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Abstract: Hybrid organic–inorganic perovskite (HOIP) photovoltaics have emerged as a promising
new technology for the next generation of photovoltaics since their first development 10 years ago,
and show a high-power conversion efficiency (PCE) of about 29.3%. The power-conversion efficiency
of these perovskite photovoltaics depends on the base materials used in their development, and
methylammonium lead iodide is generally used as the main component. Perovskite materials have
been further explored to increase their efficiency, as they are cheaper and easier to fabricate than
silicon photovoltaics, which will lead to better commercialization. Even with these advantages,
perovskite photovoltaics have a few drawbacks, such as their stability when in contact with heat and
humidity, which pales in comparison to the 25-year stability of silicon, even with improvements are
made when exploring new materials. To expand the benefits and address the drawbacks of perovskite
photovoltaics, perovskite–silicon tandem photovoltaics have been suggested as a solution in the
commercialization of perovskite photovoltaics. This tandem photovoltaic results in an increased PCE
value by presenting a better total absorption wavelength for both perovskite and silicon photovoltaics.
In this work, we summarized the advances in HOIP photovoltaics in the contact of new material
developments, enhanced device fabrication, and innovative approaches to the commercialization of
large-scale devices.

Keywords: power conversion efficiency; hybrid perovskite; tandem structure; photovoltaics; com-
mercialization

1. Introduction

Nowadays, silicon photovoltaics (PVs) have successfully achieved a high power
conversion efficiency (PCE) of 26.7% [1] and this nearly approaches the theoretical limit
value (29.4%) [2], and has led the PV sale sector, with more than 90% of the market share [3].
However, its numerous drawbacks, such as the scarcity of its pure state, the requirement
of high energy to separate the bonded oxygen in silicon dioxide, and their PCE stagnancy,
which has kept it in the range of 25% for over 15 years, have limited silicon PVs for
further development. Perovskite PVs with a higher PCE are a promising PV replacement
in overcoming the limitations of silicon PVs. After a decade of development, a high PCE
value of 29.3% [4] has been achieved by perovskite PVs, and this value is similar to the
theoretical limit value for silicon PVs. Other advantages offered by perovskite PVs include
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its capability in absorbing the visible spectrum, simplicity and cost-effective production
(about $2.5/cell) [5,6].

The meta-analysis study presented in Ref. [7] provides a comprehensive view of the
total costs of different PV materials, where CdTe was found to have the least capital and
lifecycle costs among the PVs. Another analysis, specifically on perovskite tandem costs,
in [8] emphasizes the commercial potential of PV perovskite tandem cells. The structure
and light absorption of the perovskite layer, which depends on the energy level and carrier
transport properties, will affect the PV’s PCE value. Therefore, most research has been
focused on optimizing the morphology, energy level, and conductivity of perovskite PVs.
Enhancing the structure, reducing defects, and increasing the grain size are several ways to
improve the performance of perovskite PVs. These efforts have definitely been affected
by the materials used in the synthesis process, and the selection of device fabrication
methods [9,10].

With more research being focused on perovskites, HOIPs have been a focus since
their emergence, and have shown numerous great characteristics, such as easy growth
due to their cubic structures [9,10], a wide absorption range compatible with the solar
spectrum [11], and a low exciton binding energy with a long carrier diffusion length [12]. All
of these examples make HOIPs promising materials for emerging photovoltaic technology.

As an example of a HOIP, methylammonium lead halide (MAPbX3, X = Cl−, Br−, or
I−) was the first material used for perovskite PV fabrication and resulted in a 3.8% PCE
value, in 2009 [13]. In more than 10 years, this PCE value has increased to 29.8% by applying
a smaller active area of 1 cm2 and by continuously focusing on improving operational
stability [4]. This rapid progress has triggered interest in transferring existing technology,
from small-area to large-area perovskite, which is necessary for industrial expansion [14].
To meet the requirements of a high quality and large-area uniformity for perovskite films,
several deposition methods, based on solution, vacuum [15–17], and solution–vacuum
hybrid processes, have been developed and optimized. Recent works have been based on
solution processes, such as spin-coating [18], spray-coating [19,20], blade coating [21,22],
slot-die coating [23,24], softcover [25–27], and screen printing [28–30]. However, even with
several achievements in terms of grain size and increases in efficiencies through different
fabrication method, these are still not enough for successful commercialization of perovskite
PVs due to the remaining challenges that need to be solved. The primary challenge here
is to achieve long lifetimes with a good stability at the module level [31]. Although much
progress has been made, it is still challenging for perovskite PVs to reach the most popular
international standards (IEC61215:2016) for mature PV technologies.

This challenge has triggered further studies on joining the structure of perovskite
and silicon PVs, so-called tandem PVs. This effort was undertaken in order to improve
PV performance through a combined system that can efficiently absorb solar radiation in
both the visible and the near-infrared region [32]. In addition, due to the possibility of
bandgap tuning, the perovskites themselves can be combined into an all-perovskite tandem
photovoltaic, with both the top and bottom cells using a perovskite absorber. All of these
efforts are still very young technologies, but enable remarkable PCEs, close to—or even
above—those of the best single-junction cells [33,34]. This potential has been recognized,
not only by various research institutes, but also by several start-up companies, such as
Oxford PV, Swift Solar, and Tandem PV, who have developed their own perovskite PVs
for commercialization.

Previous reviews discussed the effectiveness of hole transport and molecular materials
in PV cells, where we can obtain cells with PCEs of up to 25% [35,36]. Other detailed
reviews dedicated to hybrid organic–inorganic halide perovskites have emphasized that
HOIPs are high-quality materials for PVs [37,38]. Finally, a recent review discussed dif-
ferent perovskite fabrication methods to develop large-area PVs with moderate-to-high
PCEs [39]. In this work, we present a review that summarized advances in perovskite to
perovskite–silicon tandem PVs, as this leads to a better commercialization. Advancements
in materials to improve characteristics, leading to large-scale devices that are prepared
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for commercialization, are discussed in detail. Finally, we also highlight future research
directions to achieve advances in extensive commercialization.

