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The endocannabinoid system (ECS) is an important brain modulatory network. ECS
regulates brain homeostasis throughout development, from progenitor fate decision to
neuro- and gliogenesis, synaptogenesis, brain plasticity and circuit repair, up to learning,
memory, fear, protection, and death. It is a major player in the hypothalamic-peripheral
system-adipose tissue in the regulation of food intake, energy storage, nutritional status,
and adipose tissue mass, consequently affecting obesity. Loss of ECS control might
affect mood disorders (anxiety, hyperactivity, psychosis, and depression), lead to drug
abuse, and impact neurodegenerative (Alzheimer’s, Parkinson, Huntington, Multiple, and
Amyotrophic Lateral Sclerosis) and neurodevelopmental (autism spectrum) disorders.
Practice of regular physical and/or mind-body mindfulness and meditative activities have
been shown to modulate endocannabinoid (eCB) levels, in addition to other players
as brain-derived neurotrophic factor (BDNF). ECS is involved in pain, inflammation,
metabolic and cardiovascular dysfunctions, general immune responses (asthma, allergy,
and arthritis) and tumor expansion, both/either in the brain and/or in the periphery.
The reason for such a vast impact is the fact that arachidonic acid, a precursor of
eCBs, is present in every membrane cell of the body and on demand eCBs synthesis
is regulated by electrical activity and calcium shifts. Novel lipid (lipoxins and resolvins) or
peptide (hemopressin) players of the ECS also operate as regulators of physiological
allostasis. Indeed, the presence of cannabinoid receptors in intracellular organelles
as mitochondria or lysosomes, or in nuclear targets as PPARγ might impact energy
consumption, metabolism and cell death. To live a better life implies in a vigilant ECS,
through healthy diet selection (based on a balanced omega-3 and -6 polyunsaturated
fatty acids), weekly exercises and meditation therapy, all of which regulating eCBs levels,
surrounded by a constructive social network. Cannabidiol, a diet supplement has been a
major player with anti-inflammatory, anxiolytic, antidepressant, and antioxidant activities.
Cognitive challenges and emotional intelligence might strengthen the ECS, which is built
on a variety of synapses that modify human behavior. As therapeutically concerned, the
ECS is essential for maintaining homeostasis and cannabinoids are promising tools to
control innumerous targets.

Keywords: THC – tetrahydrocannabinol, cannabidiol, diet, exercise, meditation, anandamide, BDNF, metabolic
programming
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INTRODUCTION

The endocannabinoid system (ECS) controls a widespread and
abundant metabolic network. It impacts on many symptoms
experienced by adults or children during the COVID-19
pandemics, including chronic pain, lack of exercise, poor diet and
gain of weight, mood disorders, as depression, anxiety (Micale
et al., 2013, 2015; Kucerova et al., 2014) or increased stress due
to lockdown, social distancing, and job loss, as well as due to
exhausting work shifts for intensive care staff (Rogers et al., 2020;
Bennett et al., 2021). The ECS has been studied systematically
since the elucidation of the structure of tetrahydrocannabinol
(THC) from Cannabis (Mechoulam and Gaoni, 1965), and later
recognized as a physiological circuit breaker with the discovery
of membrane receptors, enzymes, and endocannabinoid-like
mediators (De Petrocellis et al., 2004; Katona and Freund, 2008).
Alternatively, more people became interested in meditation and
mindfulness healings suggesting that alternative therapies might
improve measures of anxiety, depression and pain scores, and
possibly on the mechanisms of plastic brain changes on people
with a long-term traditional meditation practice (Behan, 2020).
As the receptors were initially cloned and mapped in the 1990s,
it became clear that two major branches emerged from the
ECS: one highly enriched in the brain (Herkenham et al., 1991)
and its peripheral nerves and the other in the immune system
(Facci et al., 1995). Today, a multitude of direct and indirect
intra- and extracellular targets in almost all physiological systems
constitutes the endocannabinoidome, an ensemble of eCBs and
their receptors and metabolic enzymes (Di Marzo and Piscitelli,
2015) to form a multi-facet therapeutic platform (Kaur et al.,
2016). This is the core of the recent cannabinoid medicine
field that claims to improve several maladies as chronic pain
and spasticity (Whiting et al., 2015), but that still raises many
concerns due to controversies of the matter and the adverse
effects shown by phytocannabinoids.

WHAT DOES THE ENDOCANNABINOID
SYSTEM CONSIST OF?

The ECS is composed of lipid endocannabinoids (eCBs) and
peptide (hemopressin derivatives) mediators, their receptors
[the most prominent are the type 1 (CB1) and type 2 (CB2)
cannabinoid receptors], metabolic enzymes and membrane
transporters (Figure 1). CB1 and CB2 are G-protein coupled

Abbreviations: ALA, alpha linolenic acid; ALEA, alpha-linolenoylethanolamide;
AD, Alzheimer’s disease; CBD, cannabidiol; CB1, cannabinoid receptor type 1;
CB2, cannabinoid receptor type 2; ECS, endocannabinoid system; CNS, central
nervous system; anandamide or AEA, N-arachidonoylethanolamide; 2-AG,
2-arachidonoylglycerol; LC-PUFAs, long chain polyunsaturated fatty acids;
MAPK, mitogen-activated protein kinase; OEA, O-arachidonoylethanolamide;
THC, tetrahydrocannabinol; HP, hemopressin; FAAH, fatty acid amide hydrolase;
PNS, peripheral nervous system; GM, gray matter; HPA, hypothalamic-
pituitary-adrenal; eCB, endocannabinoid; PEA, palmitoyl-ethanolamide;
PD, Parkinson’s disease; DHEA, N-docosahexaenoyl-ethanolamine; EPEA,
N-eicosapentaenoyl-ethanolamine; 2-DHG, 2-docosahexaenoylglycerol; EPG,
2-eicosapentaenoylglycerol; EEQ-EA, epoxyeicosatetraenoic acid-ethanolamide;
EDP-EA, epoxydocosapentaenoic acid-ethanolamide; PA, physical activity; AA,
Arachidonic acid.

receptors (Mallipeddi et al., 2017) highly concentrated on major
brain areas (Herkenham et al., 1990) such as neurogenic niches
(Xapelli et al., 2013), that upon activation signal through fast
(Ca2+ and K+ currents) (Kano et al., 2009) and/or slow pathways,
as cyclic AMP-protein kinase A (cAMP-PKA), extracellular
signal-regulated (ERK), beta-arrestin, mitogen-activated protein
kinase (MAPK) and PI3K (Priestley et al., 2017; Haspula and
Clark, 2020); gene transcription is also turned on by nuclear
receptors (of the PPAR family), which increases plasticity (Pistis
and O’Sullivan, 2017), and are targeted by the ECS.

Lipid eCBs are endogenously generated from membrane
phospholipids that contain arachidonic acid (AA) (Freitas et al.,
2018) to derive the N-arachidonoylethanolamide (anandamide
or AEA) and 2-arachidonoylglycerol (2-AG). AEA is a partial
agonist of both CB1 and CB2 receptors with a higher relative
intrinsic efficacy and affinity for CB1 receptors. Alternatively,
2-AG shows a higher potency compared to AEA as a
cannabinoid receptor (CB) agonist, binding with the same
affinity to both receptors (Pertwee, 2010). Other “weak” eCB [2-
arachidonoyl glyceryl ether, O-arachidonoylethanolamide (OEA)
and derivatives of long-chain N-acyl-amides, including N-acyl-
taurines, N-acyl-serotonins, N-acyl-dopamines, and fatty acid
primary amides] might also contribute with different responses,
depending on the tissue or the metabolic condition (Ramer
et al., 2019; Cristino et al., 2020). Indeed, palmitoyl-ethanolamide
(PEA), one of these eCB, when given as a dietetic powder, rescues
learning and memory impairments in a triple transgenic mouse
model of Alzheimer’s disease (AD) by exerting anti-inflammatory
and neuroprotective effects (Scuderi et al., 2018).

Plant-derived phytocannabinoids, i.e., THC and cannabidiol
(CBD), the two most acknowledged metabolites out of hundreds
of molecules present in Cannabis sativa L., are highly studied
due to their general effects on the brain. Both THC and CBD
were isolated in the mid-1960s and display many important
effects. THC, for instance, is psychoactive and known to induce
relaxation, euphoria, and memory impairment (Mechoulam
and Parker, 2013). However, the misuse of Cannabis might
affect the function of the brain and/or induce psychosis
at critical developmental stages as pregnancy or adolescence
(Volkow et al., 2014; Alpár et al., 2016). Indeed, cannabinoid
exposure during prenatal/perinatal and adolescent periods might
alter synaptic plasticity in neurodevelopmental processes, in
which the ECS plays an essential role (Bara et al., 2021).
On the other hand, CBD is a potent anti-inflammatory,
anxiolytic, antidepressant, antipsychotic, anticonvulsant, anti-
nausea, antioxidant, antiarthritic, and antineoplastic agent
(Ligresti et al., 2016). Although non-psychotomimetic, CBD
presents promising therapeutic effects on the brain, known
to reduce brain damage associated with neurodegenerative
and/or ischemic conditions. It also has positive effects on
attenuating psychotic-, anxiety-, and depressive-like behaviors
(Campos et al., 2016). Indeed, CBD was able to prevent the
development of molecular and behavioral schizophrenia (SCZ)-
like alterations in neurodevelopmental animal models, without
inducing side effects (Stark et al., 2019, 2020). This latter paper
shows for the first time that CBD seems both to normalize
the D3 receptor expression in gestational methylazoxymethanol
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FIGURE 1 | The endocannabinoid system (ECS) is composed of lipid endocannabinoids (eCBs), allosteric (lipoxins and resolvins) and peptide (hemopressin
derivatives) mediators, their receptors (the cannabinoid type 1 (CB1) and type 2 (CB2), which are activated by phyto- (THC, CBD, and possibly many others) and
synthetic cannabinoids (represented by WIN55,212-2, a mixed agonist), metabolic enzymes (FAAH and MAGL, and others) and membrane transporters. Upon
activation, CB1 and CB2 signal through fast (Ca2+ and K+ currents) and/or slow pathways, as cyclic AMP-protein kinase A (cAMP-PKA), ıextracellular
signal-regulated (ERK), beta-arrestin, mitogen-activated protein kinase (MAPK) and PI3K; in addition, gene transcription is also turned on by nuclear receptors
(PPARγ and others).

acetate (MAM) model of SCZ and to bind preferentially to
dopamine D3 receptors, as novel potential mechanism of action.
In addition, CBD treatment may normalize perinatal THC-
exposed male rats-induced psychopathology by modulating the
altered dopaminergic activity and transcriptional regulation of
the genes encoding for the cannabinoid CB1 receptor (Cnr1)
and the dopamine D2 receptor (Drd2) (Di Bartolomeo et al.,
2021). Cannabinoids are not the only compounds that can
influence eCB tone; aptly called cannabimimetic, there are several
foods, such as dietary and omega (n-3 and n-6) fatty acids
as important intermediaries for energy metabolism, influencing
feeding behavior, neural plasticity, physical activity (PA), and
cognition during aging and activities that can signal through our
ECS for optimal health (Freitas et al., 2017).

