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Osteoarthritis (OA) is the most common form of arthritis. According to the evidence presented on both sides of the knee bones,
radiologists assess the severity of OA based on the Kellgren-Lawrence (KL) grading system. Recently, computer-aided methods
are proposed to improve the efficiency of OA diagnosis. However, the human interventions required by previous semiautomatic
segmentation methods limit the application on large-scale datasets. Moreover, well-known CNN architectures applied to the OA
severity assessment do not explore the relations between different local regions. In this work, by integrating the object detection
model, YOLO, with the visual transformer into the diagnosis procedure, we reduce human intervention and provide an end-to-
end approach to automatic osteoarthritis diagnosis. Our approach correctly segments 95.57% of data at the expense of training on
200 annotated images on a large dataset that contains more than 4500 samples. Furthermore, our classification result improves the
accuracy by 2.5% compared to the traditional CNN architectures.

1. Introduction

Knee osteoarthritis (OA) is a significant reason for the
disability of older people and the young. Recent research
shows the knee OA will affect at least 130 million people by
the year 2050, along with the globally aging population [1].
Treatment of knee OA has contributed more than 20 billion
dollars in health expenditures [2]. Treatment options are
limited for late-stage OA. Thus, it is crucial to detect and
assess OA as early as possible to reduce the patient’s suf-
fering. While risk factors such as age and gender are helpful
in the diagnosis of OA, medical imaging modalities are
crucial in confirming and distinguishing OA from other
forms of arthritis. Common image modalities include plain
radiographic images (X-ray), ultrasound, and MRI [3]. X-ray
is the most cost-efficient and convenient modality among
the above three methods, accounting for a significant por-
tion of clinical practice.

For several years, researchers studied X-ray analysis and
diagnosis using computer-assisted methods. However, au-
tomatic OA severity assessment remains challenging for two

reasons: (1) the lesion area occupies a small portion of the
X-ray image. The irrelevant parts like clothes, tissues, or
muscles overwhelm the cartilage status and mislead final
decisions. (2) As bones differ in shape and density from one
to another, it is challenging to establish standard diagnostic
criteria. A well-trained radiologist assesses the severity of
OA based on personal experiences, which are difficult to be
incorporated into the computer-aided system.

Recent machine learning-based research introduced
two stages shown in Figure 1 for automatic OA diagnosis:
(1) the region of interest (ROI) segmentation, which
suppresses noises by removing the background and ir-
relevant parts, and (2) the machine learning-based OA
severity classification, which standardizes and simplifies
complicated diagnostic criteria. However, previous knee
detection methods depend on intensive human inter-
vention to select features. In addition, OA symptoms may
appear on different regions of the bone. The machine
learning models applied for the OA diagnosis rarely
explore the correlations of different regions, which un-
dermines the assessment accuracy.
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Figure 1: Computer-aided OA diagnosis pipeline. The entire
process consists of two stages, including knee segmentation and
OA severity classification. Typically, the knee segmentation de-
pends on human efforts or manually selected features. Then, a
machine learning model, such as CNN, is trained to classify the
knees based on the OA severity grades.

In this work, we followed the pipeline shown in Figure 1
but proposed an automatic procedure based on deep
learning to assist the OA diagnosis on a large-scale dataset.
Our main contributions are as follows:

(1) We fine-tuned an object detection CNN to segment
knees from X-ray images, which reduced the human
interventions of feature engineering.

(2) We exploited the self-attention mechanism by the
visual transformer to improve the classification
performance.

(3) We examined the proposed method by classifying
the OA severity based on the Kellgren and Lawrence
(KL) level [4] over a large-scale dataset. The results
show that the proposed method improves the effi-
ciency of knee segmentation and the accuracy of OA
severity classification.

This paper is organized as follows. Section 2 reviews the
previous work related to assisting the automatic OA diag-
nosis. Section 3 presents the proposed approach in detail.
Section 4 shows the experiment results and discussions.
Finally, Section 5 gives our conclusions.