2. Materials and Fabrication Methods
2.1. Materials

Perovskite is a type of PV that includes perovskite-structured compounds that use tin
or lead halides to act as the base material for a light-harvesting active layer [40]. The material
of each perovskite differs, as they can be hybrids of organic and inorganic materials. All
hybrid organic–inorganic perovskite (HOIP) materials have the general chemical formula of
ABX3, as illustrated in Figure 1a. HOIP PVs are typically made using an organic/inorganic
cation (A = methylammonium (MA) CH3NH3

+, formamidinium (FA) CH3(NH2)2
+) [41], a

divalent cation (B = Pb2+ or Sn2+) [42], and an anion (X = Cl−, Br−, or I−). The perovskite
material, ABX3, is sandwiched between electron transport layers (ETLs) and hole transport
layers (HTLs), which are light absorbers. ETLs and HTLs have a pivotal role in charge
transportation, separation, and recombination [43]. Examples of HTLs are shown in
Figure 1b,c. Although a HOIP is a very attractive option for commercial applications,
because this type of cell is very cheaply produced during a scale-up process [44], ETLs
and HTLs face some challenges in terms of charge transfer [45]. One HTL used with
a HOIP, such as spiro-OMeTAD (Figure 1b) has a low hole mobility and conductivity,
but it does improve the optical and electrical properties of the HOIP [46]. Another HTL,
like N4,N4′,N4”,N4′”-tetra([1,1-biphenyl]-4-yl)-[1,1:4,1-terphenyl]-4,4′-diamine (TaTm) in
Figure 1c, allows efficient charge extraction, though there is a large misalignment of the
highest occupied molecular orbit with the valence band of the HOIP [47]. The alignment
of the valence and conduction bands of the perovskites with the transport layers of the
HTLs and ETLs, respectively, is a critical factor for charge transfer and extraction. Some
efforts have moved towards finding new materials for ETLs and HTLs, while others
have investigated doping the layers to acquire enhanced properties [48]. Doping requires
additives and solvents that may be hazardous, toxic, or harmful to the environment.
Dopant-free structures have been developed to obtain better PCEs and stability without any
additives [49,50]. An example for use as an ETL is C60 (Figure 1d) and it can achieve both
the high stabilized power output and long-term operational stability of HOIP solar cells [51].
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Figure 1. Common materials used in perovskite PVs: (a) crystal structure of MAPbI3, MAPbBr3,
FAPbI3, FAPbBr3 [52]. Reproduced with permission from Ref. [52]. Copyright 2016 Advanced
Science. (b) Hole transport layer (HTL) from Spiro−MeOTAD [53]. Reproduced with permission
from Ref. [53]. Copyright 2017 Advanced Materials Interfaces. (c) HTL from TaTm [50]. Reproduced
with permission from Ref. [50]. Copyright 2020 Frontiers in Chemistry. (d) Electron transport layer
(ETL) from C60 [54]. Reproduced with permission from Ref. [54]. Copyright 2019 Scientific Reports.
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Low-dimensional perovskites, such as quasi two-dimensional (2D) perovskites, are
known for their stability, but they have a lower performance than that of three-dimensional
(3D) ones [55]. They have unique optical and charge transport properties, but also a high
open circuit voltage (Voc) loss. These 2D halides can be used for photodetectors, lasers,
resistive, solar cells, and LEDs. The 1D halide perovskites can be used in photodetectors
and lasers; however, their use is challenging in other devices due to their rough structure
and incomplete surface coverage, which result in a degraded performance. The 0D halide
perovskite, or quantum dots, can be used in solar cells as they have a high photolumi-
nescence quantum yield (up to 90%); however, their performance lags behind that of 3D
halides because of their random orientation and the excess organic ligands on their surfaces,
which reduce carrier mobility [56,57].

2.1.1. Methylammonium Lead Triiodide (MAPbI3)

Metal halide perovskite (MAPbX3, X = Cl−, Br−, or I−) is the initial material used for
perovskite PV fabrication and has a direct bandgap energy. The valence band is dominated
by the p orbitals of the iodide, and the conduction band consists of Pb p orbitals; therefore,
the transitions are p-to-p orbitals. Furthermore, the bandgap can be modified by varying A,
B, and X. MAPbI3 is an example of such a material and possesses several advantages, such
as having an absorption of 800 nm, a direct bandgap of 1.57 eV [13], a large absorption
coefficient of 1.5 × 104 cm−1 at 550 nm [58], a low-exciton binding energy of less than
10 meV [58], a very high charge carrier mobility of 66 cm2/Vs, a large electron and hole
diffusion length of over 1 µm, and potentially reaches over 100 µm [59], thus it is suitable
to be applied as a perovskite material.

2.1.2. Formamidinium Lead Triiodide (FAPbI3)

Formamidinium lead triiodide (FAPbI3) has a bandgap energy of 1.48 eV near the opti-
mal bandgap (1.34 eV), which is ideal for theoretical maximum device efficiency. Moreover,
its excellent thermal- and photostability, in the form of black-phase FAPbI3 (α-FAPbI3),
meets the requirements of perovskite PV devices. The earlier-reported FAPbI3-based per-
ovskite PVs have had their advantages of having a large charge-carrier diffusion and high
short-circuit currents established [60]. Compared to MAPbI3, FAPbI3 is more thermally
stable due to the variations in A-site cations, as an FA cation has a greater thermal stability
compared to an MA cation [61]. As methylammonium cations are volatile, the MA+ com-
ponent will experience fragmentation with increased temperature, which leads to the quick
decomposition of the MAPbI3 crystal structure [62]. Moreover, the activation energies
for thermal degradation of FAPbI3 (115 ± 3 kj mol−1) are higher than those of MAPbI3
(93 ± 8 kj mol−1), so FAPbI3 has a better resistance to thermal decomposition [63]. In
terms of humidity stability, both MAPbI3 and FAPbI3 can chemically decompose into lead
iodide (PbI2) under high moisture conditions; however, when exposed to moisture, the
FAPbI3 perovskite will undergo phase transition into an undesirable yellow non-perovskite
(δ-FAPbI3) [64,65]. Furthermore, the deposition and fabrication methods of FAPbI3 films
have difficulties in crystallizing the black perovskite phase.

