only groups (P = 0.0041). The expression in group
2 scaffolds was similar to the Uniform group (1.163 + 1.22)
while in the Surface-Only group it was lower than in the
Uniform group (mean = SD, 0.2460 + 0.44).

Type X collagen expression significantly increased in all
three loaded groups compared with all three control groups
(P < 0.001). The expression of collagen type X in control
groups was similar to day 0 (mean fold changes + SD were
1.299 + 1.90, 0.6267 + 0.39 and 1.167 *= 0.72 in Uniform,
Asymmetrical and Surface-only groups, respectively),
however, expression was much higher in loaded scaffolds
(mean = SD, 299.9 + 331.0, 216.0 = 247.4 and 82.00 =
60.65, respectively) (Figure 5c¢).

Aggrecan expression was significantly increased in Uni-
form loaded scaffolds compared with all three control groups
(Figure 5d). Aggrecan expression was also significantly in-
creased by load when the cells were seeded asymmetrically.
Expression was downregulated when compared with cells
at day O in all groups except the Uniform and Asymmetrical
groups subjected to load (mean = SD,15.86 = 22.06 and
3.960 = 5.18, respectively).

Gene expression analysis of Sox9 shows that there was a
significant increase in expression between Uniform and
Asymmetrical load and all three control groups (P < 0.05)
(Figure 5E). There was no statistically significant increase
in response to load in Surface-Only seeded scaffolds. The
level of expression was similar to day 0 in all groups except
in loaded Uniform and Asymmetrical scaffolds (mean =+ SD,
5.053 = 3.54 and 3.52 * 2.06, respectively).

No significant differences were detected between Uniform
and Asymmetric loaded scaffolds in any of the genes tested.

4. Discussion

Previous work has shown that when multi-axial shear and
compression loading is applied to MSCs seeded within
fibrin-polyurethane scaffolds, the cells undergo chondro-
genesis (Kupcsik et al., 2010; Li et al., 2010a, 2010b;
Neumann et al., 2013). This is characterized by the upregu-
lation of genes associated with cartilage matrix, such as
collagen type II and aggrecan as well as the deposition of
cartilage-like matrix, containing collagen type II and
sulphated GAGs, within the scaffolds themselves (Li et al.,
2010a). This chondro-induction was shown to be driven
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Figure 5. Gene expression measured at day 28 of culture by real-time polymerase chain reaction (PCR). (a) Collagen type I, (b) collagen type II, (c) collagen type X, (d) aggrecan
and (e) Sox9. Error bars represent standard deviation. Statistical significance was defined as P < 0.05; *P < 0.05, **P < P<0.001 and ***P < 0.0001

by endogenously produced TGF-$1 and could be blocked
using the TGF-B receptor 1 (ALKS5) inhibitor LY364947
(Li et al., 2010a). Further investigation showed that the
shear component of the load was vital in the induction of
chondrogenesis. The present work therefore set out to use
the shear component of the load to improve the amount
of matrix deposition and chondro-induction in response to
mechanical load. In order to do this, scaffolds were seeded
asymmetrically with 10% of the total cell number seeded on
the loaded surface of the scaffolds in order to directly
expose them to the shear component of the load.

Results of histological staining and immunohisto-
chemical labelling showed that asymmetrically seeding
scaffolds with a layer of cells on the loaded surface repro-
ducibly increased the amount of cartilage matrix that was
deposited in response to load. Safranin O staining showed
that there was a clear increase in the deposition of
sulphated GAG in Asymmetric loaded scaffolds compared