In addition to the lipid agents, a new class of endogenous
peptides derived from hemopressin (HP), PVNFKLLSH, a
fragment derived of the α-chain of hemoglobin has been recently
investigated. HP acts as an inverse agonist of the CB1 receptor,
consequently regulating the antinociceptive activity (Toniolo
et al., 2014), food intake (Dodd et al., 2010), and inducing
oligodendrocyte differentiation (Xapelli et al., 2014) in the
subventricular region of the newborn mice (Xapelli et al., 2013;
reviewed in Heimann et al., 2020a). HP extended forms (RVD-
and VD-HP) are agonists of CB1 receptors (Gomes et al.,
2009). An HP fragment NFKF was recently shown to promote
analgesia, delay seizure induced by pilocarpine, and prevent
neurodegeneration in an experimental model of autoimmune
encephalomyelitis (Heimann et al., 2020b). These effects have

caught the attention of pharmaceutical companies. In addition,
the recent wave of Cannabis legalization in several western
countries and the surge of the so-called marijuana stocks have
attracted investors and are worth billions of dollars transforming
a once abused illicit drug field into a promising area for investors.

ENDOCANNABINOID SYSTEM
FINE-TUNE PHYSIOLOGY REGULATION

The ECS is an underlying system contributing to homeostasis
in many of our body’s physiological and cognitive processes
(Alteba et al., 2016), including but not limited to mood, memory,
appetite, energy, pain, cardiovascular and respiratory function,
and neuro-immune modulation. Cannabinoid receptors are
highly expressed in the brain and in virtually all peripheral tissues
regulating physiological functions directly or indirectly through
the autonomic nervous system. Regarding the expression of CB
receptors, it is well known that the CB1 receptors are present
at very high levels on inhibitory (GABAergic interneurons)
and at a lesser extent on excitatory (glutamatergic) terminals
(Marsicano and Lutz, 1999), as well as on neurons expressing
dopamine D1 receptors, playing a specific role in the repertoire
of different emotional behaviors including social and cognitive
activity, which are affected in psychiatric disorders (Terzian et al.,
2011, 2014; Llorente-Berzal et al., 2015; Micale et al., 2017).
Cannabinoid signaling is found in all players of the quadripartite
synapse, formed by pre- and postsynaptic neurons, astrocytes,
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and microglia, in a highly interacting device, adjusting many
functions in the Central nervous system (CNS; Ligresti et al.,
2016). CB1 and CB2 receptors are located both on neurons
and glial cells and are considered the main circuit breakers,
as activation of pre-synaptic CB1 (and possibly CB2) receptors
inhibits the release of the major neurotransmitters glutamate
(excitatory) and GABA (inhibitory) (Katona and Freund, 2008).
Also, ATP, the major signal secreted by astrocytes (Rodrigues
et al., 2015) and microglia (Ferrari et al., 1997) signals through
P2Y and P2X purinergic receptors which are modulated by ECs
through hemichannels (Labra et al., 2018).

In addition to the canonical pathway mediated by CB1
and/or CB2 receptors, additional targets are also considered
as GPR18 and GPR55 (Irving et al., 2017), the transient
receptor potential vanilloid 1, TRPV1 (Muller et al., 2018) or
heterodimers for many different receptors (dopamine, serotonin,
and hormones) (Wellman and Abizaid, 2015), which might
increase the complexity of spatial-temporal responses. Indeed,
experimental evidence points to the fine-tuning of membrane
receptor-interacting proteins, as the cannabinoid receptor-
interacting protein 1a (CRIP1a) (Oliver et al., 2020), increasing
the complexity in terms of cellular localization and functions,
ranging from food intake regulation and energy balance to
mechanisms of brain plasticity and cancer. Signaling devices are
expressed in different cell types, which could act as frameworks
to modulate G protein-mediated signaling (Ritter and Hall, 2009)
and explain several of the conflicting effects exerted by eCBs,
phyto-, and synthetic cannabinoids.

N-arachidonoylethanolamide levels are degraded by the fatty
acid amide hydrolase (FAAH) enzyme, a serine hydrolase found
in cell bodies and dendrites of postsynaptic neurons in major
areas of the brain (Egertová et al., 2003; Otrubova et al., 2011).
eCBs, are known as retrograde messengers [most of the synthetic
enzymes are centered post-synaptically, operating on demand,
activated by electrical activity, and/or calcium shifts (Regehr
et al., 2009)]. FAAH inhibitors have attracted interest from the
pharmaceutical industry as they prolong the accurately regulated
pro-homeostatic actions of AEA (Petrosino and Di Marzo,
2010), inducing, for instance, powerful analgesia (Tripathi, 2020).
A recent case emerged from a Scottish native that faced a lifelong
record of adversities resulting in painful events (hand surgery
due to arthritis, joint degeneration, cuts, and burns that healed
briefly), with no complaint of discomfort. That lead to the
identification of a microdeletion in FAAH conferring reduced
expression and activity resulting in high AEA concentrations and
pain insensitivity (Habib et al., 2019). As chronic pain is one of the
major topics of the XXI century, this might open a new avenue for
treatment by targeting drugs or by the use of medical Cannabis
(Vučković et al., 2018).

HEALTHY DIET, SUPPLEMENTS, AND
NATURAL PRODUCTS

Balanced diets in macro and micronutrients are fundamental
to the correct CNS development and maturation, for allowing
structural changes and specific metabolic signals in homeostatic

or pathological conditions (Cusick and Georgieff, 2016). ECS
represents a link between dietary lipids and synaptic activity, and
it is involved in several mechanisms related to the development
and neuroplasticity (Lafourcade et al., 2011; Freitas et al.,
2018; Andrade-da-Costa et al., 2019). An increasing number
of studies have suggested its participation in antioxidant, anti-
inflammatory, and cytoprotective mechanisms, indicating the
potential therapeutic of this system in some neurological diseases
(Velayudhan et al., 2014), as well as in conditions of systemic
inflammation and obesity (Simopoulos, 2016). Experimental
studies of selected diets such as the Mediterranean, which consists
of unsaturated lipids from fish, olive oil, fruits, vegetables,
whole grains, and legumes/nuts, suggest better physiological
parameters decreasing the burden, or avoiding the outcome
of cardiovascular disease, stroke, depression, several types of
cancer, diabetes, obesity, and dementia (Widmer et al., 2015;
Geisler, 2016; Assmann et al., 2018; Radd-Vagenas et al., 2018).
The Mediterranean diet impacts on the plasma concentrations
of eCBs, altering N-acylethanolamines, and their specific ratios
in people with lifestyle risk factors for metabolic diseases
(Tagliamonte et al., 2021), causing changes in the gut microbiome
and metabolome (Meslier et al., 2020). This is important due
to conditions faced by hundreds of millions around the globe
exposed to dietary inequalities. In Brazil, for example, a change
has been noticed from an undernutrition status in impoverished
areas from the Pernambuco State in the 1970–1980s and modeled
as the Regional Basic Diet (RBD) to western-type high-fat foods
nowadays (de Aquino et al., 2019; Jannuzzi et al., 2021). This
nutritional transition from chronic consumption of hypoproteic
(RBD) or high-fat diets may have consequences to the general
health of the population (de Aquino et al., 2019).

The levels of eCBs and their activity at CBs are influenced by
the content of n-6 series derived from linoleic acid (LA, 18:2n-6),
and n-3 series derived from alpha-linolenic acid (ALA, 18:3n-3),
essential polyunsaturated fatty acids (PUFAs) in the diet (Freitas
et al., 2018); in addition, activity of biosynthetic and catabolic
enzymes of the ECS and the way they exert important roles
impact the regulation of appetite and metabolism (Banni and
Di Marzo, 2010). Both AEA and 2-AG are derived from AA of
the n-6 family (Tsuyama et al., 2009), while N-docosahexaenoyl-
ethanolamine (DHEA), N-eicosapentaenoyl-ethanolamine
(EPEA), 2-acylglycerols, 2-docosahexaenoylglycerol (2-DHG),
and 2-eicosapentaenoylglycerol (EPG) are derived from the
n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentanoic
acid (EPA) (Figure 2; Bisogno and Maccarrone, 2014). Alpha-
linolenoylethanolamide (ALEA) is another eCB produced from
the n-3 ALA, which is detected in human plasma, and it is
responsive to dietary supplementation (Jones et al., 2014).

Another class of n-3 PUFA-derived lipid metabolites present
in the brain and peripheral organs comes from the crosstalk
between eCB and cytochrome P450 (CYP) epoxygenase
metabolic pathways. The n-3 eCB epoxides are originated from
DHA and EPA to form epoxyeicosatetraenoic acid-ethanolamide
(EEQ-EA) and epoxydocosapentaenoic acid-ethanolamide
(EDP-EA), respectively. These n-3 endocannabinoid epoxides
have anti-inflammatory and vasodilatory properties and can
modulate platelet aggregation (McDougle et al., 2017).
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FIGURE 2 | Dietary patterns, as the Mediterranean (n-3 series enriched) are linked to better physiological parameters decreasing the outcome of several types of
diseases, which consists of unsaturated lipids from fish (and olive oil, fruits, vegetables, whole grains and legumes/nuts), impacting on the levels of eCBs; they are
influenced by the content of n-3 series derived from alpha-linolenic acid (ALA, 18:3n-3) and n-6 series (enriched in Western diet) derived from linoleic acid (LA,
18:2n-6), essential polyunsaturated fatty acids (PUFA); both AEA and 2-AG are derived from AA of the n-6 family, while N-docosahexaenoyl-ethanolamine (DHEA)
and N-eicosapentaenoyl-ethanolamine (EPEA), are derived from the n-3 PUFAs docosahexaenoic acid (DHA) and eicosapentanoic acid (EPA).

Considering that diet is the largest source of substrate
for the biosynthesis of eCBs in mammals, dietary changes
in the n-6/n-3 ratio can directly modulate their levels in
tissues and, consequently, their biological functions (Bisogno
and Maccarrone, 2014). Evidence has shown that deficiency in
n-3 during pregnancy and lactation is capable of negatively
altering functions mediated by the ECS in the offspring. Young
mice, submitted to a maternal n-3 deficient diet, showed an
inhibition of long-term depression (LTD) mediated by n-6
eCB and a reduced sensitivity of the CB1 receptor in the
prefrontal cortex and nucleus accumbens (Lafourcade et al.,
2011); in addition, changes in long-term potentiation (LTP) and
LTD in the hippocampus (Thomazeau et al., 2017) and in the
mitogen activated protein kinases (MAPK) signaling pathway
after activation with CB1/CB2 agonists were also detected in
the prefrontal cortex and hypothalamus (Larrieu et al., 2012).
These studies suggest that such changes in synaptic plasticity
mechanisms may be related to the increase in anxiety- and
depression-like behaviors observed in n-3 deprived animals.
Thus, n-3 PUFA and the ECS modulate several functions through
neurodevelopment including synaptic plasticity mechanisms.
Our group has recently shown that changes in maternal
dietary DHA levels may impact differently on the ECS and
molecular markers highlighted by increased synaptophysin levels
in the neonate brain, CB1/2 receptor levels in dams and
neonates’ brain, glial fibrillary acidic protein (GFAP) levels,
and protein kinase A (PKA) phosphorylation in the cortex
and ERK phosphorylation in the hippocampus of the progeny
(Isaac et al., 2021).