2.1.3. Mixed-Cation Perovskite

Since there are concerns with MAPbI3’s structural phase transitions and thermal
stability, a combination of both FAPbI3 and MAPbI3 have been introduced with different
ratios. With the perovskite composition of FA1−xMAxPbI3, when x = 0–1, it shows different
SEM characteristics. Based on the ratio of FAPbI3 and MAPbI3, the crystal structure shows
some cracks that differ, based on the x composition. With FA0.8MA0.2PbI3, there are several
needle-like structures that can be obtained from the low MA contents, which lead to the
formation of the δ-FAPbI3 phase, while FA0.4MA0.6PbI3 shows a better crystal structure
with a lack of needle-like structures due to the increase in MA content, which results in the
stabilization of α-FAPbI3 [66]. The results showed an improvement in the optoelectronic
properties and in the stability [67–69]. This was due to the larger ionic radius provided
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by FA and the dual-ammonia group that inhibits ion movement in the space of the PbI6
octahedral [60]. However, a decrement of the open-circuit voltage (Voc) value was observed
when mixing FA and MA (with a Voc of about 1.02 V) [70–72]. A slightly higher Voc value
of 1.03 V was then achieved by adding additional layers through surface passivation [69,73].
Moreover, a FAMA mixed cation perovskite will tend to form an undesirable yellow
perovskite, so CsI is introduced into the FAMA mixed cation perovskite to guarantee
the formation of black phase perovskite PV [67,73,74]. With the introduction of a third
cation, in this case Cs with the mixture of MA and FA cation, it is recognized as a triple
cation perovskite.

2.2. Fabrication Methods

The aim of PV devices is to generate high and efficient power to be used in large
systems. However, controlling the morphology of perovskite is a difficulty in scaling
large-area PVs, especially as this situation is not present in small-area PVs. Therefore, the
method of fabrication must be carefully selected. The reported scalable deposition methods
for perovskite PVs are solution-based and vapor-based deposition techniques.

The fabrication method is usually divided into one- or two-step depositions. In
one-step deposition, both precursors’ solutions are used, while for two-step deposition
separating the layer deposition and the precursor solution to produce highly uniform and
defect-free layers with a great morphology is performed. The layers obtained through
one-step deposition has defects and, therefore, a higher recombination rate. Thus, two-step
deposition offers better morphology control than one-step deposition through its deposition
process [75].

2.2.1. Solution Processing-Based Method

Solution processing-based methods are the common methods for perovskite deposi-
tion. Various methods derived from solution processing include spin-coating, dip-coating,
doctor blade, spray-coating, ink-jet printing, screen printing, drop-casting, and slot die coating.

2.2.2. Spin-Coating

Spin-coating is the simplest and most cost-effective method derived from solution
processing methods. This method is done by spin-coating a precursor on a substrate fol-
lowed by annealing the thin film to obtain a crystallized layer of perovskite, as shown in
Figure 2a. The layer thickness can be optimized by changing the spin speed, acceleration,
and spin-coating time. The advantage of using this technique is the good level of repro-
ducibility and the morphology obtained for small-scale areas; however, the long processing
duration and material waste limit this method for application for large-scale area perovskite
fabrication [76].

2.2.3. Drop-Casting

Drop-casting is considered a cheap technique to produce PVs. The technique is based
on dropping a volatile solvent on a substrate before it is evaporated and dried, as shown
in Figure 2b. Layer thickness is dependent on the rate of evaporation, the drying process,
and the volume and concentration of the solvent used for the dispersion. The wasted
material in the case of drop-casting is less than that of spin-coating, which is counted as
an advantage compared to the other method. However, the drawbacks of this method
relate to the difficulty in controlling the layer thickness, which results is a non-uniform film
formation which is thus ineffective for large-scale areas [77].

2.2.4. Spray-Coating

Spray-coating is a highly scalable deposition method for large-scale area perovskite
PV fabrication. This technique has several advantages, such as rapid film deposition, as the
spray head can move across a substrate at more than 5 m per minute, as shown in Figure 2c.
Other advantages include the low cost of processing, and the capability for deposition on
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flexible and glass-based substrates for use in large-scale perovskite photovoltaics. Moreover,
spray-coated films are characterized by their high thermal stability and they have better
optoelectronic properties compared to spin-coated films due to a better charge transfer
capability and a longer minority carrier lifetime [78]. However, the drawback of this method
is the difficulty in achieving fully homogeneous layers due to there being unpredictable
characteristics in the film. This problem occurs when different droplet sizes leave different
patches sizes during the drying process, thus increasing the series resistance that affects the
performance. These problems can be solved using a modified spraying technique, such as
pen spray [79], electrostatic spray-coating [80], pulsed spray coating [81], and ultrasonic
spray-coating [82].

2.2.5. Doctor Blade

Doctor blade is a simple coating system that uses a blade coater applicator—in this
method, the height of the blade is adjusted depending on the substrate surface, as shown
in Figure 2d—to produce a uniform film with a modifiable quality. Quality control is done
by managing the evaporation rate, whether by adjusting the airflow over the substrate or
heating the substrate to reach the boiling point of the solvent. A simple, environmentally
friendly, vacuum free, low-cost deposition method and the capability to control film quality
are some of the advantages offered by this method. Moreover, it is capable of overcoming
performance degradation due to the presence of moisture and air [83]. This is caused by
the slow crystallization rate that forms large-area grains that restricts the air and moisture
permeability of the perovskite layer [84]. This method is suitable and stable and yields a
great morphology for the deposited film.

2.2.6. Slot-Die Coating

Slot-die coating is a solution processed deposition method that applies solution to
flat substrates, such as glass or metal, and is highly scalable for large-scale area perovskite
PVs, as shown in Figure 2e. An advantage to this method is less, or no, material wastage
compared to spin-coating techniques. Moreover, it also produces a uniform and controllable
film thickness by controlling the amount of material that is fed into the process. Hence, it
can be used on a commercial scale for perovskite PV production [85].

2.2.7. Ink-Jet Printing

Ink-jet printing is a common method used in the manufacturing of optoelectronic
devices, field-effect transistors, and PVs. It is a non-contact technique that uses additive
patterning. It is based on the selective ejection of ink from a chamber through a nozzle
onto a substrate. A liquid droplet is ejected when an external bias is applied. This bias
causes the chambers containing the liquid to contract, creating a shock wave in the liquid,
and therefore ejection occurs, as shown in Figure 2f. The technique is considered fast,
consumes less material, and can be used for large-scale production [86,87]. However,
the main drawback is the possibility of a blocked nozzle because the used materials are
poor solvents.

