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Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily

modified by sulfate and exist either conjugated to proteins or as free, unconjugated

chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan

Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and

act as co-receptors for different cell surface receptors. They also modulate the dynamics

and kinetics of various ligand-receptor interactions, which in turn can influence the

duration and potency of the signaling. HS and HSPGs have also been shown to exert a

structural role as a component of the extracellular matrix, thereby altering processes such

as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown

that HS are deregulated in a variety of solid tumors and hematological malignancies

and regulate key aspects of cancer initiation and progression. HS deregulation in

cancer can occur as a result of changes in the level of HSPGs or due to changes in

the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major

cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-

autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and

HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated

HS biosynthesis and HSPGs as a strategy for cancer treatment.

Keywords: heparan sulfate, heparan sulfate proteoglycans, cancer, immune evasion, signaling

INTRODUCTION

Normal cells acquire series of genetic and epigenetic aberrations to become cancerous. The
acquired cancer growth and progression enabling attributes are collectively referred to as hallmarks
of cancer (1). Several hallmarks of cancer, such as sustained growth signaling, suppression of
apoptosis, deregulated metabolism, immune evasion and angiogenesis can also be enhanced
through pathological alterations of normal physiological processes (1).

Heparan sulfates (HS) are unbranched chains of disaccharide repeats that are heavily sulfated at
various positions on their sugar residues (2, 3). HS can occur either conjugated to amino acids,
creating heparan sulfate proteoglycans (HSPGs), or as unconjugated chains (4). Both HS and
HSPGs play important roles in cancer initiation and progression. Previous studies have implicated
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the role of HS and HSPGs in several types of solid tumors as well
as hematological malignancies (5–11).

HSPGs are complex biopolymers whose synthesis is
orchestrated by many enzymes, which catalyze the various
steps of HS synthesis with very little redundancy (Figure 1).
The majority of HS deregulation in cancer occurs due to
alterations in the expression of HS-synthesizing and HS-
modifying enzymes, however, alterations in HSPGs can
also contribute to HS deregulation (12) (also see Table 1)
(10, 11, 13–84).

In this review, we provide an overview of the cell-autonomous

and cell-non-autonomous roles of HS and HSPGs in cancer
initiation and progression. In addition, we will also discuss

opportunities to develop cancer therapies by targeting the HS and
HSPG axis.

CELL-AUTONOMOUS ROLE OF HS AND
HSPGs IN CANCER INITIATION AND
PROGRESSION

HS and HSPGs regulate diverse cell-autonomous functions,

including oncogenic signaling, apoptosis, and cellular
differentiation. In this section, we describe the cell-autonomous

functions of HS and HSPGs in cancer initiation and progression.

FIGURE 1 | Overview of the enzymes involved in heparan sulfate synthesis and modification.

Growth Factor Signaling and Regulation of
Proliferation
Previous studies have shown important roles of HS and HSPGs
in oncogenic signaling (85–88). In this regard, FGF binding
interactions are best characterized by the role of HS in altered
Receptor Tyrosine Kinase (RTK) signaling. For example, HS-
modified HSPGs bind FGF ligands and receptors to form a
ternary complex and enhance signaling by promoting FGF
receptor (FGFR) dimerization (89–91). This in turn results
in receptor activation and enhanced FGFR signaling, which
consequentially promotes tumor growth (89–91). In addition
to FGF, HS binds to several different mitogenic growth factors
such as PDGF, Heparin-Binding Epidermal Growth Factor-like
Growth Factor (HB-EGF), andHepatocyte Growth Factor (HGF)
and modulates their signaling in a context dependent manner
(86).

Breast cancer cells are also shown to overexpress HSPGs,
such as Glypican 1 (GPC1) and Syndecan 1 (SDC1), which
enhance the proliferative response after treatment with various
growth factors due to prolonged signaling (86). Similar to
breast cancer, GPC1 also has been shown to have growth-
promoting effects in pancreatic cancer and gliomas (49, 92, 93).
Collectively, these studies highlight wide-spread deregulation
of HSPGs in different cancers that exert tumor promoting
roles.
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TABLE 1 | Deregulation of HS and HSPGs and enzymes involved in HSPG metabolism in cancer.