In vitro studies with long chain polyunsaturated fatty acids
(LC-PUFAs) DHA or EPA were also able to modulate the
ECS. DHA supplementation in hippocampal neuron cultures
promoted increased mRNA and protein levels of CB1 and
TRPV1 receptors, in a dose-dependent manner (Pan et al., 2011).
Indeed, it was reported that addition of DHA and EPA promotes
increased levels of 2-AG in neural stem cell cultures. The presence
of EPA also increased cell proliferation and activation of the p38-
MAPK pathway, showing a relationship between proliferation,
eCBs and n-3 derivatives (Dyall et al., 2016).

Endocannabinoid system has systemic effects in the regulation
of food acquisition, energy sensing and metabolism (Banni
and Di Marzo, 2010). Overactivation of the 2-AG and AEA
(derived from AA) stimulate neural mechanisms involved in the
appetite and can favor food-related disorders such as obesity and
inflammation (D’Angelo et al., 2020). Therefore, a competition
for shared biosynthetic pathways between n-3 and n-6 fatty
acids and the opposite systemic effects of these lipids might
modulate the final action of eCBs in a range of tissues. n-3 derived
eCBs from DHA or EPA have anti-inflammatory properties and
their chronic supplementation in humans or animals reduces 2-
AG and AEA levels (Batetta et al., 2009; Banni and Di Marzo,
2010; Berge et al., 2013). As a consequence, a lower body mass
index (Thorsdottir et al., 2007) and a preventive effect on the
development of obesity have been reported (Rossmeisl et al.,
2012; Simopoulos, 2020). The recommended n-6/n-3 ratio for
optimal eCB production is 4:1 (Freitas et al., 2018). Nevertheless,
the current Western diet adopted in many countries with high
amounts of vegetable oils enriched with alpha-linoleic fatty
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acid usually lends itself to ratios closer or higher than 16:1.
Thus, dietary supplementation with popular food sources of n-3
such as fish (mackerel, salmon, seabass, and sardines), seaweed,
edamame, hemp, chia, and flax seeds, are suggested as a part
of a balanced lifestyle. Additionally, the anti-inflammatory, anti-
cancer, and hypotriglyceridemic effects of these fatty acids and
derived n-3 endocannabinoids are also involved in reproduction
control and in the stress response which reinforce actions which
are co-preventative and co-therapeutic in the management of
several diseases (D’Angelo et al., 2020).

Medicinal plants are part of diet since early stages of human
civilization. Thus, evidence-based alternative medicine of the
cannabimimetic activity of many natural products, their wide
availability and low side effects stimulate future studies for their
inclusion as a part of a balanced dietary lifestyle. This could be
especially relevant for targeting endocannabinoid dysregulation.
Complementary to dietary interventions using balanced levels
of essential fatty acids, natural bioactive compounds obtained
in several plants can act as phytocannabinoids, showing
affinity, adequate potency, and efficacy on CB receptors, and
some of them might also act on metabolizing enzymes, thus
modulating the ECS activity (Gertsch et al., 2010). Compared to
synthetically derived cannabinoids, naturally derived molecules
induce few adverse effects and their use as promising and
emerging therapeutic alternative has been investigated for
treatment of several metabolic or neurodegenerative diseases
(Sharma et al., 2015).

The diverse chemical classes of these phytocannabinoids
ligands (Figure 3) include alkaloids, terpenes, terpenoids,
and polyphenols (Sharma et al., 2015). The sesquiterpene
β-caryophyllene, for example, can be found in essential oil
of cloves, oregano, cinnamon, black pepper, hemp, rosemary,
and hops (Gertsch et al., 2008). It is commonly used in
food, cosmetics, and fragrances as flavoring agent and exerts
potent cannabimimetic anti-inflammatory actions including
CB2-dependent therapeutic effects in cerebral ischemia (Choi
et al., 2013), insulin resistance (Suijun et al., 2014), glutamate
neurotoxicity (Assis et al., 2014), renal injury (Horváth et al.,
2012), anxiety and depression (Bahi et al., 2014), neuropathic
pain (Klauke et al., 2014), and AD (Cheng Y. et al., 2014).

Polyphenol compounds found in the leaves of teas, in
several fruits and legumes, such as catechins, exhibit binding
properties with CB1 and CB2 receptors in a dose-dependent
manner (Korte et al., 2010). In addition, curcumin, another
polyphenol that inhibits tumor growth by increasing ROS levels
and the antioxidant glutathione (GSH) (Larasati et al., 2018) has
been linked to a cannabinoid activity in multiple physiological
systems, such as alternative treatments for inflammatory bowel
disease, other digestive diseases or liver fibrosis (Zhang et al.,
2013; Quezada and Cross, 2019), alone or in the presence of
hemopressin (El Swefy et al., 2016).

Resveratrol is a compound present in fruits and plants with
beneficial effects for the health, whose pharmacological
properties have been widely investigated. Resveratrol
exhibits peripheral antinociception through opioid (µOR)
and cannabinoid (CB1) receptor activation in hyperalgesia
induced by carrageenan in the paw withdrawal method

(Oliveira et al., 2019). The extract of several medicinal plants
have been analyzed regarding their ability to bind on CBs
(Sharma et al., 2015). Cannabinoid-dependent beneficial effects
of these extracts have been indicated on neuropathic pain,
immunomodulation, inflammation, lung injury, obesity, colon
cancer, osteoporosis, and diabetes (Palu et al., 2008; Cotrim et al.,
2012; Styrczewska et al., 2012; Velusami et al., 2013; Liu et al.,
2014; Lim et al., 2015).

EXERCISE

Routine PA has the potential to improve several physiological
parameters at different organs, leading to modifications in
metabolic, cardiovascular, and immune routes. It is common
sense that PA provides a sharp memory, better cognition, and
helps with sleep cycle regulation. Indeed, PA has been shown
to revert some of the deleterious effects of a sedentary lifestyle,
delay brain aging, and neurodegenerative pathologies such as AD,
diabetes, and multiple sclerosis (Di Liegro et al., 2019). Aerobic
fitness (essential for endurance activity) and aerobic capacity
(measured as maximal oxygen consumption during exercise,
VO2 max) results in major adaptations of the cardiorespiratory
and neuromuscular systems that increase the distribution of
oxygen to the mitochondria and enable a tighter regulation
of muscle metabolism (Jones and Carter, 2000), normalizing
blood pressure with less risk of stroke, preventing, and treating
cardiometabolic diseases like obesity and type 2 diabetes and
cardiovascular diseases. Also, it prevents other chronic disorders
(cancer, hypertension, obesity, depression, and osteoporosis) and
premature death (Warburton et al., 2006). It is a common belief
that most of the reward induced by acute or chronic exercises
(reward, nociception, mood behavior, anxiety, and performance)
are in part related to the release of endorphins and interactions
with multiple opioid (mu, kappa, and delta) receptors and/or
sensitivity shifts on the receptors (Arida et al., 2015).

However, in the last two decades, irrefutable evidence
demonstrated that the ECS is also a major player in systemic
energy metabolism, inflammation, appetite control, and pleasure
(acute anxiolysis, analgesia, antidepressant effects, sedation, and
euphoria) of the so-called runner’s high (Fuss et al., 2015). In
terms of mechanisms, voluntary exercise controls hippocampal
plasticity independently to the ECS. Voluntary exercise increased
the proliferation of progenitor cells, as evidenced by the increase
in the number of Ki-67 positive cells in the granule cell layer
of the dentate gyrus (DG) in the hippocampus. However, this
effect was abrogated by concurrent treatment with AM251, a
CB1 antagonist, indicating that the increase in endocannabinoid
signaling in the hippocampus is required for the exercise-induced
increase in cell proliferation. These data demonstrate that the
ECS in the hippocampus is sensitive to environmental changes
and suggest that it is a mediator of exercise-induced plasticity
(Hill et al., 2010). Rats submitted to forced exercise (treadmill-
running training) show an improved expression of LTP in the
DG and enhanced object recognition learning (O’Callaghan
et al., 2007). Functional changes are linked with an increase
in the expression of brain-derived neurotrophic factor (BDNF),
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FIGURE 3 | Cannabimimetic activity of bioactive substances obtained in foods and medicinal plants that if included in the diet could indirectly exert
immunomodulatory and beneficial effects to the health. (1) turmeric root; (2) grapes; (3) green tea; (4) Maytenus senegalensis (Lam.) fruit and roots; (5) black peppers;
and (6) blueberries. Arrows indicate activation of CB1 and/or CB2 receptors. Dashed arrows indicate inhibition of endocannabinoid transporters (EMT) or enzymatic
metabolism via FAAH (Fatty acid amide hydrolase) or MAGL (Monoacylglycerol lipase). DAGL: Diacylglycerol lipase; NAPE-PLD: N-acyl phosphatidylethanolamine
phospholipase D; NAT: N-acetyltransferase; 2-AG: 2-Arachidonoylglycerol.

a key player for exercise-induced brain plasticity (O’Callaghan
et al., 2007; Soya et al., 2007; Wrann et al., 2013). As higher
BDNF levels and ECS activation could have positive effects on
depression, an investigation was made on intense exercise in
11 healthy trained male cyclists. The plasma levels of AEA and
BDNF were increased, whereas 2-AG concentrations remained
stable during exercise and the 15 min recovery (Heyman et al.,
2012). This indicates that an increase in AEA during exercise
might be one of the factors involved in the exercise-induced
increase in peripheral BDNF levels and that AEA high levels
during recovery might delay the return of BDNF to basal levels
(Figure 4). Indeed, recent data described that aerobic exercise
induced increases in peripheral AEA and BDNF which play a role
in enhancing consolidation of fear extinction learning (Crombie
et al., 2021). Therefore, an increase in the peripheral levels of AEA
and BDNF might be a mechanism underlying neuroplasticity
and antidepressant effects of exercise (Heyman et al., 2012) and
might be a promising candidate to reduced threat expectancies
following reinstatement among women with posttraumatic stress
disorder (Crombie et al., 2021).