2.2.8. Vapor-Based Method

The vapor-based method is an alternative method for fabricating perovskite PVs and
it has better film uniformity compared to the solution-processing-based methods. This
method is mostly used on an industrial scale for glazing, liquid crystal displays, and in the
thin-film solar industry. The absorption efficiency of solar cells depends on the thickness
of the perovskite layer. Thin layers absorb less sunlight, whereas thick films take a great
deal of time to operate, as electrons and holes take significant time to reach their contacts.
If the film is not uniform in the overall area, there will be direct contact with the electron
transport material (ETM) and the hole transport material (HTM), resulting in a lower FF
and Voc. Vapor-based deposition surpasses other techniques due to its ability to produce
large-scale multi-stacked thin films with a uniform thickness. However, vapor-based
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deposition requires a vacuum to increase the mean free path between collisions to produce
highly uniform and pure thin films. The vapor-based method is divided into two categories,
physical and chemical.
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Reproduced with permission from Ref. [90]. Copyright 2016 Hal.

2.2.9. Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a deposition method that produces highly scalable
and pinhole-free large-scale perovskite PVs. A co-evaporation technique is used to deposit
the perovskite layers with the help of two different precursors. The precursors are heated,
mixed, and then moved to another substrate at a lower temperature, using a carrier gas
(argon) to form highly uniform films, which are pinhole-free and have larger grain sizes
and long carrier lifetimes, as shown in Figure 3a. CVD has been mostly deployed for
fabricating perovskite layers to prevent the drawbacks of using low amounts of materials
and the difficulty in controlling the flux deposition [91–93]. Moreover, while the use of
CVD will produce a high material yield ratio and highly scalable for perovskite layer
depositions [94], it requires a vacuum and uniform co-evaporation of the sample material,
which is a challenge at an industrial scale.
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2.2.10. Physical Vapor Deposition

Physical vapor deposition (PVD) is a simple and non-reactive deposition process where
a whole substrate surface area is covered, and the resulting layer has a high stability against
moisture. Utilizing this method, a deposited film shows a uniform and smooth surface,
with less defects and good crystallization layers. Figure 3b shows a single-source PVD for
MAPbI3, where the temperature of the source is raised rapidly until the MAPbI3 evaporates
without a chemical reaction and is then deposited on the substrate. The advantages of using
PVD are the full surface coverage, great grain structure, high crystallization, scalability
for mass production [95], and controllable film quality, thickness, and morphology, which
makes PVD preferable to solution processing-based methods.

Table 1 shows various materials and their methods for HOIP PV fabrication, complete
with the PCE values. With each material, for HOIP photovoltaics, improved, new and excel-
lent perovskite materials with superior stability, light-absorption, charge mobility, and life-
times were produced. The optimization of materials and structures is one of the keys to im-
proving the photoelectric conversion efficiency [96]. The optimization of materials is shown
in the work of Saliba et al. [67], via spin coating with different material compositions of
Cs0.05(MA0.17FA0.83)(0.95)Pb(I0.83Br0.17)3 and Cs0.1(MA0.17FA0.83)(0.90)Pb(I0.83Br0.17)3 with the
increase in the fill factor, from 74 to 77%. This is due to Cs0.1(MA0.17FA0.83)(0.90)Pb(I0.83Br0.17)3
having more uniform grains with each increase in Cs value, obtaining a better charge
transport, which explains the higher fill factor value, which is consistent with works that
used Cs0.15(MA0.17FA0.83)(0.85)Pb(I0.83Br0.17)3 as the perovskite material.

The optimization of device structure is shown in several works on the topic of fab-
ricating MAPbI3 perovskite photovoltaics using different fabrication methods. Among
MAPbI3 perovskite photovoltaic fabrication methods, spin coating shows the lowest PCE
as the uniform structure is capable of obtaining a grain size of 100 nm [97]. Doctor blade
and slot-die coating show a better PCE among all MAPbI3 perovskite photovoltaics with a
more uniform grain size and thicknesses of 200 µm [98] and 5 µm [99], respectively, which
are slightly better compared to spin coating due to the controllable fabrication methods.
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Table 1. Various materials and methods for HOIP PV fabrications. Voc, Jsc, and FF are open-circuit
voltage, short-circuit current density, and fill factor, respectively.

Coating
Method Material Voc (V) Jsc (mA cm−2) FF (%) Size (cm2) PCE (%) Ref.

Spin-coating FAPbI3 1.06 24.7 77.5 ~1 20.2 [100]
Spin-coating Cs0.05(MA0.17FA0.83)(0.95)Pb(I0.83Br0.17)3 1.109 22.7 74.0 ~1 18.6 [67]
Spin-coating Cs0.1(MA0.17FA0.83)(0.90)Pb(I0.83Br0.17)3 1.13 22.0 77.0 ~1 19.1 [67]

Ink-jet printing Cs0.1(FA0.83MA0.17)0.9Pb(Br0.17I0.83)3 1.11 23.1 82 2.3 20.7 [101]
Spin-coating Cs0.15(MA0.17FA0.83)(0.85)Pb(I0.83Br0.17)3 1.088 19.4 69.3 ~1 14.6 [67]
Spin-coating (FAPbI3)0.95(MAPbBr3)0.05 1.14 24.9 81 ~0.094 23.2 [102]
Doctor blade MAPbI3 1.12 22.6 81 0.075 20.3 [98]
Doctor blade MAPbI3 1.10 22.7 81 0.08 20.2 [103]

Slot-die coating MAPbI3 1.03 22.1 74 ~232.3 16.8 [99]
Spin-coating MAPbI3 1.08 20.7 68 0.16 15.2 [97]

Ink-jet printing MAPbI3 1.08 22.66 76.2 0.04 18.6 [104]
Slot-die coating MAPbI3-xClx 1.06 21.7 ~78 0.06 18.0 [105]
Slot-die coating MAPbI3-xClx 1.09 22.38 74.7 0.096 18.3 [106]
Spray coating MAPbI3-xClx 1.10 21.4 77.6 0.08 18.3 [20]
Spin-coating MAPb(I0.85Br0.15)3 1.07 21.5 68 0.076 15.4 [107]
Spray-coating CsI0.05((FAPbI3)0.85(MAPbBr3)0.15)0.95 1.10 22.3 73 0.16 17.8 [19]

Screen printing (AB)2(MA)49Pb50I151 0.94 23.4 71 0.8 15.6 [30]

Based on Table 1, it can be concluded that the best material for perovskite PV fabrica-
tion is (FAPbI3)0.95(MAPbBr3)0.05 [102]. Among the fabrication methods, the doctor blade
method can be considered as the best method since it resulted in the highest PCE value.
Such a method may improve the PCE of (FAPbI3)0.95(MAPbBr3)0.05, which already reaches
23.2% with spin coating [102].