© 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd

with Uniform loaded scaffolds, this was also true for colla-
gen type II. The increased staining for GAG and collagen
type II labelling was consistently seen using multiple
donors. This would suggest that scaffolds being designed
for articular cartilage repair should take cell distribution
into account and incorporate a degree of anisotropy as a
potential way to maximise matrix deposition. Collagen
type X deposition also appears lower in areas of GAG and
collagen type II positive matrix in Asymmetric compared
with Uniform scaffolds; however, this interpretation re-
quires caution because of the non-specific staining of the
fibrin component of the scaffold by the primary antibody.
Fluorescence labelling of cells showed that not only do
the cells remain in the vicinity of the loaded surface of the
scaffolds in Asymmetric and Surface-Only seeded scaffolds
over the time in culture, but also that the application of load
directly affects the distribution of the cells seeded on the
surface of the scaffold. The MSCs seeded on the surface of
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non-loaded control scaffolds were found broadly distrib-
uted through the upper layers of the scaffolds. However,
cells seeded on the surface of loaded scaffolds, particularly
in Asymmetric seeded, remain highly localized to the
scaffold surface. This population of cells, which is very close
to the surface of the scaffold and to the source of me-
chanical load, is the key difference between Uniform and
Asymmetric scaffolds and may explain the histological dif-
ferences between these groups. The results collected from
Surface-Only seeded scaffolds show that little cartilage-like
matrix is deposited within the scaffolds or GAG released to
the media. The gene expression in this group also shows an
increase in the expression of type I and type X collagens
without the concomitant rise in chondrogenic markers such
as collagen type II and Sox9 seen in Uniform and Asymmet-
ric scaffolds, suggesting a less chondrogenic and more
hypertrophic phenotype for the cells in Surface-Only
seeded scaffolds. The results from Surface-Only scaffolds
indicate that a layer of cells seeded on the surface of a scaf-
fold alone cannot lead to matrix deposition of the kind seen
in Asymmetrically seeded scaffolds. The increases in matrix
deposition in Asymmetric compared with Uniform seeded
scaffolds are therefore likely to result from interaction
between the population of cells that remain on the surface
of the scaffold and the population of cells that were seeded
within the scaffold itself.

Analysis of gene expression results showed that there
was no significant difference in the expression of any of
the genes tested between Uniform and Asymmetrically
seeded samples, despite a trend towards greater
aggrecan and Sox9 expression in Uniform seeded
scaffolds. The results of biochemical analysis of scaffolds
and media also showed no significant difference between
the production of GAG in response to load between Uni-
form and Asymmetric scaffolds. Yet, the histological re-
sults presented here show that seeding a layer of cells
on the surface of a scaffold improves the deposition of ma-
trix in the area directly exposed to mechanical load. This
may in part be due to the cells within the scaffolds, which
do not respond to the chondrogenic stimulus provided by
the mechanical loading (and therefore do not deposit
sulphated GAG or type II collagen), diluting out the
changes induced in cells the upper layers (which do re-
spond to chondrogenic stimuli) when the scaffolds con-
taining both sets of cells were prepared for real time
PCR and biochemical analysis. Alternatively, structural
changes in the matrix deposition may also play a role.
Changes in crosslinking or matrix maturation caused
by the load applied may also explain the differences
seen in the histological data. However, further studies
would be required to specifically investigate the effect
of load on matrix maturation.

The lack of significant differences within GAG/DNA
and real-time PCR data may also result in part from the
use of cells from two donors that responded strongly to
chondrogenic induction (female 18 years old and male
22 years old) and two donors that responded weakly
(female 49 years old, male 48 years old) leading to a re-
duction in the difference between groups when the results
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from the four donors were collated and a thus a greater
standard deviation. However, more donors would be re-
quired to investigate this fully. While this deviation can
be reduced by selecting or pooling donors, the frequency
with which a result is observed cannot be determined
(Stoddart et al., 2012). In addition, in a clinical setting,
pooling is not an option.

This work has highlighted the importance of anisotropy
within scaffolds for cartilage repair such as that previously
described by Sheehy et al. (2013). Seeding a cell layer of
MSCs on a three-dimensional construct containing
chondrocytes has also been shown to improve construct
properties (Mesallati et al., 2015). This need for anisot-
ropy is even more important in loaded environments; for
example, in the loading system used in this work, because
the distribution of multicomponent strain — critical in the
induction of chondrogenesis — can vary throughout the
scaffold (Zahedmanesh et al., 2014).

In summary, the asymmetric seeding of fibrin—
polyurethane scaffolds with a small proportion of the total
cell number on the surface leads to an increase in matrix de-
position in response to multi-axial mechanical load. This may
be important during rehabilitation after microfracture, where
progenitors are present within a fibrin clot. Anisotropic
scaffold design may further enhance the chondrogenic re-
sponse of MSCs to complex multi-axial load in vivo. The lim-
ited production of chondrogenic markers in Surface-Only
scaffolds, suggests that the increased deposition of matrix in
asymmetrically seeded scaffolds is likely to result from the in-
teraction between the cells seeded on the surface of the scaf-
folds and those seeded within the scaffold itself. The exact
nature of this interaction still needs to be elucidated. These
data emphasize the need to establish histological outcome
parameters and for chondrogenesis to be investigated using
models incorporating a more naturally occurring loading
environment. Tribological-based regenerative medicine and
implant testing can reveal differences than cannot be deter-
mined in static culture systems.
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