Curiously, eCBs are elevated not only with acute exercise
but also with obesity. Transcriptomic response of skeletal

muscle to acute and chronic aerobic and resistance exercise
confirms the expression of major cannabinoid players in the
synthesis and breakdown of eCBs, possibly involved with the
anti-inflammatory effect of exercise (Schonke et al., 2020).
Recent multi-omic studies (metabolome, lipidome, immunome,
proteome, and transcriptome) performed on plasma and
peripheral blood mononuclear cells from volunteers subjected
to acute PA (before and after a controlled session of symptom-
limited exercise) revealed thousands of changes on analytes and a
coordinated strategy of procedures involving energy metabolism,
oxidative stress, inflammation, tissue repair, and growth factor
response, as well as regulatory pathways (Contrepois et al., 2020).
An increase in eCBs levels is correlated with metabolic disorders
as higher lipogenesis is found in the liver and adipocytes, and
lower insulin sensitivity in peripheral tissues (Mazier et al., 2015).
Finally, Cannabis use has increased in the recent past, in large
part due to decriminalization. Even though the ECS is central to
the benefits induced by PA, it is currently unknown if Cannabis
users present different athletic performance and recovery (Docter
et al., 2020). Based on the literature, Cannabis does not appear to
be an enhancer to affect performance, neither is known regarding
the use among elite athletes (Ware et al., 2018). Recently, the
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FIGURE 4 | Exercise reverts some of the collateral effects of a sedentary
lifestyle, and has the potential to improve metabolic, cardiovascular, and
immune parameters, providing a better memory, cognition, and sleep cycle
regulation, delaying brain aging and chronic and neurodegenerative
pathologies. It is a common belief that most of the reward induced by acute or
chronic exercises (reward, nociception, mood behavior, anxiety, and
performance) are related to the release of endorphins and eCBs, which
interact with multiple opioid (mu, kappa, and delta) and cannabinoid
receptors; Irrefutable evidence demonstrate that the ECS is a major player in
systemic energy metabolism, inflammation, appetite control, and pleasure
(acute anxiolysis, analgesia, antidepressant effects, sedation, and euphoria) of
the so-called runner’s high.

discussion has been centered on CBD, a phytocannabinoid that
was removed from the list of prohibited substances – in or out
of competition – from the World Anti-Doping Agency (WADA)
and the United States Anti-Doping Agency (USADA). Although
CBD is not prohibited, athletes should be alerted some CBD oils
and tinctures extracted from Cannabis plants may also contain
THC and other cannabinoids that could result in a positive test
for a prohibited cannabinoid.1

MEDITATION

Meditation is a multifaceted process that allies strength,
endurance, flexibility and enables self-control to create an
awareness of concentration, calmness, and well-being, presenting
both physical and mental health benefits (Woodyard, 2011).
It impacts cognition, memory, social, and emotional control,

1https://www.wada-ama.org/en/questions-answers/cannabinoid

which enhances the autonomic control of the nervous system
and peripheral targets as cardiovascular, neuroimmune, and
renal physiology (Jindal et al., 2013). Mind-body exercises
control several brain structures, altering neural activity and
functional connectivity, predominantly in the prefrontal
cortex, hippocampus/medial temporal lobe, lateral temporal
lobe, insula, and the cingulate cortex (Zhang et al., 2021).
Although the molecular mechanisms involved are not fully
understood, it is clear that several transmitter systems and
brain areas are involved (Jindal et al., 2013) and the ECS has
gained attention in the pursue of happiness or treat diseases
(Ghaffari and Kluger, 2014; Sadhasivam et al., 2020; Tsuboi
et al., 2020). Regular mindfulness practice has consequences on
physiological and psychological functioning with performance
outcomes in sports (Bühlmayer et al., 2017) and regular
yoga has improved sleep quality and work stress (Fang
and Li, 2015). Data on regular yoga users (transcendental
meditation) faced modest average reductions in blood pressure
(Brook et al., 2013). Depression or anxiety have also been
alternatively treated with non-conventional interventions,
including exercise, yoga and meditation (Cramer et al., 2013;
Field et al., 2013; Saeed et al., 2019). In patients with mild-
to-moderate Parkinson’s disease (PD), mindfulness yoga has
been shown to be effective in improving motor dysfunction
and mobility (Kwok et al., 2019). Curiously, a novel concept
labeled as Spiritual Fitness which pursues stress reduction,
basic and psycho/spiritual wellbeing is being used in AD
prevention (Khalsa and Newberg, 2021). Adults under cancer
treatment have also gained benefits under yoga practice for
improving psychological outcomes, possibly also improving
physical symptoms (Danhauer et al., 2017); however, more
rigorous and large groups designed randomized trials are
needed (Ford et al., 2020) to address the psychosocial needs of
cancer patients.

From a millennial background in the Indian culture with a
focus on the four foundations of mindfulness – body, feelings,
mind, and dhammas – the sense of truth, healing named as yoga,
meditation has become widely praised in the Western societies,
including used as medical and psychological therapies for
stress-related physical and mental disorders (Woodyard, 2011).
Although the biological mechanisms in terms of the effect on the
brain and body are poorly understood, the molecular correlates
of these effects operate through the major neurochemical
system, amines (acetylcholine, dopamine, and serotonin) and the
putative release of endogenous cannabinoids and endorphins,
which may exert salutary effects on mood/anhedonia (Muzik
and Diwadkar, 2019). In a double-blind, randomized, placebo-
controlled study with 15 healthy experienced mindfulness
meditation practitioners, participants rated the pain of a cold
stimulus before and after a mindfulness meditation session.
Participants were randomized to receive either intravenous
naloxone or saline, after which they meditated again, and
rated the same stimulus. The conclusion was that meditation
involves endogenous opioid pathways mediating its analgesic
effect, which could hold promising therapeutic implications
and elucidation for the mechanisms involved in human pain
modulation (Sharon et al., 2016).
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It is suggested that volitional changes in breathing patterns can
activate primary control centers for descending pain/cold stimuli
in periaqueductal gray, initiating a stress-induced analgesic
response mediated by eCB/endorphin release. The analgesic
effects and the feelings of euphoria generated by eCB release
are prolonged via a top-down “outcome expectancy” control
mechanism regulated by cortical areas (Muzik and Diwadkar,
2019). An experimental study conducted on adults before
and after the 4-day Isha Yoga Bhava Spandana Program
evaluated AEA, 2-AG, 1-arachidonoylglycerol (1-AG), DEA,
oleoylethanolamide (OLA), and BDNF on anxiety and depression
through psychological scales. Authors reported changes in
major eCBs levels (Figure 5), with increase in AEA, 2-
AG, 1-AG, DEA, and BDNF after meditation, suggesting a
participation for these biomarkers in the underlying mechanism
of meditation (Sadhasivam et al., 2020). Indeed, increased
BDNF levels has been linked in meditative practices and brain
health in a 3-month yoga and meditation retreat assessed with
psychometric measures, circadian salivary cortisol levels, and
pro- and anti-inflammatory cytokines (Cahn et al., 2017). In
addition, a 3-month meditation retreat has been evaluated on
telomerase activity and the experience of stress, with participants

controlled in concentrative meditation techniques and collection
of peripheral blood mononuclear cell samples for telomerase
activity. Authors reported a clear link between meditation
and positive psychological change with telomerase activity
(Jacobs et al., 2011).

The suggested participation of the ECS on health benefits
of meditation may have direct and undirect roles of the
cannabinoid signaling. The undirect effects may arise from
the ECS regulation upon the “stress axis” hypothalamus-
pituitary-adrenal (HPA) that controls glucocorticoid (cortisol
or corticosterone) release (Gjerstad et al., 2018). Corticotropin-
releasing hormone (CRH) neurons of the paraventricular
hypothalamic nucleus (PVN) receive and integrate inputs
coming from brain areas comprising the limbic system that
are responsible for processing psychological stressors, such as
pre-frontal cortex, medial amygdala, paraventricular thalamic
nucleus, among others (Herman et al., 2002). The ECS is widely
expressed in all components of the limbic system and HPA
axis (Micale and Drago, 2018). The afferences from the limbic
system establish synaptic contact with local interneurons of the
PVN that inhibit or stimulate the CRHergic neurons through
GABAergic or glutamatergic synapses (Darlington et al., 1989;

FIGURE 5 | Regular mindfulness practice has consequences on physiological and psychological functioning with performance outcomes in sports, improving sleep
quality and work stress. Data on regular yoga users (transcendental meditation) faced modest average reductions in blood pressure. Depression or anxiety have also
been alternatively treated with non-conventional interventions, including exercise, yoga, and meditation. In addition, patients with mild-to-moderate Parkinson’s
disease, mindfulness yoga has been shown to be effective in improving motor dysfunction and mobility. An experimental study conducted on adults before and after
the 4-day Isha Yoga Bhava Spandana Program evaluated AEA, 2-AG, 1-arachidonoylglycerol (1-AG), DEA, oleoylethanolamide (OLA), and BDNF on anxiety and
depression through psychological scales. Authors reported changes in major eCBs levels, with increase in AEA, 2-AG, 1-AG, DEA, and BDNF after meditation,
suggesting a participation for these biomarkers in the underlying mechanism of meditation (Sadhasivam et al., 2020). Indeed, increased BDNF levels has been linked
in meditative practices and brain health in a 3-month yoga and meditation retreat assessed with psychometric measures, circadian salivary cortisol levels, and pro-
and anti-inflammatory cytokines (Cahn et al., 2017). In addition, a 3-month meditation retreat has been evaluated on telomerase activity and the experience of stress,
with participants controlled in concentrative meditation techniques and collection of peripheral blood mononuclear cell samples for telomerase activity. Authors
reported a clear link between meditation and positive psychological change with telomerase activity (Jacobs et al., 2011).
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Herman et al., 2002; Camille Melon and Maguire, 2016).
Recent studies demonstrated that the eCBs act like a
gatekeeper of the HPA axis, decreasing the activity of the
CRHergic neurons tonically, acting like a stress-buffer system
(Micale and Drago, 2018).

Experimental evidence supports the buffering role of the ECS
on stress response. Treatment with CB1 antagonist (SR141716A)
results in increased corticosterone release in mice (Wade
et al., 2006) and, in agreement, CB1 knockout mice have
increased basal secretion of adrenocorticotropin hormone and
corticosterone (Barna et al., 2004). Additionally, a mice model of
CB deficiency (Cnr−/−) is highly sensitive to chronic social defeat
stress protocol with altered glucocorticoid levels, suggesting
dysregulation of the HPA axis (Beins et al., 2021).

ENDOCANNABINOID SYSTEM MEETS
MITOCHONDRIA: RELEVANCE FOR THE
BRAIN

In order to maintain its cellular processes (including
neurotransmission, protein and lipid synthesis, and others),
CNS presents a high metabolic activity. Therefore, continuous
energy and oxygen supply is required (McKenna et al., 2019).
Mitochondria are then pivotal for normal brain function. Despite
the notorious role of mitochondria for cellular energetics and
redox homeostasis, these organelles are also involved in a myriad
of other physiological and pathophysiological mechanisms in the
cells (Niquet et al., 2006; Thornton and Hagberg, 2015; Devine
and Kittler, 2018; Belenguer et al., 2019). Mitochondria respond
in a dynamic fashion to cope with cellular demands (Bénard
et al., 2012; Labbé et al., 2014).

Although the mainstream signaling of CBs initiates at the
plasma membrane and invades the cytoplasm and intracellular
organelles, CB1 expression is predominantly intracellular
(Rozenfeld, 2011). Functional CB1 receptors are found on
intracellular compartments as endosomes (Rozenfeld and Devi,
2008) and mitochondria (Bénard et al., 2012). The biological
relevance of this unorthodox localization of CB1 receptors,
particularly in mitochondria, is still a matter of debate.

The seminal work from Bénard et al. (2012) showed that
either endocannabinoids or exogenous cannabinoids can activate
mitochondrial CB1 receptors in the brain. Such activation
tones down respiration, as well as PKA activity and the
intramitochondrial levels of the second messenger cyclic AMP
(cAMP). Genetic manipulation tools allowed the observation
that the activation of mitochondrial CB1 receptors in the
hippocampus leads to memory impairment (Hebert-Chatelain
et al., 2016). Activation of the astrocytic mitochondrial CB1
receptors decreases glucose metabolism and lactate formation
in the brain, impacting neuronal functioning, and animal
behavior (Jimenez-Blasco et al., 2020). It should be considered
that higher brain functions present demanding energy budget
and mitochondria are pivotal to the maintenance of brain
bioenergetics and the metabolism of neurotransmitters (Dienel,
2019). The ECS system seem to be differentially affected
depending on the stage of brain development (Volkow et al.,

2014; Alpár et al., 2016; Bara et al., 2021), which represents
a period of challenging metabolic demands (McKenna et al.,
2015). Therefore, these observations indicate that alterations on
mitochondrial CB1 receptors in the brain could represent a novel
therapeutical tool, as well as a possible mechanism underlying the
behavioral alterations elicited by cannabinoid consumption.