Alteration in

cancer

Functional consequence(s) Cancer type(s)

Enzyme involved in HSPG metabolism

HS2ST1 Upregulated Promote cell proliferation, invasion

and growth factor signaling

Prostate cancer (13)

HS3ST2 Epigenetic

silencing

Suppression of tumor growth and

invasion

Lung cancer (14)

HS3ST2 Upregulated Invasion and migration Breast cancer (15)

HS3ST3B1 and HS3ST4 Upregulated Promote cell proliferation,

invasiveness, and tumor angiogenesis acute myeloid leukemia (16)

Colorectal cancer (17)

Pancreatic cancer (18)

HS6ST1 and HS6ST2 Upregulated Increased tumor Angiogenesis Ovarian cancer (19)

HS6ST2 Upregulated Poor survival of patients Colorectal cancer (20)

HS6ST2 Upregulated Bone metastasis Breast cancer (21)

HPSE Upregulated Tumor metastasis and angiogenesis Neuroblastoma (22), breast cancer (23), prostate cancer

(24), colon cancer (25), lung cancer (26), liver cancer

(27), ovarian cancer (28), and pancreatic cancer (29),

human myeloma (30)

NDST1 and NDST2 Upregulated Tumor progression Hepatocellular carcinoma (31)

SULF1 Downregulated Suppress tumor cell proliferation and

invasion

Breast cancer, Pancreatic, Ovarian and head and neck

cancers (32)

Hepatocellular carcinoma (33)

SULF2 Unaltered Tumor progression Hepatocellular carcinoma and glioblastoma (34)

SULF2 Upregulated Tumor growth Hepatocellular carcinoma (33, 35, 36)

HSPG

Agrin Elevated Angiogenesis Hepatocellular carcinoma (37, 38), glioblastoma (39),

cholangiocarcinoma (37)

CD44 Elevated Adhesion, invasion, cancer stem cell Breast cancer (40), colorectal cancer (41), oral

squamous cell carcinoma (42), melanoma (43)

Neuroblastoma (44)

Collagen XVIII Reduced Angiogenesis Cutaneous squamous cell carcinoma (45, 46)

GPC1 Elevated Proliferation Breast cancer (47), pancreatic ductal adenocarcinoma

(48), glioma (49)

GPC3 Elevated Proliferation Hepatocellular carcinoma (50), follicular thyroid cancer

(51), testicular germ cell tumor, neuroblastoma (52),

Wilms’ tumor (53), yolk sac tumor (54), lung squamous

cell carcinoma (55), hepatoblastoma (56)

GPC5 Elevated Proliferation, invasion Rhabdomyosarcoma (10), non-small cell lung cancer (57)

Reduced Initiation Non-small cell lung cancer (58)

Perlecan Elevated Proliferation, angiogenesis Prostate cancer (59), hepatoblastoma (60), pancreatic

ductal adenocarcinoma (61), melanoma (62)

SDC1 Elevated Proliferation Breast cancer (63), pancreatic ductal adenocarcinoma

(64), ovarian cancer (65), multiple myelom (66)

SDC2 Elevated Adhesion, proliferation Breast cancer (67), prostate cancer (68), colorectal

cancer (69), bladder cancer (70), glioma (71), sarcoma

(72)

SDC3 Elevated Perineural invasion and poor

prognosis

Pancreatic ductal adenocarcinoma (73)

SDC4 Reduced Differentiation Neuroblastoma (11)

TbRIII Elevated Migration, proliferation Colon cancer (74), non-Hodgkin’s lymphoma (75),

Reduced Invasion, proliferation, differentiation,

immune response

Breast cancer (76), prostate cancer (77), ovarian cancer

(78), multiple myeloma (79), neuroblastoma (11),

non-small cell lung cancer (80), pancreatic ductal

adenocarcinoma (81), endometrial cancer, renal cell

carcinoma (82), melanoma (83)
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Additionally, HSPGs also influence cell-matrix interactions
by binding matrix proteins such as fibronectin, laminin,
thrombospondin, and collagen (89, 94). For example, SDC2 has
been shown to be overexpressed in colon cancer cell lines and
inhibition of SDC2 in these cells results in cell cycle arrest (69).
Similarly, RKIP and HMGB2-dependent breast cancer survival
and metastasis was shown to be regulated in SDC2 dependent
manner (67). However, it is important to note that in addition
to the pro-tumorigenic effects, some HSPGs, such as SDC2,
exert tumor suppressive effects depending on the cancer type
(95, 96).