2. Related Work

2.1. Knee Segmentation. Previous research on automatic
OA assessments relies on manual or semiautomatic
methods to segment knees. For example, [5] used a
pattern match with 20 predetermined templates and [6]
employed activate shape model (ASM), which picks bone
texture features to guide analysis, whereas, in the human
visual domain or the computer vision domain, knee
segmentation requires prior knowledge. Human inter-
vention, for example, tuning the parameters for the
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extracting algorithm, is inevitable when processing the
new unseen samples. In the latter study [7], ROIs are
proposed using a human-designed expert system guided
by the sliding window. The author then uses a support
vector machine (SVM) to determine the proper knee
segmentation from the proposed regions. Overall, the
introduction of machine learning methods improves the
efficiency of knee segmentation tasks. However, human
efforts are necessary to design an expert system and select
background samples. As a result, it is difficult to apply the
above methods to a large-scale dataset.

In recent years, object detection CNNs help with
locating and recognizing ROIs in plain images. Well-
known object detection networks include faster R-CNN
[8], mask R-CNN [9], and YOLO [10]. A common
technique shared by all three approaches is bounding box
regression [8, 10], which handles the object’s location and
size separately. The bounding box is a rectangle which
tightly covers one object. Each object’s location and size
are determined by the center coordinates of its bounding
box, denoted as X, ¥op;> and the bounding box height
and width, denoted as hy;, w,y,;. In general, CNNs do not
directly predict location and size but retrieve them
through a decoding process from the outputs. For ex-
ample, the YOLO model relies on two additional infor-
mation to decode its outputs for locations and sizes,
respectively. For object locations, the authors of [10]
introduced a reference grid system, which evenly divides
the entire image into small squared regions. Each grid has
corresponding outputs x,,, and y,, from the YOLO
model. The predicted object center coordinates x4 and
Ypred are retrieved from

(1)

{ xpred = U(xout) x lgrid + xgrid’
Ypred = a(yout) x lgrid + ygrid’

where o is the sigmoid function, l,;q is the grid edge
length, and x,,;q and y,,;q are the top left corner coor-
dinates of one grid. As the sigmoid function in equation
(1) restricts outputs to the range of (0,1), a grid only
predicts the objects within the region. However, the
YOLO model detects an object at an arbitrary location by
applying equation (1) to all grids. Regarding object sizes,
the YOLO outputs are decoded referring to the “anchors.”
Anchors are the prior knowledge of the object size de-
termined by clustering the sizes of all training objects. In
practice, the YOLO model used cluster centroids as the
expected shapes of an object. The outputs of YOLO,
denoted as w,,, and h,,, calibrate the anchors to retrieve
the predicted size wy,.q and hy,4 using

(2)

{ wpred = Wanchor X €XP (wout)’

hpred = hanchor X exp (hout)’

where w,, 4o, and o, are the width and height of the
anchor. With equations (1) and (2), the YOLO model solves
the detection problem as a regression task. Equation (3)
computes the regression errors as follows:
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8]

Xerr =(xobj ~ Xpred ) >
2
Yerr =(yobj = Vpred) >
) 2 (3)
Werr :( V Wopj ~ \/wpred) >
2
L herr :< \’hobj N\ hpred) .

Notably, the errors in equation (3) only account for the
grids which contain ground truth object. To distinguish the
objects from the background, the YOLO model is also
trained by a confidence error as in

COnferr = gBCE(O (Pout)’ pobj)’ (4)

where Zy;; is the binary cross entropy loss function, p,, is
the confidence output of each grid, and p,, is an indicator of
object existence. Particularly, if a grid covers at least one
object center, the corresponding p,; is set to 1. Otherwise,
Pobj is set to be 0.

For our task, each knee joint’s visual structure is clear,
but its position and size are difficult to detect. Bounding box
regression boosts segmentation performance and minimizes
the human effort in designing a sophisticated extraction
system.

2.2. Image Classification. In the light of deep learning, CNNs
are becoming a prevalent image classification technique [11, 12].
Generally, a CNN consists of three sequential parts: convolu-
tional layers for feature extraction, a pooling layer for spatial
teature fusion, and one or two linear layers for the classification.
Previous studies applied the CNNs to extract features from the
knee joint area. According to clinical experiences, primary
evidence of OA, like the joint space narrowing, appear on both
sides of a knee. However, spatially distant feature extraction is
challenging for a traditional CNN [13], of which convolutional
filters only receive the information from a local region. As a
result, the extracted feature maps do not address the rela-
tionship between different local regions. Researchers designed
new convolution operators in the computer vision domain; for
example, [14] proposed the dilated convolution. For OA di-
agnosis, Tuplin et al. divided the knee joint areas into the left and
right sides [15]. Then, the authors used two CNNs to extract the
features separately and fused them for classification.
Recently, [16] proposed the visual transformer, which
takes advantage of relations between different local regions
to boost the performance on multiple visual tasks. Trans-
former [17] was first applied to the natural language pro-
cession (NLP) field based on the self-attention mechanism.
In the implementation, inputs are first encoded into three
components: the query, the key, and the value. Then, the
value is weighted by a mask calculated from the query and

the key as in
T
S )-v, 5)