3. Materials and Device Characterizations

This section describes the material characteristics that should be met for perovskite
PVs, including the structural and morphological properties. XRD analysis can be used to
detect a crystallite structure from the layer formation [108]. Based on synthesis conditions,
there are three types of MAPbI3 structure. At T < 163 K, it is in an orthorhombic phase, at
163 K < T < 327.3 K, it is in a tetragonal phase and beyond 327.3 K, it will begin to form a
cubic phase [109]. Substantial changes occur at 60 ◦C, as it shifts from the tetragonal to the
cubic phase, with better grain sizes, based on the XRD results from several research studies,
as multiple new peaks are present compared to the tetragonal phase [110–112].

The properties of HOIPs are also affected by organic monocation. Adding a bulky
hydrophobic organic cation to the perovskite lattice can prevent moisture intrusion [113].
Because of this structure, the bandgap is large and tunable. Moreover, increasing the chain
length of the organic monocation allows the prevention of oxidation of Sn2+ to Sn4+ [114].

Empirically, the structural stability of 3D perovskites can be predicted using the Gold-
schmidt tolerance factor, as the rule of thumb, for the ABX3 crystal structure,
t = (ra+rx)√

2(rb+rx)
, which is calculated based on the radii of the A, B and X ions. The ideal

t value for a stable perovskite would be 0.8 < t < 1.0, so the organic monocation value has
to be adjusted to obtain the necessary t value [115]. However, the perovskite ligand size
can have an influence on this value [116].

A key example to improve perovskite PV performance would be by using XRD
techniques that will detect the best crystal structures in the formation of layers of a sample
perovskite CsxM, with x = 0, 5, 10, 15%, as shown in the XRD spectra of Figure 4. At about
14◦, all CsxM compositions with varying x values show the same perovskite peak. For Cs0M,
there are small peaks observed at about 11.6◦ and 12.7◦ that represents the undesirable
yellow non-perovskite phase (δ-FAPbI3) and the PbI2 that was used in its fabrication,
respectively. As Cs amounts of 5, 10, 15% in the XRD spectra did not show these specific
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peaks, this would indicate that the mixed perovskite Cs0M shows an incomplete conversion
of FA perovskite to the black-phase perovskite (α-FAPbI3).
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Other than XRD characterization, with the different methods implemented for the
fabrication of perovskite PVs, the resulting devices will also have different crystal struc-
tures relative to their fabrication methods [117]. The morphology of the perovskite is
another factor to improve perovskite PV performance. Numerous work have been done
on optimizing morphology by improving the fabrication methods [84,93] and by applying
additional additives [118,119]. As shown in Figure 5a,b, different crystal grain structures
were observed from using different fabrication methods (blow-dry and spin-coating).

The thicknesses of the layers differ between those fabricated using blow-drying and
those using spin coating. For example, the thickness of the MAPbI3 and spiro-MeOTAD
deposited by blow-drying is thinner than that fabricated by spin-coating. The blow-dried
spiro-MeOTAD layer has been shown to be more compact and smaller than the spin-coated
spiro-MeOTAD layer. Moreover, blow-dried MAPbI3 merged better with mp-TiO2 than
the spin-coated MAPbI3, as shown in Figure 5c,d. As a result, devices with blow-dried
MAPbI3 consistently achieve higher VOC, JSC and PCE values than spin-coated ones.

Based on the work of Zhou et al. [120], the characteristics of the grain boundaries,
grains, and material composition will have an effect on carrier transport, emissions, ionic
diffusion, and performance. The simple crystal structures of the 3D halide PVs, such as
MAPbI3 and FAPbI3, were determined using XRD or SEM analysis.

The presence of defects and grain boundaries in the PV film will have a detrimental
effect on PV performance. Defect passivation is a strategy developed to enhance device
efficiency and stability at the same time [121–123]. As shown in the work of Medjahed
et al. [124], adding an additive in the presence of chlorine during the MAPbI3 synthesis
has a positive advantage and impact on the growth and morphology (improvement on
crystallite size and structure) of the obtained fabrication. Moreover, it also improves the
electrical properties of the material, such as the electron diffusion length, carrier lifetime,
and a high PCE value of 11.4%. It was also revealed, using in situ XRD, that the presence
of two areas of MAPbI3 showed the presence of MAPbCl3. There were crystalline phases
that could not be identified, but did not correspond to a chlorine-based intermediate
phase, but rather the formation of MAPbCl3 in the perovskite formation from PbCl2. It
can be concluded that MAPbI3 forms as annealing begins, MAPbCl3 disappears gradually,
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and that MAPbI3 decreases as the formation of PbI2 into MAPbI3 is completed, which
corresponds with the work done by Saliba et al., who showed that XRD is able to analyze
this information based on the patterns of the formation of the perovskite.
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Feng et al. also demonstrated another additive enhancement to the morphology in a
one-step solution-processed perovskite that utilizes methanol as shown in Figure 6 [125].
It was observed that, by adding a proper amount (5 vol%) of methanol solution to the
perovskite (MAPbI3) precursor solution, the morphology, crystallization, optical and elec-
trical properties of the perovskite layer were enhanced. SEM analysis was performed to
investigate the morphology of the perovskite without methanol, and is shown in Figure 5a,
and with (5 vol%) methanol solution, shown in Figure 5b. Under SEM, the perovskite
film without methanol shows pinholes and grain boundaries. These pinholes and grain
boundaries will impede charge transport, which easily induces the recombination between
electron and hole, thus reducing the overall PV performance. However, the addition of
methanol significantly enhances the morphology since it has rougher surface, larger grain
sizes, and fewer grain boundaries compared to perovskite without methanol. Since the
grain size in the vertical direction, as shown under SEM, is equivalent to the thickness
of the perovskite, this indicates that the charge carriers can transport efficiently across
the perovskite film and reach the electrodes before recombination occurs. The fabricated
perovskite using methanol shows a higher PCE of 19.51% compared to the fabricated
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perovskite without methanol (16.53%). Moreover, it also has a better stability since it still
shows a high PCE in the dark under ambient temperature for 30 days.
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While the addition of additives may have improved the morphology of the HOIP, its
lifetime and performance were not satisfactory for commercial and industrial applications.
This will require further enhancements to the HOIP-like tandem structure to improve the
overall lifetime and performance.