It has been reported that the levels of the eCB 2-
oleoylglycerol are low in the brain of mice lacking carnitine
palmitoyltransferase-1c (CPT1c) (Lee and Wolfgang, 2012).
CPT1c modulates energy homeostasis (Wolfgang et al., 2006)
and shows high homology with the isozymes CPT1a and CPT1b
but is restricted to neurons (Price et al., 2002). Whilst CPT1a
and CPT1b are found in mitochondria, where they bind acyl
moieties to carnitine (Ferreira and McKenna, 2017), CPT1c is
expressed in endoplasmic reticulum and its biological function
is still uncertain (Sierra et al., 2008). Whether on the one hand
it is still to be defined if the effect of CPT1c on the metabolism
of endogenous cannabinoids is either direct or indirect, on the
other hand recent reports implicate CPT1c with mitochondrial
function (Wang et al., 2020; Chen et al., 2021). Mitochondrial
adaptations also seem to be involved in the modulation of
feeding behavior elicited by ligands of CB1 receptors (Koch et al.,
2015); for a deeper discussion on cannabinoids affecting feeding
behavior refer to the section “Endocannabinoid System and the
Neuroendocrine Regulation of Energy Metabolism.”

CANNABIS AND THE
ENDOCANNABINOID SYSTEM

Cannabis use dates to the ancient Eurasian societies, with
evidence pointing to the territories of modern China and
Romania as the oldest sites of Cannabis use (plant and seeds) for
general purposes (Holland, 2010). A recent study found burned
traces of the plant in wooden braziers from a cemetery in western
China. The artifacts dated back 2500 years (500 BCE). Further
phytochemical analyses revealed an abundance of psychoactive
compounds in the samples, thus suggesting that Cannabis was
smoked as a way of provoking ritualistic or religious experiences
(Ren et al., 2019). Since then, Cannabis consumption has
undergone a series of social transformations, going from a
frequently prescribed medicine up until the first decades of the
20th century to a highly illegal drug. Cannabis is regaining
space in health care (Cunha et al., 1980), quite possibly, starting
a wave of legal precedents toward recreational use worldwide
(Bridgeman and Abazia, 2017). How does Cannabis modulate
the ECS? Which are the main consequences of marijuana
consumption on the classically recognized ECS properties?

An important concept to have in mind while discussing
Cannabis is that plants have been the main source of medicine
prior to the industrial revolution. In such context, the overall
effects of C. sativa in the human body were well-known long
before it elicited any interest from the scientific community.
In general, Cannabis consumption extenuates the physiological
effects attributed to the ECS, that is, “relax, eat, sleep, forget and
protect” (Di Marzo, 1998). After a single administration of THC,
it rapidly migrates from the blood to the brain and other high
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perfusion tissues. Then, it takes up to 2 days for the substance to
reach the highest concentrations in low perfusion tissues, and up
to 10 days until it is fully stored in the adipose tissue (Blesching,
2020). Coinciding with the presence of THC in the brain, the
psychotropic effects of Cannabis also start within minutes after
use and can last for a few hours.

The first and most reported effects of Cannabis start right after
consumption, and they are highly associated with the relaxation
component of the ECS. Effects on mood are generally described as
feelings of decreased anxiety, alertness, depression, and tension.
Also, it seems to promote sociability if the user is exposed
to a favorable environment. At higher doses, Cannabis users
may experience somewhat opposed effects such as increased
anxiety, paranoia, psychosis, and panic. Perception of color, time,
and space are also distorted, and may include hallucinations
with high doses. Decreased cognitive and motor skills were
repeatedly shown to affect even the experienced user, increasing
by a significant proportion the risk of motor vehicle accidents.
The consumption of alcohol and other CNS depressants are
additive to the cognitive and motor effects of Cannabis, as
reviewed by Ashton (2001).

The ability of Cannabis to positively regulate food intake in
humans raised considerable controversy in the 1970s, mainly
because most animal-derived data pointed toward decreased
instead of increased consumption after exposure to marijuana
(Abel, 1975). Later, investigations revealed that, in fact, after
crossing a certain threshold of Cannabis, humans tend to increase
their daily food intake by up to 1,000 calories. Interestingly, in all
scenarios examined the high caloric consumption was achieved
through eating more snacks instead of bigger meals (Foltin
et al., 1986). Indeed, chronic Cannabis use can increase adiposity
and insulin resistance, possibly through its sustained orexigenic
properties (Muniyappa et al., 2013). More recent studies with
knockout animals and receptor antagonists were able to include
the cannabinoid and endocannabinoid agents in the orexigenic
substance category (Kirkham and Williams, 2001). Hypothalamic
centers are stimulated by phytocannabinoids to induce food-
seeking behavior and to modulate hormone release (Pacher et al.,
2006). In the nucleus accumbens it increases motivation for
palatable food. Finally, cannabinoids control several endocrine
mechanisms in the liver, adipose tissue, muscles, and the
gastrointestinal tract, as reviewed by Pagotto et al. (2006).

Regarding the sleep-inducing effects of Cannabis, studies have
yielded mixed results. This apparent heterogeneity may stem
from the variable THC/CBD proportions and concentrations
found in Cannabis samples across studies. Overall, research
indicate that marijuana consumption has short-term benefits for
the treatment of sleep conditions, and that it progressively builds
tolerance on the user up to a point where chronicity causes
complete habituation. Some suggest that a higher proportion
of CBD may reduce tolerance and extend the sleep benefits of
cannabinoid-based treatments (Babson et al., 2017). In fact, phase
I–III studies with a 1:1 THC:CDB compound showed improved
sleep quality for patients with relevant pain conditions (Russo
et al., 2007). On a different perspective, sleep deprivation is shown
to correlate with increased likelihood of marijuana use among
teenagers, revealing that the benefits associated with marijuana

have reached public knowledge and may influence behavior
and substance use (Choi et al., 2020). Another highly reported
effect of marijuana is its ability to impair short- and long-term
memory. Schwartz et al. (1989) found that teenagers exposed
to marijuana develop short-term memory deficits lasting for up
to 6 weeks, which provided support to the previous evidence
and helped consolidate the clinical landscape for adolescent
Cannabis consumption (Deahl, 1991). A newly published meta-
analysis confirmed a relevant association between marijuana and
both short- and long-term memory loss. The study, however,
highlights that the effect sizes emerging from these correlations
were considerably small, suggesting a contrast with neuroimaging
studies associating Cannabis-induced memory loss and the
structural changes found in areas such as the hippocampus
(Figueiredo et al., 2020). In addition to memory impairment, it
is reasonable to associate Cannabis with problems in attention
and the ability to process complex information. This effect may
persist for weeks, months, or years, depending on the chronicity
and frequency of use (Solowij and Michie, 2007). In a functional
magnetic resonance study from 2006, working memory and
selective attention of frequent but moderate Cannabis users were
compared to that of healthy non-users. Except for an alteration
in brain activity on the left parietal superior cortex, researchers
found no support for the hypothesis of memory and attention
deficits emerging from moderate Cannabis use (Jager et al., 2006).
A later review of the evidence regarding the chronic effects of
marijuana abuse has shown that, although most effects emerging
from the plant are acute and tend to fade away with time, there
seems to exist some risk of decision-making impairment for the
long-term heavy user (Crean et al., 2011).

Some Voxel-based morphometry studies, on the other
hand, have shown that chronic users may be subject to
reduction of gray matter (GM) in several areas of the brain.
For instance, a decreased GM was reported on the medial
temporal cortex (cognitive and emotional functions), temporal
pole (emotional and social behavior), parahippocampal gyrus
(spatial memory), insula (roles in addiction and psychiatric
disorders), and the orbitofrontal cortex (emotion and memory)
of regular Cannabis users (Battistella et al., 2014). Demirakca
and coworkers investigated GM from the hippocampus of
recreational marijuana users. Accordingly, the group found
reduced GM volume on the right anterior hippocampus, with
further correlation analyses showing a potential protective role
for CBD among study participants (Demirakca et al., 2011).

Corroborating with (Battistella et al., 2014), a study from
Filbey et al. (2014) showed that chronic exposure to marijuana
reduces the volume of GM in the orbitofrontal cortex. Further,
the brain of frequent Cannabis users revealed complex structural
changes emerging as a function of onset and duration of use
(Filbey et al., 2014). Despite these reported alterations, the debate
remains on whether they are fully or partially reversible under
complete abstinence. This is especially important for patients
presenting with PTSD and chronic pain, conditions in which
treatment with Cannabis is effective, but may promote tolerance
after prolonged use (Cuttler et al., 2020; LaFrance et al., 2020).

Finally, an important discussion is necessary when long-term
effects on cognition of medical cannabis (MC) use is compared
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to recreational cannabis, especially in those with adolescent
onset. Comparison of MC patients from recreational consumers
considers diverse factors as motives for use, product selection,
and age of onset, and a recent study evaluated cognitive and
clinical measures in well-characterized MC patients over 1 year
(Sagar et al., 2021). MC patients finalized a baseline visit prior
to initiating MC and evaluations following 3, 6, and 12 months
of treatment, performing a neurocognitive battery assessing
executive function, verbal learning/memory, and clinical scales
assessing mood, anxiety, and sleep. Exposure to THC and CBD
was also measured. Authors reported that MC patients exhibited
significant enhancements on measures of executive function and
clinical state over the course of 12 months; clinical improvement
was associated with higher CBD use. Therefore, MC patients
may show improvements rather than impaired executive function
over time (Sagar et al., 2021). As Cannabis research remains
in its infancy (Zolotov and Gruber, 2021), further studies are
necessary to evaluate differences between recreational and MC
use to identify potential mechanisms related to cognitive changes
and the role of clinical improvement.

Although the molecular mechanisms underlying Cannabis-
induced cognitive deficits are still elusive, three mechanisms
have been proposed as necessary for these effects to emerge.
First, hippocampal activation of CB1 receptors seems to be more
pronounced on GABAergic than on glutamatergic populations of
neurons, thus inducing excess activation of glutamate receptors
in the hippocampus, which leads to molecular signals that
impair cognitive processing. Second, cannabinoids interfere with
choline, adenosine (A2 receptors) and serotonin signaling, thus
affecting the fine tuning of memory consolidation. Third, the
decrease in cell metabolism by activation of mitochondrial
CB1 receptors may extenuate the first and second mechanisms
(Prini et al., 2020).