Interestingly, HSPGs on the cell surface can also shed,
generating soluble proteins that influence cellular proliferation
by accumulating in intercellular spaces and sequestering growth
factors (89). HSPGs are also often expressed in the tumor
stroma and affect several cancer cell growth-enabling features
(89). For example, stromal SDC1 that is released into the
tumor microenvironment promotes breast carcinoma growth by
enhancing FGF2 signaling (97). Interestingly, SDC1 shedding
into the stroma is enhanced by heparanase expression, in
part through removal and reduction of heparan sulfate chains
(30). Thus, various components of the HS signaling pathway
coordinate to promote carcinogenesis.

HSPGs secreted into the stroma can also inhibit cancer cell
proliferation. For example, increased FGF2 signaling due to
soluble HSPGs suppresses neuroblastoma proliferation (11, 98).
Specifically, it has been shown that growing neuroblastoma cells
with soluble HSPGs promote its differentiation by enhancing
both basal and FGF1 mediated phosphorylation of ERK1/2 and
expression of transcription factor ID1 (11). Another study has
shown that the HSPG, type III TGF-β receptor (TGFBR3) acts
as a co-receptor in FGF2 mediated neuroblastome differentiation
(98). Similarly, SDC1 that is expressed in multiple myeloma
has been shown to activate WNT signaling by two mechanisms
(99). First, Wnts bind to the SDC1 HS side chains and activates
WNT pathway in a paracrine manner via Frizzled. Second,
SDC1 binds to R-spondins produced in osteoblast and stabilizes
Frizzled in a LGR4-dependent manner (99). In other instances,
soluble HSPGs sequester growth factors, reducing certain pro-
proliferative signals. For example, GPC3 promotes hepatocellular
carcinoma growth by activating WNT signaling (100). However,
contrary to this, soluble GPC3 has been shown to block
hepatocellular carcinoma growth by blockingWNT signaling and
MAP kinase and AKT pathways (101). Taken together, these
studies underpin that HS and HSPGs can exert diverse cancer
promoting or inhibitory functions depending upon the context.

Apoptosis and Cellular Senescence
Regulation
HS and HSPGs can also play important role in the regulation of
apoptosis and cellular senescence. For example, the upregulation
of the RTK signaling pathway by HSPGs induces an anti-
apoptotic effect through upregulating phosphatidylinositol 3-
kinase (PI3K)- and Mitogen-Activated Protein Kinase (MAPK)-
mediated survival pathways (102). Additionally, HS and
chondroitin sulfate directly inhibit H2O2-induced apoptosis by

blocking cytochrome c release and caspase-3 and -9 activation
(103). Death receptor-mediated apoptosis pathway, which is
mediated through the cell surface receptors for Fas ligand (FasL)
and Tumor Necrosis Factor-related Apoptosis-Inducing Ligand
(TRAIL) can also be regulated by HSPGs. For example, SDC1
suppresses TRAIL-mediated apoptosis in multiple myeloma cells
(104). The same study also reported that SDC1 knockdown in
lymphoma cells protected them against FasL-mediated apoptosis.
In addition to the regulation of apoptosis, a recent study
also revealed that heparan sulfation is essential for preventing
senescence (105). This study revealed that the depletion of
3’-phosphoadenosine 5′-phosphosulfate synthetase 2 (PAPSS2),
an enzyme that synthesizes the sulfur donor PAPS, and the
small molecule inhibitor-mediated repression of HS sulfation led
to premature cell senescence (105). Collectively, these studies
further demonstrate the importance of HS and HSPGs in the
regulation of cancer growth relevant cellular processes, such as
apoptosis and senescence.