NZA

where Q, K, and V denote the query, key, and value com-
ponents. And d, is the dimension of key components. For an

Attention (Q, K, V) = softmax(

NLP task, Q, K, and V are the sequences of feature vectors
extracted from each word in a sentence. The dot product of
Q and K calculates the correlations between each pair of
words in the sentence. Then, the softmax function nor-
malizes the correlation and applies it to V as attention
weights. In this case, only the features of the highly related
words are emphasized. For a visual task, [16] took advantage
of the self-attention mechanism and proposed the visual
transformer. Images were divided into patches and reor-
ganized into a sequence. Equation (5) uncovers the rela-
tionship between each pair of patches by calculating the
correlation, even if the two patches are distant in the original
image. Additionally, in [16, 17], the authors applied the
“multihead” to the self-attention mechanism. The multihead
technique contains multiple parallel self-attention layers,
enhancing the capability to exploit more specific locations
simultaneously.

3. Method

3.1. Data Preprocessing. Data used in this article was ob-
tained from the Osteoarthritis Initiative (OAI) database,
which is available for public access at http://www.oai.ucsf.
edu/. Specific datasets used are 0.C.2 and 0.E.1.

The original dataset contains 16-bit DICOM X-ray files
and assessment information of 4796 samples. They are
collected from over 431,000 clinical and imaging visits. All
X-ray files are converted to standard 8-bit gray-scale images
using the Pydicom toolkit [18]. Most of the assessments by
different annotators in the dataset are consistent. We
rejected ambiguous samples whose assessments vary from
different visits. 4506 samples are remaining in total.

3.2. Knee Joint Area Detection. The YOLO models demon-
strate higher efficiency and speed on the objection tasks than
the R-CNN series models [10]. Thus, we employ the YOLO
model to tackle the issue of knee joint area detection. A valid
knee joint segmentation, according to the radiologists, starts
from the upper end of the tibia to the lower end of the femur,
with the cartilage part lying at the center of the image. Parts
of the fibula can be within this range. Following this stan-
dard, we use a Python-based tool [19] to annotate samples.
To minimize the human efforts, we restrict the number of
labeled samples to be 200. It accounts for 4.43% of the whole
dataset.

The original YOLO architecture is modified to adapt to
the knee detection task. As discussed in the previous section,
the bounding box regression requires five outputs from the
model per prediction per anchor. The total output channels
can be calculated as B x (C + 5), where B is the number of
anchors and C is the number of object class labels. The
original model uses five anchors and is trained on the COCO
dataset [20], which contains 80 class labels. Thus, it has 5 x
(5+80) channels in the last convolution layer. The only
label to be predicted in the knee detection task is the “knee
joint,” which determines the number of channels in the last
layer as 5 x (1 +5) = 30.
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Fine-tuning faces two challenges: (1) the number of
annotated samples is limited and (2) the model validation is
difficult as there is no ground truth for the testing data. In
our implementation, we use transfer learning to overcome
the difficulty caused by insufficient data. Except for the final
layer, initial weights are obtained from the pretraining on
the COCO dataset [20]. In addition, the training uses all
annotated samples. Meanwhile, we monitor the intersection
over the union (IOU) score defined in

I0U =——, (6)
U

where A denotes the predicted bounding box and B denotes
the ground truth. Once the IOU scores converge, the
training is terminated to avoid overfitting. Then, the YOLO
model predicts the bounding boxes of the rest of the 95.57%
of images. Unlike the typical validation process, the seg-
mentation results are verified by statistical analysis discussed
in the next section.

3.3.KL Level Classification. The severity of OA is categorized
by the Kellgren-Lawrence (KL) grading system, which
contains five levels ranging from KL-0 to KL-4, as shown in
Table 1. The KL-0 grade represents that no radiographic
evidence of osteoarthritis is present. In contrast, KL-4 in-
dicates the latest stage of OA containing severe joint space
narrowing and sclerosis.