FIGHTING NEURODEGENERATIVE
DISEASES WITH A STRONG
ENDOCANNABINOID SYSTEM

There is a growing interest to reveal novel active compounds
in the pharmaceutical field to improve health and longevity of
the elderly population. The average life expectancy of the global
population increased to 80 years in the developed countries,
compared to 50 years in the early 20th century (Jin et al.,
2014). People can expect to live into their 60s and beyond, as a
result in large reductions in mortality at younger ages. As high-
income countries continue to increase in life expectancy among
those who are older, a child born in Brazil can expect to live
20 years longer than one born just 50 years ago (World Health
Organization, 2015). However, rising life expectancy in developed
countries has as consequence the emergency of primary risk
factors for neurodegenerative diseases associated with aging.
Aging is the primary risk factor for most neurodegenerative
diseases, and one in 10 individuals aged more than 65 years
manifest symptoms of AD and its prevalence continues to
advance with increasing age. PD and AD are among the
most common neurodegenerative disorders, affecting millions of

people worldwide (Selkoe, 2011; Wirdefeldt et al., 2011; Tysnes
and Storstein, 2017). Both diseases have no cure, thus the
current treatments only reduce the main symptoms. In this sense,
searching new targets to prevent and/or impair the progression of
these diseases is highly desirable.

Components of the ECS are expressed in the basal
ganglia neural circuits, which modulate dopaminergic,
GABAergic and glutamatergic signaling. This network is
specially impaired during PD due to death of dopaminergic
neurons of the substantia nigra pars compacta (SNpc)
(Dauer and Przedborski, 2003; Benarroch, 2007). Disturbances
in the ECS homeostasis have already been observed in cerebral
areas associated with PD pathology in humans, as well as in
animal models. CB1 receptor mRNA is reduced in basal ganglia
of post-mortem brain of individuals with PD (Hurley et al., 2003);
in addition, levels of AEA are increased in the cerebrospinal
fluid in untreated PD patients endogenous (Pisani et al., 2005).
Similarly, in the 6-hydroxydopamine (6-OHDA)-induced
lesion model in rats the expression of the CB1 receptor was
significantly reduced in the substantia nigra pars reticulata
(SNpr) (Walsh et al., 2010), while CB2 receptor increased in the
striatum, followed by an enhance in microglial and astrocyte
activation (Concannon et al., 2015). Additionally, using the same
animal model, AEA levels are increased while FAAH activity
is reduced in the striatum, supporting a boost of the ECS, and
probably reflecting a compensatory mechanism to counteract
chronic dopamine depletion (Gubellini et al., 2002). Similarly,
as Huntington’s disease progress, CBs are also severely reduced
in all regions of the basal ganglia implying a potential role
for cannabinoids in the progression of neurodegeneration in
Huntington’s disease (Glass et al., 2000; Scotter et al., 2010).

Modulatory effects of the ECS in nigrostriatal pathway support
studies targeting this system as a therapeutic strategy in PD. In
animal models of PD, CB1 or CB2 synthetic agonists as well as
inhibitors of FAAH or MAGL improved motor impairments and
induced neuroprotection (Price et al., 2009; Fernández-Suárez
et al., 2014; Celorrio et al., 2016; Javed et al., 2016). Likewise,
treatment with CBD also enhances neuroprotection, both in vitro
and in vivo (Lastres-Becker et al., 2005; García-Arencibia et al.,
2007; Santos et al., 2015).

In open-label observational studies, smoking Cannabis
improved motor symptoms, such as tremor, rigidity, and
bradykinesia in Parkinson’s patients, and ameliorated sleep and
pain scores (Lotan et al., 2014; Shohet et al., 2017). Moreover,
purified CBD has shown to produce positive effects specially to
treat non-motor symptoms of PD, improving quality of life and
mental health in patients (Zuardi et al., 2009; Chagas et al., 2014).

The roles of the ECS regulating immune and cognitive
functions also support its modulation as a potential novel
therapeutic target in AD. Nevertheless, findings regarding CB1
receptor expression in this disease are still unclear and the
outcomes variable. In the 3×Tg-AD transgenic mice model, CB1
mRNA is increased in the prefrontal cortex, dorsal hippocampus,
and basolateral amygdala complex, while decreased in ventral
hippocampus of animals with 6 and 12 months of age, but
not at 2 months of age (Bedse et al., 2014). Interestingly, it
was observed in human AD brain samples an hyperactivation
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of CB1 receptor in earlier stages and a progressive decrease
in advanced stages of the disease (Manuel et al., 2014). These
results suggest that alterations in the ECS might be age and/or
pathology-dependent, indicating a relevant issue to be considered
in therapeutic approaches. In contrast, other studies showed
that CB1R immunocontent was unchanged in different cortical
regions and hippocampus of human post-mortem samples, and
in cortical areas evaluated by positron emission tomography in
individuals with AD pathology (Lee et al., 2010; Mulder et al.,
2011; Ahmad et al., 2014).

On the other hand, CB2R, MAGL, and FAAH are
increased adjacent to senile amyloid plaques associated with
microglia and/or astrocytes, exhibiting positive correlation with
Alzheimer’s progression and probably regulating inflammatory
mechanisms (Benito et al., 2003; Mulder et al., 2011). In fact,
activation of CB2 receptor protects hippocampal neurons from
Aβ1-42 toxicity (Zhao et al., 2020). Otherwise, transgenic
amyloid mice lacking CB2 receptor expression present
an increase in plaque deposition and plaque-associated
microglia, in addition to high soluble Aβ42 levels in the
brain (Koppel et al., 2014). Additionally, cannabinoid agonists
(HU-210, WIN55,212-2, and JWH-133) and JZL184, a MAGL
inhibitor, have anti-inflammatory and neuroprotective effects,
decreasing microglia effects and reducing the total Aβ burden
in vitro (Ramírez et al., 2005) and its precursors in the
APdE9 mouse model (Ramírez et al., 2005; Pihlaja et al.,
2015). ACEA (arachidonyl-2-chloroethylamide), a selective
cannabinoid CB1 receptor agonist, also increases cortical
neurons viability exposed to Aβ-42 oligomers, inducing
cognitive improvement in AβPP/PS1 mice. These effects are
correlated with a decreased astroglial reactivity and production
of pro-inflammatory proteins, since ACEA did not impair Aβ

aggregation (Aso et al., 2012).
Similarly, CBD and THC have demonstrated neuroprotection

in chronically treated AβPP/PS1 mice showing improvements
in memory tasks and a decrease in soluble Aβ42 levels,
astrogliosis, and several neuroinflammation markers (Aso et al.,
2015). Also, CBD alone prevented the development of a social
recognition deficit in the same animal model (Cheng D. et al.,
2014). Furthermore, in vitro assays showed that CBD shows
neuroprotective effects in PC12 cells through Wnt/β-catenin
pathway in Aβ-induced toxicity model (Esposito et al., 2006).

Although the current findings still do not validate a direct
effect of the cannabinoid-based medicine in memory or cognition
in AD patients, other symptoms might be alleviated using this
approach. Data from mice suggest that treatment with CB1
receptor antagonists might restore memory capacity in animals
administered with beta-amyloid fragments that lead to memory
disturbances (Mazzola et al., 2003). Alternatively, VDM-11, an
inhibitor of eCB cellular reuptake, increased rat hippocampal and
mouse brain eCB levels, reversing hippocampal damage in rats,
and loss of memory retention in the passive avoidance test in
mice, when administered from the 3rd day after beta-amyloid
peptide (1–42) injection (van der Stelt et al., 2006). Therefore,
early, as opposed to late, pharmacological enhancement of brain
eCB levels might protect against beta-amyloid neurotoxicity and
its consequences, reviewed in Micale et al. (2007). In severely

demented patients, a prospective observational study showed that
the use of oral Cannabis extract, with THC/CBD, significantly
improved behavior problems, reducing rigidity, and simplifying
daily care (Broers et al., 2019). Moreover, medical Cannabis oil
enriched in THC has differential effects on the Neuropsychiatric
Inventory (NPI) scale, probably dependent on the duration and
dosage (van den Elsen et al., 2015; Shelef et al., 2016).

Taken together, a growing number of studies have
demonstrated beneficial effects of the ECS activation which has
proven an excellent target for the treatment of neurodegenerative
disease, reducing significative symptoms and improving
well-being in these individuals.

ENDOCANNABINOID SYSTEM AND THE
NEUROENDOCRINE REGULATION OF
ENERGY METABOLISM

Endocannabinoid System and the
Hypothalamus – Adipose Tissue Axis in
Obesity
Obesity is a major health issue (Kelly et al., 2008) and no country
succeeded in decreasing the number of obese individuals in the
last decades, indicating the limitation of the worldwide public
health policies (Burgio et al., 2015). The obesity etiology is
multifactorial with interactions of the genetic background and
environmental cues (malnutrition, poor PA, toxicant exposure,
and stress) that result in unfavorable metabolic phenotype
(Rohde et al., 2019). Obesity results from an imbalance between
energy intake and expenditure, with the hypothalamus as a major
regulator in the CNS.

The hypothalamus is an evolutionarily ancient part of the
brain and acts as an integrating node since peripheral inputs
are brought together in this region (Burbridge et al., 2016).
The hypothalamus is a master homeostatic regulator, capable
of modulating activities that are crucial to life, such as energy
homeostasis (Roh et al., 2016) and glycemic control (Pozo and
Claret, 2018). Interestingly, in obesity and the high-fat diet
intake, afferent signals can be differently received and sensed by
subsets of hypothalamic nuclei, contributing to the development
of metabolic disorders (Formolo et al., 2019).

The hypothalamus receives information on the status of
body energy storages through sensory innervation and hormone
secretion mainly from the white adipose tissue (WAT) and
gastrointestinal tract (Roh et al., 2016). In this context, the
adipocyte-derived hormone leptin is a key factor because it
is produced according to nutritional status and adipose tissue
mass (Friedman, 2019). Leptin activates subsets of hypothalamic
neuronal populations, inducing an anorexigenic effect, increasing
energy expenditure, and acting as an antidiabetic signal (Bouret
et al., 2004; Pozo and Claret, 2018). Obese subjects frequently
present hyperleptinemia but leptin resistance (Dragano et al.,
2017), which contributes to the positive energy balance due to
several mechanisms, including the over activation of the ECS
signaling in the CNS (Thanos et al., 2008; Cristino et al., 2013)
and adipose tissue (Sarzani et al., 2009).
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Hypothalamic leptin action leads to phosphorylation of
STAT3 (signal transducer and activator of transcription 3)
(pSTAT3) and is especially critical for hypothalamus maturation
(Bouret et al., 2004). Interestingly, leptin-deficient obese
mice or diet-induced obese mice present increased levels
of CB1 and DAGL in the lateral hypothalamus (Cristino
et al., 2013), evidencing an inverse relationship between leptin
and ECS signaling.

In a rat model of maternal obesity, maternal high-fat diet
intake during pregnancy down-regulates hypothalamic STAT3
in neonate rat offspring associated with hypoleptinemia only
in male pups. This profile occurred in parallel to increased
levels of CBs in the hypothalamus of the neonate offspring
(Dias-Rocha et al., 2018; Almeida et al., 2019). Surprisingly,
ECS changes were observed before obesity and hyperinsulinemia
development in the offspring (Almeida et al., 2017) and remains
until adulthood (Dias-Rocha et al., 2018; Almeida et al., 2020).
The maternal high-fat diet also increases plasma –n-6/n-3 ratio
in newborn rat offspring (Almeida et al., 2019), which might
indicate an increased risk factor for metabolic disorders and
over activation of the ECS signaling (Freitas et al., 2018). This
profile also suggests a disruption in the brain-adipose tissue
axis for appetite regulation, since the adipose tissue lipid profile
impacts the local eCB content, while the FAAH inhibition leads
to diet-induced hyperphagia in adult genetically modified mice
(Li et al., 2018).