Cellular Differentiation Regulation
HS, HSPGs, andHSmodifiers have also been shown to determine
the cellular differentiation state. In this regard, the role of
HS modifiers in regulating epithelial-to-mesenchymal transition
(EMT) is noteworthy. EMT plays an important role in metastatic
progression and drug resistance (106). Cells overexpressing
the HS modifier sulfatase 2 (SULF2) present with reduced
levels of the trisulfated disaccharide UA(2S)-GlcNS(6S). This
reduction is followed by an increase in EMT markers and WNT
signaling (107). Tumor cell-mediated tumor stroma modulation
can also suppress differentiation and increase proliferation. The
expression of several HSPGs is low in neuroblasts and high
in the Schwannian stroma, and neuroblastomas with a high
TβRIII, GPC1, and SDC3 expression have improved prognosis
(11). The same study also found that soluble HSPGs and heparin
promoted differentiation and decreased proliferation through
FGFR1 and ERK phosphorylation. Similarly, another study
has shown that neuroblastoma differentiation is promoted by
release of a GPI-anchored HSPG, Glypican-6 (GPC6) through
via Glycerophosphodiesterase (GDE2). This study also found
that high GDE2 or low GPC6 level in neuroblastoma predicted
significantly increased patient survival (108). These studies are
of high significance as they make two major points; first, that
the differentiation state of the cancer cells predict survival, and
second, that HS and HSPGs are among the key regulators of
cancer differentiation states.

CELL-NON-AUTONOMOUS ROLES OF HS
SIGNALING IN CANCER

Several features of cancer such as sustained angiogenesis,
tissue invasion and migration and immune evasion require a
complex interplay between more than one cell type and involve
multiple organ systems. In this section, we describe the cell-non-
autonomous functions of HS and HSPGs in cancer initiation and
progression.
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Role in Angiogenesis
Angiogenesis is considered a key requirement for cancer growth
and progression (109). This is highlighted by the fact that
several angiogenesis inhibitors are in clinical trials for cancer
treatment (110). HS and HSPGs modify angiogenesis due to
their effect on angiogenic factors, such as FGF, PDGF, and
VEGF. For exmaple, SDC1 binds to VEGF, and SDC1 shedding
increases the VEGF concentration in the matrix and promotes
angiogenesis in myeloma (111). The same study also showed that
heparanase expression increases SDC1 shedding (112). SDC1
is overexpressed in endothelial cells derived from patients with
multiple myeloma. In addition to suppressing cell proliferation,
RNAi silencing of SDC1 in patient-derived endothelial cells
reduces capillary-like structure organization, which is correlated
with reduced VEGF receptor (VEGFR)-2 surface expression
(111). Other members of the syndecan family, such as SDC2 and
SDC3, also affect tumor angiogenesis (113, 114).

Another HSPG with an opposing effect on angiogenesis is
Perlecan. Perlecan is a secreted HSPG which is also found
on cancer cell surface and in cancer microenvironment (115).
Perlecan is shown to promotes angiogenesis in its intact
form (115). However, Perlecan can also be partially cleaved
by proteases, which results in a C-terminal fragment, called
endorepellin, which has been shown to exert anti-angiogenic
effects (116). Thus, HSPGs modulate tumor angiogenesis in
multiple ways: they increase the tumor microenvironment
VEGF concentration, affect VEGFR surface localization, and
fine-tune interaction of VEGF with its receptor and co-
receptor.

Role in Immune Evasion
Immune response is the first line of systemic defense against
tumorigenesis (117). Recent success of immunotherapeutic
approaches to treat cancer further highlights the importance
of immune evasion mechanisms for cancer initiation and
progression (118, 119). HSPGs can serve as cancer biomarkers,
which can also be used to target antibodies for immunotherapies
(120, 121). At the same time, evidence suggests that HSPGs in
the extracellular matrix (ECM) or those expressed on bystander
cells are involved in reducing immune signaling to dendritic
cells (DCs) (122). One of the well-studied HSPGs roles in
melanoma immunity involves myeloid-derived suppressor cells
(MDSCs) that suppresses immunity against melanoma (122).
Previous studies have shown that melanoma immune evasion
involves myeloid-derived suppressor cells (MDSCs) that express
an immune-suppressive molecule called dendritic cell-associated,
HSPG-dependent integrin ligand (DC-HIL) (122). DL-HIL
engages Syndecan-4 on effector T cell causing anergy (122).
Furthermore, targeting DC-HIL with neutralizing antibody or
its genetic knockout delayed the growth of transplantable B16
melanoma in syngeneicmice, which further strengthen the role of
DC-HIL as a potential target for enhancing the immune response
and cause tumor eradication (123).