Following the knee detection, ROIs are cropped
according to the predicted bounding boxes. Before the
classification task, each image is resized to 224 x 224 and
normalized by the mean and variance computed from the
training data. Preprocessing is one of the data-based in-
terpretation strategies used for transfer learning [21].
Resizing and normalization adjust the statistical properties
of the knee images to match the data used for pretraining. In
[22], the author also employed a similar technique to handle
knee ROIs.

The classification process has three steps, as shown in
Figure 2.

Firstly, a CNN backbone extracts the spatial features
from the knee ROI images. In our implementation, the CNN
backbone is based on the ResNet50 [11] architecture, where
the last pooling and dense layers are removed. The output of
the backbone is denoted as O ©“HW) 'where C, H, W are the
numbers of channels, height, and width. Given an image of
224 x 224, the output of the ResNet50 backbone is
01024x14x14) - Notably, spatial feature maps preserve the
extracted features from different local regions. As illustrated
in Figure 2, the first feature vector contains the features from
the corresponding top left corner region of the knee images.

Secondly, the spatial feature maps are flattened and
combined with class label tokens and position embedding.
As the size of each feature map is 14 x 14, it corresponds to
196 local regions of the original image. By reshaping
O1024x14x14 4 196 x 1024, we rearrange the feature vectors
into a matrix M, where each row contains the features from
the same region.
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Thirdly, the visual transformer exploits the relationship
of the features from different regions. The visual transformer
block follows [16], which contains twelve parallel self-at-
tention layers. Each self-attention layer consists of two parts:
(a) a self-attention block: as discussed in the previous sec-
tion, the self-attention block projects inputs into K, Q, V and
the weighted features are calculated by equation (5) and (b) a
two-layer neural network: followed by the self-attention
block, the two-layer neural network processes the features
and sends them to the next transformer block. Both of the
above two parts have a residual connection, which adds the
inputs to the outputs [11]. In total, the proposed method
uses 12 visual transformer blocks followed by a dense layer
for the OA severity classification.

4. Experiment Results and Discussion

4.1. Knee Area Segmentation. The YOLO model was trained
with darknet [23] for 3000 iterations. The batch size and
optimizer settings were the same as the original work.
Figure 3 shows the IOU score of each training batch. The
moving average IOU scores over 50 batches were used as the
indicator of convergences. After training, the IOU score on
the annotated 200 samples reached 0.82.

Figure 4 shows four examples of the detection results on
the remaining samples. However, the IOU score is un-
suitable for verifying knee detection because the remaining
samples do not have annotations. To validate the segmen-
tation results, we proposed four statistical forms of
measurements.

(1) Detection count per image: thanks to the consistency
of the OAI dataset, all collected screen data consist of
two knees. Therefore, two detections per image are
expected.

(2) Detection size: the sizes of the knee are similar for
humans. However, knee detection varies due to the
scale of the X-ray image. From the statistical view,
the detections are expected to tend to cluster.

(3) Detection location: a proper pair of knee joint de-
tections should be located on the same height ver-
tically and on both sides of the image horizontally.

(4) Object confidence: as all images contain the knee
joints, a reliable model should give a high confidence
score on its detection.

From the four aspects mentioned above, we evaluate the
detection results from the testing images. Firstly, Figure 5 shows
the distribution of detection per image. 98.22% of images in the
dataset have two detections corresponding to the left and right
legs. The YOLO model successfully detects two knees in most
images. Secondly, Figures 6(a) and 6(b) show the distributions
of height and width for both original X-ray images and cropped
ROIs. As shown in Figure 6(a), the sizes of the original X-ray
images are separated into two clusters. The centroids of the two
clusters are located near (600,500) and (1100, 850). Corre-
spondingly, Figure 6(b) shows two clusters regarding the sizes of
the cropped ROIs, whose centroids are near (150,125) and
(250, 200). The clustering of cropped ROIs can be explained by
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TaBLE 1: Definition of the Kellgren-Lawrence grading system.