The overall balance between the anorexigenic and orexigenic
hypothalamic neuropeptides defines the final metabolic outcome,
and CB1 activation modulates feeding by enhancing the
orexigenic signals and preference for fat (D’Addario et al.,
2014; McGavin et al., 2019). In a mice model, the CB1
activation specifically in hypothalamic proopiomelanocortin
(POMC) neurons increases food intake by increasing selectively
the production of β-endorphin, an orexigenic peptide involved
in reward, from POMC cleavage (Koch et al., 2015). In
leptin-deficient obese mice, CB1-expressing presynaptic neurons
change from glutamatergic to predominantly GABAergic in
the lateral hypothalamic area, and because CB1 is associated
with Gi/o protein, this remodeling results in increased orexin-
A, an orexigenic peptide (Cristino et al., 2013). In rats, the
CB1 activation decreases hypothalamic serotonergic activity, an
important satiety signal, and induces disinhibition of GABA
release to stimulate food intake (Cruz-Martinez et al., 2018).

Cannabinoid receptor type 1 activation promotes the
conservation of energy not only promoting food intake by
hypothalamic mechanisms but also inhibiting energy expenditure
by reducing the uncoupling protein 1 (UCP1) expression and
thermogenesis in the brown adipose tissue (BAT), which favors
the WAT expansion (Maccarrone et al., 2015). CB1 density in
the brain, BAT, and WAT of overweight subjects are modified
compared to lean subjected, reflecting the impairment of ECS
in obesity (Lahesmaa et al., 2018). CB1 signaling also activates
lipogenesis and adipogenesis in WAT depots (Maccarrone et al.,
2015; Ruhl et al., 2020), such as visceral (VIS) and subcutaneous
(SUB), which present structural and functional differences
associated with a CB1 depot-specific expression. The VIS WAT
expansion is a greater predictor of mortality than SUB WAT

excess (Ibrahim, 2010). CB1 expression is lower in VIS WAT than
in SUB WAT of lean subjects, while there is no differential CB1
expression between WAT depots in obese subjects (Bennetzen
et al., 2010). CB1 gene expression is twofold higher in SUB WAT
from type 2 diabetes subjects, as compared to control subjects
(Sidibeh et al., 2017).

Regarding the role of CB2 in energy metabolism, its role
as a pro- or anti-inflammatory in the central and peripheral
tissues is controversial (Ueda et al., 2007; Deveaux et al., 2009;
Chiurchiu et al., 2014; Maccarrone et al., 2015; Verty et al., 2015).
Studies have reported a CB2 anti-obesity effect by silencing the
activated immune cells in mice adipose tissue (Verty et al., 2015;
Notarnicola et al., 2016), as well as a diet enriched with olive oil as
responsible for increasing CB2 receptor expression in this tissue
(Notarnicola et al., 2016).

Programming of the Endocannabinoid
System During Early Life
The tonus of the ECS in the brain and peripheral tissues
may be modulated by unappropriated parental life style and
environmental conditions (nutrition, toxicant exposure, and
stress) during the perinatal period and adolescence, predisposing
offspring to metabolic and behavioral disorders throughout life
(Figure 6; Lopez-Gallardo et al., 2012; Stringer et al., 2013;
Ramirez-Lopez et al., 2015, 2016a,b; Romano-Lopez et al., 2016;
Almeida et al., 2017, 2019, 2020; Dias-Rocha et al., 2018; Gandhi
et al., 2018; Miranda et al., 2018; de Oliveira et al., 2019; Soares
et al., 2019; Rivera et al., 2020). This phenomenon is known
as “metabolic programming” or “ontogenetic plasticity” and
involves epigenetic regulation of gene expression (Brenseke et al.,
2013; Lillycrop and Burdge, 2015; Gluckman et al., 2019).

Maternal obesity/overweight and hypercaloric diet
consumption are major concerns for metabolic programming.
Two-thirds of American women at reproductive age are
overweight, which represents a risk for their own health and the
following generations (Stang and Huffman, 2016).

Maternal high-fat (45% fat) diet decreases serum levels of
eCBs in baboon offspring at birth (Gandhi et al., 2018). In rats,
a maternal hypercaloric-low protein diet (6% protein, 24% fat)
decreases hypothalamic endocannabinoid levels only in newborn
male offspring, while decreases the preference for a chocolate diet
and induces anxiety-like behavior in these animals in adulthood
(Ramirez-Lopez et al., 2015, 2016a). In a rat model, maternal
isocaloric high-fat (29% fat) diet increases hypothalamic CB1
and CB2 expression in newborn male and female offspring,
respectively, while increasing CB1 expression in BAT only in
male offspring at birth (Dias-Rocha et al., 2018; Almeida et al.,
2019). In addition, maternal high-fat diet induces a differential
regulation of CB1 content between visceral and subcutaneous
WAT, suggesting redistribution of fat storages favoring visceral
depot (Almeida et al., 2017). These ECS changes occurred in
parallel to alteration of molecular markers of adipogenesis,
lipogenesis, and thermogenesis across the adipose tissue depots
of offspring at weaning (Almeida et al., 2017). Interestingly, there
are sex-specific molecular signatures in the offspring at early life,
but high-fat offspring of both sexes develop obesity, hyperphagia,
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FIGURE 6 | Maternal environmental insults such as diet, smoking, and alcohol
consumption during critical periods of life, as gestation, may affect the ECS in
the hypothalamus-adipose axis of the mother and the progeny. The ECS
disruption during early life can program metabolism in a short- and long-term
way increasing the risk to develop metabolic syndrome and behavioral
changes throughout life.

and a higher preference for fat in adulthood (Dias-Rocha et al.,
2018; de Almeida et al., 2021).

Of note, although many benefits of phytocannabinoids have
been discussed in the context of neurodegenerative diseases
and stress relief, the use of Cannabis during critical periods
of development such as gestation and lactation as well as
during adolescence may be harmful. Prenatal Cannabis exposure
predicts fetal growth restriction, preterm delivery, and neonatal
intensive care (Nashed et al., 2020). In human term placenta,
THC increases AEA levels, which might be detrimental for the
balance of trophoblast cells turnover leading to alterations in
normal placentation and fetal growth (Maia et al., 2019). In
pregnant rats, Cannabis exposure reduces placental fetal capillary
area and increases collagen deposition, these changes occur
in parallel to reduced glucose transporter 1 expression in the
labyrinth which may account for intrauterine growth restriction
(Natale et al., 2020).

Tetrahydrocannabinol crosses the placenta and binds to fetal
CBs, changing neurodevelopment and possibly predisposing
the offspring to abnormalities in cognition and emotion in
humans and animal models (Richardson et al., 2016; De Genna
et al., 2021). In mice, THC exposure from embryonic day
12.5 to embryonic day 16.5, a critical window for corticospinal
motor neuron development, results in a transient decrease in
CB1 content and binding in whole embryonic brain that is
rescued by postnatal day 2. These alterations are associated
with increased seizure susceptibility in adult offspring (de Salas-
Quiroga et al., 2015). Interestingly, embryonic THC exposure

selectively decreases CB1 in the hippocampus of male mice at
postnatal day 20 in parallel to decreased CB1-expressing GABA
interneurons, resulting in impaired spatial memory in male adult
mice (de Salas-Quiroga et al., 2020). In rats, maternal THC
exposure from embryonic day 15 to postnatal day 9 decreases
CB1 binding in the hippocampus and impairs GABAergic
function in adult male offspring (Beggiato et al., 2017) associated
with deficits in learning and memory (Campolongo et al., 2007).

The adolescence is also an important vulnerable window of
Cannabis exposure because adolescent brain is under relevant
developmental plasticity. THC exposure in adolescent rats
reduces CB1 content in the PFC and VTA at adulthood and,
surprisingly, improves working memory performance in males
(Stringfield and Torregrossa, 2021). Interestingly, male adult rats
exposed to THC during 10 days in adolescence display increased
self-administration of synthetic cannabinoid agonist associated
with decreased dopamine levels in the NAc, suggesting addiction-
like behavior that occurs in parallel to increased anxiety-like
behavior (Scherma et al., 2016).

Epigenetic Regulation of the
Endocannabinoid System
Epigenetics is strongly involved in the regulation of gene
expression during early development and in response to
psychological, metabolic, and nutritional influences to promote
adaptation to environmental challenges throughout life.
Epigenetic mechanisms are chemical modifications in the DNA
or histones which alter chromatin status and gene transcription
levels without changes in the nucleotide DNA sequence.

The main epigenetic marks are DNA methylation and histone
acetylation. DNA methylation in the promoter region generally is
associated with decreased transcription while histone acetylation
shows an opposite fashion of regulation. Lifestyle features such
as diet (Di Francesco et al., 2015; Park et al., 2017; Tremblay
et al., 2017), exercise (King-Himmelreich et al., 2016; Jonsson
et al., 2021), stress (Lomazzo et al., 2017; Cao-Lei et al.,
2019), pollutant exposure (Rauschert et al., 2019; Calderon-
Garciduenas et al., 2020), drug abuse (Murphy et al., 2018;
Grzywacz et al., 2020), and even perinatal environment (Joss-
Moore et al., 2015) are known to modulate epigenome in humans
and experimental models.

Epigenetics and ECS interplay regulating homeostasis from
early embryogenesis to the point-by-point adjustments in adult
life (Gomes et al., 2020). Interestingly, the genes encoding
the main ECS components (Cnr1, Cnr2, Faah, and Mgll)
are known to be physiologically regulated by epigenetic
mechanisms and in response to diseases or environmental cues
(Meccariello et al., 2020).

Most of the studies are focused on the Cnr1 gene. Cnr1
contains two exons in the rat and four exons in humans without
a classic CpG island (CpG dinucleotide frequency <60%) in
the promoter. The methylation levels in the Cnr1 promoter
are relatively high in peripheral tissues or cell types including
human and rat colon cells (Di Francesco et al., 2015), and human
peripheral blood cells (Rotter et al., 2013), with global promoter
methylation ranging from 70 to 95%. In the brain, the Cnr1
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methylation levels are low, as expected, ranging from 10 to 30%
(Mancino et al., 2015; D’Addario et al., 2017; Almeida et al.,
2019). The inverse association between promoter methylation
and Cnr1 mRNA levels is observed in several studies (Di
Francesco et al., 2015; Szutorisz and Hurd, 2016; D’Addario
et al., 2017). In humans, there is a progressive decrease in Cnr1
expression in the hippocampus and PFC from fetal to adult life,
which is inversely associated with DNA methylation levels (Tao
et al., 2020). In rats, maternal high-fat diet during pregnancy
increases the Cnr1 expression and histone acetylation of its
distal promoter in the hypothalamus of male newborns (Almeida
et al., 2019). In humans and animal models of schizophrenia,
there are higher Crn1 mRNA levels in blood cells and PFC,
respectively, which was associated with decreased methylation in
the promoter (D’Addario et al., 2017). Also, the expression of the
Cnr1 gene increases in the PFC of patients with schizophrenia
who completed suicide or were exposed to ethanol or THC (Tao
et al., 2020). Chronic stress in mice decreases the expression
of Cnr1 in the cingulate cortex associated with reduced levels
of histone acetylation (Lomazzo et al., 2017). CB1 activation by
AEA is important to regulate the negative feedback and the basal
activity of the HPA axis and, during stress, there is a decrease in
AEA that may contribute to increased stress response and anxiety
behavior (Morena et al., 2016).