HSPGs also affect innate immune response against cancer
cells by modulating Natural Killer (NK) cell-mediated activity
against cancer cells. NK cells exert their cytotoxic activity on
cancer cells through recognition of specific ligands, one group

of which is called the natural cytotoxicity receptors (NCR)
(124). The NCRs bind to HSPGs and their interaction promotes
NK cell-mediated cancer cell eradication (125). Additionally,
it has been shown that cancer cells upregulate heparanase
through activation of bromodomain PHD finger transcription
factor (BPTF), leading to reduced NCR-HSPG interaction,
which results in dampened NK cell response (126). Collectively,
these studies demonstrate that by activating immune tolerance,
enhancing signaling pathways, and interfering with immune cell-
tumor interactions, HSPGs regulate immune evasion functions in
cancer cells.

Role in the Regulation of Extracellular
Matrix Modification
HSPGs, free HS chains and heparin are structural components
of extracellular matrix (ECM) (12). The ECM is a major part of
the tumor microenvironment and influences tumor progression
by several mechanisms, including growth factor concentrations,
angiogenesis, and immune infiltration (127). The changes in
HSPGs and HS metabolizing enzymes vary widely with cancer
type and have varying context dependent roles.

Right-sided colorectal cancers show that the expression of
the HSPGs glypican-1,-3, and -6 and betaglycan are altered
in non-metastatic tumors, whereas in metastatic tumors, only
glypican-1 and SDC1 are modified. Interestingly, alterations
were found in only non-metastatic tumors, affecting N-sulfation,
and the isoforms of heparan sulfate 6-O-sulfotransferase 1
(HS6ST1), heparan sulfate-glucosamine 3-sulfotransferase
3B1 (HS3ST3B1) and heparan sulfate-glucosamine 3-
sulfotransferase 5 (HS3ST5) (128). The HSPG SDC2 induces
MMP-7-mediated E-cadherin shedding in colorectal cancer.
E-Cadherin shedding led to reduced cell-to-cell contacts
and the acquisition of a fibroblast-like morphology, which
are both associated with cancer metastasis (129). Another
important study showed that SDC1-positive human mammary
fibroblasts (HMF) induced extracellular matrix remodeling
by promoting an aligned fiber architecture, which promoted
directional migration and invasion of breast cancer cells
(130).

Apart from syndecans, perlecan and agrin, two other
basement membrane constituents are also involved in cancer
progression (131–133). Antisense RNA against perlecan inhibits
tumor growth and angiogenesis in colon carcinoma (134).
Moreover, the ECM protein agrin stimulated osteosarcoma
cell growth and migration. Agrin also induces a switch from
topoisomerase I to topoisomerase II (135). Therefore, these
studies collectively reveal the role of HSPG ECM constituents
and cell surface HSPGs in regulating cell-to-cell and cell-matrix
adhesion, which in turn control tumor cell migration and
shedding.

TARGETING HS AND HSPGs FOR CANCER
TREATMENT

Understanding the biology behind HS and HSPG
deregulation in cancers has enabled the development of
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various therapeutic strategies aimed at various HS- and
HSPG-mediated cancer growth and progression enabling
features. Small molecule inhibitors, which interfere with
the activities of various enzymes involved in HSPG
synthesis and modification, have been developed (6).
Additionally, small molecule inhibitors and monoclonal
antibodies, which target interactions between HSPGs and
their targets, are being developed (136, 137). Below, we
describe some of these agents and their value as anti-cancer
agents.

Antibody and Small Molecule Targeting
HS-Modifying Enzymes, HS, and HSPGs
Among the enzymes involved in HS synthesis and modifications,
heparanases, and sulfatases are considered good drug targets.
Heparanase is overexpressed in a wide-variety of solid
tumors and hematological malignancies (29). A previous
study assessed the therapeutic value of heparanase targeting
using heparanse-neutralizing antibodies for the treatment
of diffuse non-Hodgkin’s B-cell lymphoma and follicular
lymphoma (138). This study found that heparanase inhibition
blocked xenograft tumors and growth of lymphoma cells
in the bones of mice (138). Additional studies have shown
that antibody-mediated anti-heparanase-therapies inhibit
cell invasion and tumor metastasis (138–140). Recently, a
small molecule inhibitor of hepranase was developed and
was shown to reduce metastatic attributes in a model of
hepatocellular carcinoma (141). Thus, these studies collectively
establish heparanase as a potential drug target for cancer
therapy.