Grade Remarks

KL-0 No evidence of osteophyte

KL-1 Doubtful osteophyte

KL-2 Definite osteophyte; possible joint space narrow (JSN)

KL-3 Moderate osteophytes, definite JSN, some sclerosis, and possible deformity of bone ends
KL-4 Large osteophytes, definite JSN, sclerosis, and deformity of bone ends

___________________________________________
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FIGURE 2: Overview of the proposed method. The OA severity assessment is divided into four steps. (1) An object detection CNN extracts the
bonding boxes of the knees from the X-ray images. The confidence scores of the detection are used to filter the low-quality detection. (2) A
CNN backbone extracts the spatial feature maps for the cropped knee images. (3) The spatial feature maps are flatted and recomposed as a
sequence. (4) The visual transformer exploits the correlations between different local regions for the final classification task.
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F1GURE 3: The IOU score for each batch (iteration) during training.
The moving average value of 50 batches is marked as “50-Batch
Ave. IOU” to show the general trend.

the scale of original X-ray images, as the knees area is in
proportion to the X-ray image size. Therefore, the sizes of
detected ROIs are comparable. Moreover, the results also

demonstrate that the trained YOLO model is robust to different
X-ray image sizes.

Thirdly, Figure 7 shows the locations of all detected
knees, which are represented by the top-left corner’s
coordinates. We observe two groups of detections
marked as “X” and “Y.” The centroids of group “X” lie
near (150,200) and (400,200). Regarding the ROIs in
group “Y,” their y-coordinates range between 280 and
400, and their x-coordinates are near 200 and 600.
Vertically, all detections appear in the middle region of
the X-ray image. Horizontally, the clusters distribute on
the left and right sides.

Finally, Figure 8 shows the confidence score distribution
and the Kernel density estimation line based on the scores
given by the YOLO. The center of the score distribution is
roughly 85%. It indicates that the trained model has high
confidence in its prediction.

Based on the above four measurements, we can conclude
that segmentations on the whole dataset are accurate and
valid. Furthermore, to mitigate the influence of invalid
detections, we use the confidence score of 0.75 as a threshold
to filter the ROIs referring to the predicted confidence score.
In this way, we preserve 95% of ROIs, and their label dis-
tribution is shown in Table 2.
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FIGURE 5: Detection count per image. In total, 4426 images have 2
detections, which account for 98.22% of the whole dataset.

As shown in Figure 4, the YOLO model locates the
knee joint areas which are used by radiologists to diag-
nose OA. Irrelevant bones and muscles were removed
after we cropped the image according to the detected
bounding boxes. The object detection CNN reduces the
cost of manual feature selection, which resolves the
challenge of noise elimination mentioned in Section 1

4.2. Classification Result. For the classification task, obtained
ROIs were split into training set and validation set by the
ratio of 8:2. The KL label distribution is shown in Table 2.
We used the same augmentation method for the training set
as in [22] to slightly adjust the brightness and contrast. For
optimizer, we used the Adam with a learning rate of le—4
and the weight decay of 1e — 8. Similar to [15], all models in
our experiment were initialized with the pretraining weights
from the ImageNet dataset [24]. We did not use a learning
rate scheduler in our work. The metric used for the clas-
sification is the accuracy score over five KL grades. We ran

the ResNet50 and ResNetl01 as the baseline. Besides, the
results were compared to the accuracy reported by recent
studies on the same OAI dataset, including [15, 22, 25]. The
accuracy scores are shown in Table 3.

Compared to the baseline ResNet50, the proposed
method makes a 2.5% improvement. As discussed in the
last section, traditional CNN has difficulty fusing the
tfeatures from different local regions. When we use
ResNet101, the improvement is trivial, implying that the
depth of the network is not the bottleneck of perfor-
mance. The results obtained from [22] have the same
trends that the performance of ResNet101 is lower than
ResNet50. On the contrary, the newly added visual
transformer blocks consider the relationship between
different local regions. Through the self-attention
mechanism, features from key regions are emphasized,
which helps improve classification performance.

To illustrate the attention maps, we randomly choose
five samples from the validation set and draw the at-
tention maps for the ResNet50 and the proposed method.
For ResNet50, we use GradCAM [26] to show the acti-
vated areas which support the model’s classification re-
sults. For the proposed method, we employed the
attention flow technique [27] to extract the attention
weights from the visual transformer. Figure 9 shows the
attention maps over the X-ray images where the images in
the top row are the results of ResNet50, and the bottom
row is the result of the proposed method. Regions
highlighted by red color have higher weights when
supporting the CNN to make a decision. As shown in the
top row, ResNet50 succeeds in capturing the knee joint
areas, which are the major lesion of knee OA. However,
attention maps of the proposed method differ from
ResNet50 in two aspects. Firstly, the attention map of
ResNet50 shows only one centralized high attention re-
gion, which is either in the middle or on one side of X-ray
images. On the contrary, the high-weighted areas spread
out on both sides of the X-ray images. As discussed in
Section 3.3, the visual transformer explores the
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counterpart on the left.

correlation between small regions. As shown in
Figure 9(f), the proposed method takes advantage of the
correlation between both sides of the bone and shows
superior performance in locating the narrow joint spaces.
Secondly, ResNet50 can hardly detect sclerosis or bone
spurs outside the knee joint areas. Through fine-grained
region division, the proposed method detected the lesion
areas on the medial or lateral edge of the femur as in
Figures 9(f)-9(j).