3.1. Perovskite Tandem Photovoltaics

Perovskite tandem PVs have been suggested as a method to improve the overall
performance, stability, and lifetime of perovskite PVs. A perovskite tandem PV usually
consist of a cell—either silicon, perovskite, or copper indium gallium selenide (CIGS)—
overlaid by a perovskite PV [126], to increase the efficiencies beyond a single junction
limit [127], without adding a substantial cost during production [128,129]. Typical single-
junction PV cells do not make use of 67% of the solar energy they receive, because of
the weak absorbance capabilities of the semiconductors. Semiconductors can only absorb
photons with energy is above their bandgap energy (Eg) and they generate energy equal to
Eg, where the rest of the energy are lost through thermalization as heat. This will severely
affect the PCE of a PV because it corresponds to the Voc and Jsc of the PVs. As one of
solutions, tandem photovoltaics can address this problem [130].

Tandem PVs use stacks of materials with different bandgaps, where materials with
larger bandgaps are put at the top of a cell and those with small bandgaps are at the bottom.
High-energy photons are absorbed by the upper materials, while low-energy photons are
not lost, in this case, but rather are absorbed by the lower stack materials, making use
of most of the incident energy. One of the most known structures of tandem cells is the
double-junction tandem device. They have two different configurations: two-terminal (2-T)
and four-terminal (4-T) tandem, according to the stacking method used [130].

The 2-T tandem cells are synthesized by stacking a transparent front electrode, with
a front cell and an opaque rear electrode, with the rear cell being one substrate where an
interconnection layer (ICL) separates them, as shown in Figure 7a. The recombination
of the photogenerated carriers from either sub-cell takes place in the ICL. On the other
hand, 4-T tandem cells are made of two separate devices with two separate electrodes,
linked together through a dichromatic mirror, as shown in Figure 7b. However, due to
the additional electrodes, the optical loss will result in a more expensive cost compared
to 2-T tandem PVs. Moreover, 2-T tandem PVs are cheaper to fabricate, though it is
harder to fabricate 2-T or monolithic tandem PVs compared to 4-T tandem PVs for general
applications [130].
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Table 2. Some reports of perovskite tandem PVs. Voc, Jsc, and FF are open-circuit voltage, short-circuit
current density, and fill factor, respectively.

Type Tandem Perovskite Material Voc (V) Jsc (mA cm−2) FF (%) Size (cm2) PCE (%) Ref.

4-T Si MAPbI3 1.08 20.6 74.1 0.075 23.0 [131]
4-T Si MAPbI3 1.098 21.0 74.1 1.10 26.7 [132]
4-T Si MAPbI3 1.156 19.8 79.9 1.00 27.0 [133]
2-T Si MAPbI3 1.69 15.9 77.6 0.17 21.2 [134]
2-T Si Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 1.87 19.37 79.9 1.06 29.3 [4]
2-T Si Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 1.792 19.02 74.6 1.088 25.2 [135]
2-T Si Cs0.15(MA0.17FA0.83)0.85Pb(I0.7Br0.3)3 1.80 17.8 79.4 ~1.00 25.4 [136]
4-T CIGS Cs0.09FA0.77MA0.14Pb(I0.86Br0.14)3 1.77 17.3 73.1 0.04 22.4 [137]
4-T CIGS Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)3 1.59 18.0 75.7 0.78 21.6 [138]
2-T CIGS Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 1.68 19.2 71.9 1.03 23.3 [33]

This occurs similarly in the 4-T CIGS/Cs0.05(MA0.17FA0.83)Pb1.1(I0.83Br0.17)3 configura-
tion [138] and the 2-T CIGS/Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 configuration [33], since
these works obtained similar values for Voc, Jsc, and FF of about 1.6–1.8 V, 17.0–19.2 mA cm−2,
and 72.0–75.7%, respectively.

In comparison to the PCE values in Table 2, the 2-T configurations of CIGS/Cs0.05
(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 [33,138] are better by 1.08-fold compared to those of the
4-T configurations. The 4-T configurations experience optical loss, which is found in
the encapsulation and absorption in the transparent conductive electrode [139], which
affects the PCE. The 2-T configurations experience series resistance loss in the large-area
modules [140].

Further analysis is required to determine the increase in the PCE of the devices through
development and improvements using tandem technologies. The configurations in Table 2
for tandem PVs refer to the materials in Table 1. The best performing PCE is from
the Cs0.05(MA0.17FA0.83)(0.95)Pb(I0.83Br0.17)3 configuration in Table 1, and shows a PCE of
18.6% [81]; the best performing PCE from the 2-T Si/Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3
configuration has a PCE of 29.3% [4] with an improvement achieved through tandem
technologies using silicon and also through the use of an appropriate carbazole-based
layer to efficiently extract the holes. Silicon was used as the bottom cell of the tandem
since it has the properties of absorbing solar radiation from the near infrared region of
the absorption spectrum. There is also another development in tandem PVs between
Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 perovskite and CIGS, and the PCE value of the
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Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 tandem [33] increases by 1.25-fold compared to that
of the intrinsic one [67].

The CIGS allows for a tunable bandgap, and it varies based on the temperature. A
tunable bandgap was obtained from 1.1 to 2.3 eV by interchanging the cations, metals, and
halides. These allow for the tandem PV to absorb photons that have an energy above the
bandgap, so a higher bandgap will require a higher energy for the absorption spectrum.
The best configurations for perovskite tandem PVs came from silicon and CIGS. In fact, an-
other perovskite–perovskite tandem PV has been recorded, with a high PCE of 24.4% [141]
and there are few reports presently beating this record. Therefore, the best reported tan-
dem perovskite photovoltaic belongs to the 2-T Si/Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3
configuration with a PCE of 29.3% [4].

For further commercialization of perovskite PVs, large area modules should be devel-
oped since the previous studies were conducted for a small area (1 cm2). This development
needs to be carried out to determine if there is any improvement in the crystal grain
structure and PCE value when the module size is increased.

3.2. Large Scale Modules

Several issues need to be addressed for further perovskite PV commercialization: (i) a
thin-film deposition method that is scalable and reproducible; (ii) high stability and long
lifetime; and (iii) low or less toxic materials for large-area devices.

The rapid increment in PCE performance for perovskite PV has developed at a quick
pace compared to other solar technologies. However, several high PCE values have been
obtained with very small areas (~1.0 cm2). To fabricate a large area with a high-quality
perovskite (good uniformity and few structural defects), several deposition methods have
been developed, such as spin-coating, slot-die coating, doctor blade, and vacuum deposi-
tion. In 2015, Chen et al. [142] fabricated perovskite using one-step spin-coating with an
active area of 1.02 cm2 and obtained a PCE of 15%. In 2016, Qiu et al. [143] fabricated a
large-area perovskite with an active area of 1 cm2 and obtained a PCE of 13.6%.