Sex Differences in the Central and
Peripheral Endocannabinoid System in
Health and Obesity
Body adiposity is under the regulation of both sex steroids and
eCBs, and it is well known that males and females present specific
fat distribution. While male subjects accumulate fat mainly in
the intra-abdominal compartment, females are more likely to
accumulate subcutaneous fat (Min et al., 2019). Fat distribution
changes throughout life, especially after menopause when females
undergo a profound decrease of ovarian hormones with fat
redistribution favoring visceral accumulation (Toth et al., 2000).

Interestingly, there are several pieces of evidence pointing
to a mutual regulation between ECS and sex hormones in the
CNS (Castelli et al., 2014) and peripheral tissues such as the
uterus (Maia et al., 2017), gut (Proto et al., 2012), and adipose
tissue (de Almeida et al., 2021). In healthy individuals, functional
imaging studies have shown that males have more CB1 than
females in several brain areas, including the PFC (Laurikainen
et al., 2019), a region importantly involved in the hedonic
response to palatable foods (Petrovich et al., 2005; Coccurello
and Maccarrone, 2018). Additionally, females under treatment
with combined oral contraceptives tend to present lower levels
of CB1 compared to females with no contraceptives or during
menopause, suggesting an inhibitory role of the estrogen levels
on ECS (Laurikainen et al., 2019).

Studies in drugs of abuse have shown that women develop
Cannabis addiction faster than men (Hernandez-Avila et al.,
2004; Cooper and Haney, 2014), a phenomenon that has been
confirmed also in experimental models of addiction (Fattore
et al., 2007). Estradiol treatment in ovariectomized rats decreased
CB1 receptor binding in the PFC (Castelli et al., 2014), evidencing

an inverse relationship between estradiol levels and CB also in
the rat brain. This association may explain, at least in part, lower
CB1 binding in the brain of premenopausal women compared to
male individuals.

Experimental studies have also shown that ECS is modulated
in a sex-specific manner by several stressful events early in
life. Adolescent female rats exposed to maternal deprivation
in mid-lactation have increased levels of ECS components in
the hippocampus while males exposed to the same insult have
an increase of ECS in the PFC (Marco et al., 2014). In a rat
model of a maternal high-fat diet during gestation, male offspring
have increased CB1 content in the hypothalamus at birth while
female offspring had increased CB2 (Dias-Rocha et al., 2018),
as mentioned before, highlighting the sex-specific effect of ECS
modulation in the early origins of obesity. Adult female rats
programmed by maternal high-fat diet early in life have increased
CB1 content in WAT associated with decreased estradiol
circulating levels, and a similar profile was observed in adipose
tissue of ovariectomized adult rats (de Almeida et al., 2021).

The crosstalk between ECS and sex steroid hormones is
still reinforced by the characterization of estrogen or androgen
response elements in the promoter of the genes encoding the ECS
components, suggesting a direct interaction for transcriptional
regulation (Grimaldi et al., 2012; Proto et al., 2012; Lee et al.,
2013). Therefore, it is important to be aware that nutritional or
pharmacological modulation of the ECS to improve health must
consider different outcomes depending on sex.

Endocannabinoid System and Weight
Loss
Modulation of the ECS in the CNS and peripheral tissues
is an important strategy for weight loss (Quarta and Cota,
2020). Pharmacological CB1 antagonism reduces food intake
and preference for palatable foods (rich in fat and sugar)
by central mechanisms (Coccurello and Maccarrone, 2018).
Also, CB1 antagonism decreases adiposity by a direct effect on
white and brown adipocytes, where it reduces lipogenesis (Ma
et al., 2018) and increases thermogenesis (Boon et al., 2014),
respectively. As known, the anti-obesity drug rimonabant (CB1
inverse agonist) entered in the market in 2006 showing great
efficacy in reducing adiposity, leptin, and insulin resistance as
well as improving glucose and lipid metabolism (Quarta and
Cota, 2020). However, 2 years later, the drug was removed from
the market due to relevant side effects as anxiety, depression,
and suicidal ideation (Christensen et al., 2007; Van Gaal et al.,
2008; Sam et al., 2011). Therefore, there is a huge interest
in the development of CB1 antagonism as a pharmacological
tool for the treatment of metabolic disorders, with a better
safety profile. In this sense, a study was performed in male
C57BL/6 N mice undergoing auditory fear conditioning, followed
by re-exposure to the tone with TM38837, largely peripherally
restricted CB1 antagonist. Authors evaluated fear-promoting
consequences of systemic vs. intracerebral injections and showed
that TM38837 was at least one order of magnitude less
effective in promoting fear responses than rimonabant. Given
the equipotency of the two CB1 antagonists with regard to
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weight loss and metabolic syndrome-like symptoms in rodent
obesity models, the results point to a critical dose range in which
TM3887 might be beneficial for indications such as obesity and
metabolic disorders with limited risk of fear-promoting effects
(Micale et al., 2019).

The impact of pharmacological modulation of CB2 on
body weight regulation and metabolism is still controversial,
but this receptor is involved in the inflammatory status of
the WAT. The pharmacological CB2 antagonism improved
adiposity and pro-inflammatory state in WAT and liver of
obese mice (Deveaux et al., 2009). On the other hand, Rossi
et al. (2016) suggested that CB2 activation has anti-obesity
effects, since the CB2 blockage increases fat store and reduces
browning in human adipocytes. Furthermore, studies have
reported a CB2 anti-obesity effect by silencing the activated
immune cells in mice adipose tissue (Verty et al., 2015;
Notarnicola et al., 2016).

Currently, there are no anti-obesity drugs based on the
ECS in the market but pre-clinical studies suggest that
CB1 pharmacological modulation using peripherally restrict
molecules are promising (Quarta and Cota, 2020). Alternatively,
non-pharmacological strategies of weight loss can also modulate
the ECS avoiding the side effects in the CNS.

Caloric restriction is well known to be an important strategy
for weight loss and improvement of metabolism. Recently,
it was demonstrated that these beneficial effects involve a
decrease in the circulating levels of AEA in type 2 diabetic
patients which was strongly correlated with a decrease of
the subcutaneous adipose tissue mass and, possibly, increased
content of FAAH in adipose tissue (van Eyk et al., 2018). Low
AEA levels may result in attenuation of the ECS tonus in
the CNS reducing hungry and in peripheral tissues attenuating
lipogenesis and insulin resistance (Bermudez-Siva et al., 2006).
In contrast, the investigation of the ECS components in
subcutaneous adipose tissue before and after weight loss in
obese patients showed no effect on tissue levels of AEA and
increased expression of Faah mRNA (Bennetzen et al., 2011).
In a randomized controlled trial, healthy subjects underwent
a 12-week moderate aerobic exercise program for weight loss
and showed reduced levels of AEA which was associated
with improvement in mood and anger (Belitardo de Oliveira
et al., 2019). Polymorphisms of the Faah gene have been
associated with metabolic benefits after weight loss induced
by a 3-month dietary intervention with a high-PUFA diet in
obese subjects, such as a decrease in insulin resistance and
leptinemia (de Luis et al., 2013), evidencing the important
role of the endocannabinoid metabolism in metabolic health.
Weight loss in morbid obesity (BMI > 40) is even more
challenging and frequently requires a more invasive intervention,
such as bariatric surgery. Interestingly, the weight loss and
metabolic improvement observed in gastric bypass (RYGB)
involve activation of the sympathetic tonus in the gut, which
was associated with decreased CB1 and activation of WAT
thermogenesis, a phenomenon known as “browning” that
increases energy expenditure and resting metabolic rate (Ye
et al., 2020). Therefore, the modulation of the peripheral ECS
(adipose tissue, gut, and liver) may also represent an important
therapeutical target for bodyweight management.

ENDOCANNABINOIDS AND INBORN
ERRORS OF METABOLISM

Inborn errors of metabolism (IEM) are genetic diseases caused
by qualitative or quantitative deficiency of a specific protein. This
protein may be an enzyme, transporter, receptor or else, and can
affect different metabolic pathways. At present, more than 1,000
IEM have been described (Ferreira et al., 2019) and the majority
significantly impact the quality of life of affected patients.

A few inborn errors of eCB metabolism have been described
and can be associated with neurodegeneration (Metzler, 2011).
Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, retinal
degeneration and early-onset cataract, as well as cerebellar ataxia
and slowly progressive polyneuropathy, are the main findings
observed in a disease known as PHARC (Fiskerstrand et al., 2010;
Nishiguchi et al., 2014). PHARC is an autosomal recessive disease
caused by mutations in the α/β hydrolase domain-12 (ABHD12)
gene, leading to increased 2-AG levels (Fiskerstrand et al., 2010).

Fatty acid amide hydrolase deficiency significantly increases
AEA sensitivity and endocannabinoid signaling (Cravatt et al.,
2001). Individuals presenting mutations in the FAAH gene are
more susceptible to drug and/or alcohol abuse (Sipe et al.,
2002; Flanagan et al., 2006; Sim et al., 2013). Furthermore,
inheritable deletions in the pseudogene FAAHP1, as found
in pain sensitivity quantitative trait locus-1 (PAINQTL1), are
associated with insensitivity to pain (Habib et al., 2019).

Endocannabinoid system may also be implicated in the
pathophysiology of other IEM. For instance, it has been suggested
that endocannabinoid metabolism and signaling are impaired
in several lysosomal storage diseases (LSD) (Schuchman et al.,
2021). Studies using animal models of Niemann-Pick disease type
A and B (acid sphingomyelinase deficiency) showed that CB1
receptors are downregulated on the surface of neurons probably
due to entrapment of the receptor within lysosomes (Bartoll
et al., 2020). Niemann-Pick disease type C is a potentially fatal
LSD caused by mutations of NPC1 or NPC2 gene, impairing
cholesterol homeostasis (Vanier, 2010). Membrane cholesterol
plays a pivotal role in the ECS regulation (Dainese et al.,
2010). This neurotransmitter system has been shown to be
defective in animal models of Niemann-Pick disease type C
(Galles et al., 2018; van Rooden et al., 2018), contributing to
the neurodegeneration observed in patients (Oddi et al., 2019).
CB2 receptors were shown to be altered in animal models
of mucopolysaccharidosis type IIIA and of acid ceramidase
deficiency (Farber’s disease) (Bhaumik et al., 1999; Alayoubi et al.,
2013). In both diseases the overexpression of CB2 found in many
tissues are probably related to the neuroinflammation observed
in these animals (Schuchman et al., 2021).

Organic acidurias are IEM characterized by the accumulation
of one or more organic acids in tissue and body fluids of
patients, with significantly brain function impairment (Wajner,
2019). Glutaric aciduria type I, methylmalonic aciduria
and propionic aciduria are organic acidurias in which
neurodegeneration is related to different pathophysiological
mechanisms including oxidative stress, impairment of
bioenergetics, and neurotransmitter systems (Wajner, 2019).
In vitro experiments showed that WIN55,212-2 protects
from neurotoxicity elicited by organic acids accumulating in
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glutaric aciduria type I, methylmalonic aciduria and propionic
aciduria. This protective effect was attributed to a possible
ECS imbalance in the pathophysiology of organic acidurias
(Colín-González et al., 2015).
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