During the course of writing this paper, we noticed
that the authors in [22] employ a similar way for knee
segmentation. However, unlike the method proposed by
[22], we enhance the model performance from a different
angle. In [22], the authors focused on the loss function.
They designed an ordinal loss to identify the ambiguous

samples of adjacent KL grades. The proposed method
solves the classification task by enhancing the feature
extraction. Despite the competitive results of [22], we still
outperform them using the same ResNet50 backbone.
Merging the features from different regions to assess OA is
firstly explored by [15]. The authors used a Siamese net con-
taining two CNNs to extract features from both sides of the
knee. Before feeding into the CNN, knee images were vertically
divided into two parts from the center. Then, two CNNs
processed images independently. In addition, feature vectors
were concatenated into one for the final classification. The
image separation was based on the medical experience. The
authors also conducted the experiments based on the dataset
from multiple sources. As only two regions were considered in
[15], the granularity of the region can be enhanced further.
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FIGURE 8: Object confidence score distribution (by the YOLO model). The distribution of confidence scores is centered at 85. The density of
low confidence detection (below 75) is nearly zero. The confidence score distribution indicates that the majority of detections are reliable.

TaBLE 2: Label distribution of the cropped ROI.

KL-0 KL-1 KL-2 KL-3 KL-4
Total ROI 3234 1475 2186 1141 266
Training set 2587 1180 1749 913 213
Validation set 647 295 437 228 53

TasLE 3: Comparisons of classification results.

Model Accuracy (%)
VGG-19 [25] 53.4
ResNet50 66.68
ResNet101 66.70
Ordinal loss (ResNet50) [22] 66.2
Ordinal loss (ResNet101) [22] 65.5
Siamese net [15] 66.71
The proposed method 69.18

)

FIGURE 9: Comparisons of the attention maps of ResNet50 and the proposed method. The first row (Figure (a) to Figure (e)) shows the
activated areas of the ResNet50 model generated by GradCAM. The second row (Figure (f) to Figure (j)) shows the attention weights of the
visual transformer extracted through the attention flow technique. For each column, input X-ray images are the same. The proposed method
succeeds in locating the narrow joint spaces on both sides of the knee. In addition, we detect sclerosis or bone spurs on the medial or lateral
edge of the femur as in (f), (g), and (j).
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Thanks to the visual transformer, we exploit the relationship of
more fine-grained local regions. In addition, the fusing of the
features is automatic and learnable. As a result, our method
improves the performance of the OAI dataset.

5. Conclusion

In this paper, we presented a highly automatic process to
diagnose osteoarthritis based on deep learning. We dem-
onstrated that transfer learning from the object detection
domain could be successfully applied to knee joint area
segmentation. A model trained on 4.43% of annotated data
can extract accurate ROIs on the remaining data, containing
more than 4500 samples. For the OA severity classification,
we employed the visual transformer to exploit the corre-
lations between different regions of the original X-ray image.
Experiment results show that the proposed method im-
proves the OA severity classification performance compared
to the previous state-of-the-art methods. The following
aspects distinguish our approach from previous ones.

(1) Human efforts on preprocessing raw radiographic
images are reduced to a negligible level.

(2) The segmentation procedure is highly automatic. As
shown in the segmentation results, the reliability and
accuracy of the segmentation outcomes demonstrate
the reusability of our trained model.

(3) Taking advantage of the self-attention mechanism,
the visual transformer blocks built on top of tradi-
tional CNN architecture improve the classification
performance.

(4) Once built, the proposed procedure is an end-to-end
solution to OA diagnosis. Raw X-ray images can be
sent into our pipeline directly. All adjustments are
handled internally, such as resizing and enhancing.

We notice that our experiment is conducted on the
dataset from a single vendor. In the future, we would like to
explore the application of our method on the data from
multiple sources.
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