While spin-coating is widely used in the deposition of small-area thin films in labo-
ratories, it might not be suitable for industrial large-area fabrications. Spin-coated films
are not uniform throughout the area [144], require a large amount of solution mixture of
materials, and there is significant wasted solvent, which increases the cost of fabrication. Its
performance also reduced due to the increase in series resistance and the decrease in film
quality [145,146]. As in the case of Hossain et al. [147], since spin-coating is not suitable for
the fabrication of perovskite solar cell on a silicon solar cell, so some methods have to be
replaced by PVD or CVD.

In 2018, Zheng et al. [148] were able to achieve 21.8% PCE using CVD on a 16 cm2

monolithic (FAPbI3)0.83(MAPbBr3)0.17 perovskite–silicon tandem PVs. The final product of
the PVs has an enhanced Voc with a Jsc that ranged from 15.6 to 16.2 mA/cm2 and an FF of
78%. The supporting information regarding further improvements that could be achieved
for this device would be the spiro-OMeTAD stack being replaced with a high refractive
index inorganic hole transport layer to eliminate unnecessary wavelength absorptions. To
improve it for commercial use in larger area of 6”× 6”, the PDMS layer can be replaced with
thin glass and the spin-coating process can be replaced with something less expensive, such
as the doctor blade or spray-coating methods, which will be discussed in further works.

After conducting their previous work, in 2019, Zheng et al. [149] showed another
improvement that increased the PCE value. They decided to use micron green-emitting
(Ba,Sr)2SiO4:Eu2+ phosphor—a cheap material that is commercially available and is mostly
used in light-emitting diodes—as an antireflective down shifting material on PDMS that
acts as the hydrophobic layer of the silicon–perovskite tandem PVs with an area of 4 cm2,
which achieved a PCE of 23%. SEM images of the (Ba,Sr)2SiO4:Eu2+ sample on PDMS
showed a high-quality crystal size of about 10–20 µm. Moreover, the results of energy-
dispersive X-ray spectroscopy (EDX), not only confirmed the homogeneous distributions
of Sr, Ba, Si, and O within the specimen, but were also able to detect the Eu content.
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Figure 8 shows schematic diagrams of the (a) previous and (b) current large-scale modules
of perovskite photovoltaics.
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Figure 8. (a) Schematic of perovskite–silicon tandem homojunction photovoltaic with downshifting
AR PDMS layer. From Ref. [149]. Copyright 2019 ACS Energy Letters. (b) Schematic of monolithic
(FAPbI3)0.83(MAPbBr3)0.17 perovskite/rear-textured-homo-junction-silicon tandem photovoltaics.
Reproduced with permission from Ref. [148]. Copyright 2018 ACS Energy Letters.

After further investigation, with a higher concentration of (Ba,Sr)2SiO4:Eu2+ phosphor
on top of the perovskite–silicon PV, with initial conditions of Jsc of 14.1 mA/cm2, Voc of
1.73 V, FF of 82%, and a PCE of 20.1%, the result shows that, while the open-circuit voltage
remains unchanged or at a constant level, there was an improvement in Jsc that was caused
by the increased broad absorption of the cell with a reduced front reflection and increased
light trapping. Eventually the best choice was obtained and had an area of 4 cm2 with
conditions of Jsc of 16.4 mA/cm2, Voc of 1.73 V, FF of 81%, and a PCE of 23%.

Although works on monolithic perovskite–silicon tandem PVs showed progress in
terms of PCE values (about 22–23%), there are several issues that need to be solved for
further large-scale fabrication. These issues include stability improvements, the degradation
rate, commercialization costs, and the use of environmentally friendly materials.

3.3. Improvements to Perovskite Material and Its Tandem Structures

A recent investigation, conducted by Green et al. [1] on perovskite–silicon tandem PVs,
states that a high PCE value of 29.15% had been achieved with an area of 1.060 cm2. Though
it is a small area, in the future, people will continue to develop perovskite–silicon tandem
photovoltaics, which will progress further so that it is possible to achieve 4 cm2 perovskite–
silicon tandem photovoltaic with an efficiency of 29.15%, if there is a breakthrough on how
to further increase the broad absorption of a cell with reduced reflection but while increase
the light trapping.

Furthermore, since it is difficult to deposit a large area of continuous perovskite film
using the previously described traditional methods, other methods should be improved
to prepare high-quality and large-area perovskite PVs for commercial production in the
future. Moreover, from the perspective of green energy, the Pb employed in perovskite PVs
is highly toxic, which will hinder the industrial promotion and development of perovskite
PVs. Therefore, it is necessary to find a low-toxicity or non-toxic material to replace Pb in
the future [96].

Realistically, the halide of Pb is 10 times more dangerous than the Pb that already
exists on Earth [150–153]. Several lines of research indicate that contamination due to leaks
of lead ions into soil and water resources is a permanent affliction and generates harmful
effects on humans, animals, and plant survivability [154–163]. To decrease and reduce its
toxicity level, Pb-free [164–166] (or at the very least less Pb content) perovskite–silicon PVs
have been researched using a safer option by mixing chalcogen and halogen anions [167]
or using tin or (Sn)-based perovskite PVs [168–170]. Recently, it was determined that



Polymers 2022, 14, 1059 16 of 27

there is an all-perovskite Pb–Sn tandem photovoltaic with a PCE of 26.4% [171], showing
a value that potentially exceeds that of the best-performing single-junction perovskite
solar cells, which are capable of retaining more than 90% of their initial performance
after 600 h of operation at maximum power under one-sun illumination under ambient
conditions. Recent research [172], developed a low-cost device made of sulfonic acid-based
lead-adsorbing resin, which freezes lead ions into a scaffold and prevents their leakage
when the perovskites are exposed to rainfall. This new device does not affect efficiency or
scaling and the structure can be scaled up to 60.8 cm2.

However, Sn-based perovskite PVs have lower efficiencies and faster degradation than
Pb-based perovskite PVs due to their phase fluctuations and they easily oxidize from Sn2+

to Sn4+. In the case of Sn-based perovskite PVs being unable to breach the efficiency limit
of Pb-based perovskite PVs, new approaches had been created to prevent Pb leakage in
perovskite PVs by trapping Pb with cation-exchange resins that are abundant in Ca2+ and
Mg2+ [173].