Small molecule inhibitors, which prevent growth hormone
binding to HSPG, reduce the proliferative HSPG-mediated
signal. A similarity-based screening of small molecule libraries
identified bi-naphthalenic compounds, which can inhibit
FGF binding to both, HSPGs and FGFR1 binding. In vitro
and ex vivo, these compounds inhibit FGF2 activity in
angiogenesis models, with improved therapeutic potency
(142). Monoclonal antibodies developed against the HS chain
on GPC3 inhibit Wnt3a/β-catenin activation, recapitulating
GPC3 knockdown by reducing HCC migration and
motility (137).

Small molecule inhibitors against sulfatases have shown
promise in inhibiting tumor growth. A disulfonyl derivative of
phenyl–tert–butyl nitrone (PBN) called OKN-007 inhibited Sulf2
activity in hepatocellular carcinoma (HCC) cell lines and blocked
HCC tumor xenograft growth in mice (136).

HS signaling modulation also affects immune cell
trafficking and associated immune responses. Deletion of
the glycosyltransferase gene exostosin glycosyltransferase
1 (Ext1), which is essential for HS chain formation,
in myxovirus resistance-1 (Mx-1)-expressing bone
marrow stromal cells increased hematopoietic stem cells
(HSCs) efflux from the bone marrow to the spleen in
response to granulocyte colony-stimulating factor. Thus, a
therapeutic that targets Ext1 may help mobilize immune
cells to target cancer cells (143). For detailed review

on the role of different enzymes in HS synthesis and
modification readers are referred to a review by Bishop et
al. (12).

Heparan Sulfate Mimetics
HS mimetics were also used as anti-cancer agents. HS mimetics
induce an immune response against lymphoma through
activation of natural killer (NK) cells (144). The HS mimetic
PG545, in addition to its anti-heparanase and anti-angiogenic
effect shows pleiotropic effect by enhancing toll-like receptor 9
(TLR9) activation through increasing the TLR9 ligand CpG in
DCs. It was shown that treatment with PG545 resulted in the
accumulation of CpG in the lysosomal compartment of DCs.
This in turn enhanced the IL-12 production, which was essential
for the ability of PG545 to activate NK cells (144). Furthermore,
PG545 was also shown to directly bind to WNT3A and WNT7A
and inhibitsWNT/β-catenin signaling, inhibiting proliferation in
pancreatic tumor cell lines (145). These studies further highlight
the possibility of using heparin sulfate mimetics as agents for
cancer therapy.

HSPGs as Immunotherapeutic Targets
Some recent studies have also indicated that the upregulation of
HSPGs on cancer cells can be used as unique biomarkers that
can be targeted to selectively deliver cytotoxic drugs (146, 147). A
recent study that analyzed differential expression of cell surface
proteins on neuroblastoma identified the HSPG, Glypican-2
(GPC2) as selectively expressed on neuroblastoma where it
enhances neuroblastoma proliferation (148). The researchers
were able to develop an antibody drug conjugate that selectively
eradicated GPC2 positive neuroblastoma (148). This is another
exciting area of emerging research where HSPGs can be exploited
to serve as targets for selective drug delivery to cancer cells.

CONCLUSION

Recent cancer therapies have largely focused on targeting
driver mutations and their downstream effectors. However, the
emerging body of evidence now shows that driver-mutations are,
in fact, enhanced and modified by a host of other modifications
as cancer evolves. HS and HSPG deregulation are major
contributing factors to cancer evolution. This review has covered
some of the well-established and emerging roles of HS and
HSPGs in cancer. However, new, non-canonical functions of
HSPGs are still being discovered. For instance, in addition
to modulating growth factors and RTK interactions, HSPGs
also transport growth factors directly to the nucleus, where
these factors modify gene regulation (149). HSPGs have also
been shown to influence cancer exosome shedding and uptake,
thereby modulating cell-to-cell communication between cancer
and healthy fibroblasts, immune cells, and endothelial cells (150,
151). HSPGs can also influence actin cytoskeleton remodeling
and cancer cell motility (95). The HSPG, SDC2 binds Ezrin, a
cytoskeletal protein (152) and serves as adapter molecules for
IGF1 mediated activation of ERK (95). Additionally, HSPGs are
implicated in lipoprotein uptake and cellular stress signaling
(153, 154). As more researchers validate these findings, newer
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areas of HS- and HSPG-mediated regulation will be discovered.
Additionally, as cancer treatment moves from single target
to combination therapies, HS- and HSPG-targeting therapies
will likely emerge as a major new direction for cancer
therapeutics.
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