In addition, the cost barrier for perovskite–silicon cells was identified as being due
to expensive organic charge transport materials, such as spiro-OMeTAD, PTAA, and
PC60BM [174–177]. The cost of organic charge transport, especially for one with a higher
quality that can yield a better performance, is very expensive due to the intricate nature of
the fabrication steps, in addition to the additional costs that might be derived from better or
higher purity in terms of the formation of crystal grains. As an alternative to using organic
charge transport materials, inorganic charge transport materials, such as NiO, CuSCN,
SnO2, and Nb2O5, which are much cheaper in comparison to organic charge transport
materials, have been successfully developed for some perovskite PVs [101,178–180].

Further improvements concern the degradation of the perovskite PVs. PVs are always
exposed to various degradation sources, such as humidity, oxygen, heat, and ultraviolet
light. To ensure the lifetime of perovskite–silicon tandem PVs, their stability needs to be
tested and improved against degradation. Among perovskite PVs, methyl ammonium
lead triiodide is easily degraded by humidity and heat, in comparison to perovskite PVs
that are based on FAPbI3 [60] or CsPbI3 [181], which proved to have a higher resistance
to thermal decomposition—which can be solved by mixing the cations and the halogen
anions, which improves the thermal and crystal structure stability. As an example of mixing
halide anions, bromide-based perovskite PVs show better resistance to degradation under
humidity and heat when compared to iodide-based perovskite PVs as they developed a 2D
or 3D hetero-structure in the perovskite PVs [182–184].

It is also suggested that organic charge transport materials, such as spiro-OMeTAD,
PTAA, and PC60BM, are easily disintegrated by humidity and oxygen, so they require a
higher level of encapsulation to prevent the elements from disintegrating the organic charge
transport materials. An alternative solution would be to use inorganic charge transport
materials, which are beneficial in terms of their stability due to their basic properties. In
addition, a densely formed inorganic layer can act as a diffusion barrier to prevent organics or
iodine species escaping from the lattice and reacting with the top metal electrode [185,186].
It has been reported in the literature that a semi-transparent perovskite PV with a dense
charge transport layer and a transparent electrode endured through thermal cycling, damp
heat, and UV stress tests [185–187]. Moreover, low-temperature, glass–glass encapsulation
techniques, using high-performance polyisobutylene (PIB) on planar perovskite solar cells,
have been reported using three different electrical configurations and methods are as shown
in Figure 9 [188]. In method 1, PIB is put on the top of a thin gold film that acts as a positive
electrical feedthrough for the cell. In methods 2 and 3, the FTO layer provides the electrical
feedthroughs. It is worth noting that the PIB in methods 1 and 2 plays the role of an edge
seal, but it blankets the entire area under the glass in method 3.
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Figure 9. Cross-sectional schematics with the photographs of perovskite solar cells encapsulated by
three different methods [188]. From Ref. [188]. Copyright 2017 ACS Applied Materials and Interfaces.

Lead-free PVs are also being investigated as potential improvements to PVs [157,164],
as these same materials were investigated as scintillators [114,189]. Several improvements
regarding their material quality, degradation have been considered, as have techniques to
fabricate them. To further improve the commercialization rate in the future, certain costs
that are more expensive, such as organic charge transport materials, must be replaced. A
better alternative would be the use of inorganic charge transport materials to reduce costs.
While these methods will reduce the cost for commercialization, the most harmful content,
which is the lead, will need to be replaced, reduced, or they will need to be made using
Pb-free methods, discussed above, to reduce harm to the environment.

Several improvements have been achieved for perovskite–silicon tandem PVs, such
as a longer lifetime, lower cost, and less-harmful chemicals being used. These achieve-
ments have inspired some companies to produce and commercialize perovskite–silicon
tandem PVs.

3.4. Commercialization

For future commercialization, although there are several challenges to be faced in
fabricating perovskite PVs, some companies are in the early stages of developing perovskite
PVs, e.g., Saule technologies [190] and Quantum Solution [191]. These developments are
driven by perovskite’s wide bandgap, low-cost, and simple fabrication methods. For Saule
technologies, they launched the first industrial production line of solar panels in May
2021 in Poland, based on groundbreaking perovskite technology. They are making sheets
of solar panels using a novel inkjet printing procedure invented by the founder, Olga
Malinkiewicz [190].

However, the long-term performance of such a PV is an issue to pursue. As an example,
the longest lifetime for the prototype was 6000 h under continuous one-sun illumination
before degrading beyond 80% of its initial performance [192]. Interfacial recombination
can be a severely degrading performance issue, but some methods are used to inhibit this.
In [193], a 2D octyl-diammonium lead iodide interlayer was used to decrease recombination
losses and obtain a PCE of 22.27% in tandem solar cells. A 2D/3D perovskite interface
in [194] suppressed interface losses with a PCE≈ 21%. As an alternative, perovskite–silicon
tandem PV has a better lifetime of 300 h of operation, and retained 95% of its initial efficiency
without encapsulant, and performs at a PCE of 29.3% in comparison to the theoretical limit
of 29% for the silicon PV [195]. Therefore, the perovskite–silicon tandem PV is a prospective
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option for future commercialization; particularly, OxfordPV has pioneered producing their
heterojunction silicon PVs to enhance their PV cells [196].

3.5. Summary

HOIPs have come a long way since their predecessors, with a current standing per-
formance (or PCE) of about 29.3%. In this review, we highlighted the progress of HOIP
materials and large-area fabrication techniques, in detail, and provided several comparisons
between the techniques, and materials used in the fabrication of solar cells through their
power conversion efficiencies. The fabrication techniques were also covered along with
the advantages and disadvantages of using certain materials, which further enhance the
properties of perovskite–silicon tandem solar cells; as shown using SEM. A scheme of this
is shown in Figure 10, and it shows how far the progress of research towards commercial-
ization and market must go. Although there has been feedback and improvements for
materials, fabrication, characterization, and large-scale modules, commercialization is just
starting. To enter the market of PVs, the other aspects, such as the total cost (although the
material is cheap enough) and the aging of perovskite materials relative to those made using
silicon, need to be addressed. Advances in other materials for optoelectronic devices such
as graphene, MoS2 and compound semiconductors [197–212] are having a huge impact
and benefitting the progress in the field of PVs either through the process techniques, or
through the marketization strategies. In the end, the perovskite–silicon tandem solar cells
have been introduced as the next generation of PVs and will replace the current technology
of silicon PVs (in comparison of electric costs) [6].
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