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Spinal cord injury (SCI) is a disastrous situation that affects many patients worldwide. A profound understanding
of the pathology and etiology of SCI is of great importance in inspiring new therapeutic concepts and treatment. In
recent years, exosomes, which are complex lipid membrane structures secreted nearly by all kinds of plants and
animal cells, can transport their valuable cargoes (e.g., proteins, lipids, RNAs) to the targeted cells and exert their

communication and regulation functions, which open up a new field of treatment of SCI. Notably, the exosome's
advantage is transporting the carried material to the target cells across the blood-brain barrier and exerting
regulatory functions. Among the cargoes of exosomes, microRNAs, through the modulation of their mRNA targets,
emerges with great potentiality in the pathological process, diagnosis and treatment of SCI. In this review, we
discuss the role of miRNAs transported by different cell-derived exosomes in SCI that are poised to enhance SCI-
specific therapeutic capabilities of exosomes.

1. Introduction

SCI is a devastating neurological disorder that causes severe physical
and psychological injury to the patient and brings a substantial economic
burden to society [1,2]. It is a common injury with complex and disas-
trous clinical and pathological processes separated into immediate me-
chanical primary damage and secondary cascade damage [3,4].
According to current knowledge, multiple factors are involved in sec-
ondary damage: blood-brain barrier dysfunction, local inflammation,
glia or fibrotic scar formation, neuronal death, demyelination and
disruption of neural pathways (Fig. 1) [2,5]. After the primary injury, the
infiltration of activated microglia and peripheral immune cells triggers a
robust neuroinflammatory response. Monocytes infiltrate and occupy the
center of the injury site to remove tissue debris. T and B lymphocytes also
infiltrate the spinal cord in the subacute phase and produce
pro-inflammatory cytokines, chemokines, autoantibodies, reactive oxy-
gen species and nitrogen substances. The loss of oligodendrocytes in the

acute and subacute phases of SCI leads to axon demyelination, followed
by spontaneous remyelination in the subacute and chronic phases. As-
trocytes and Oligodendrocyte progenitor cells (OPCs) proliferate in the
spinal cord parenchyma and migrate to the injured site, helping to form
glial scars. Pericytes, fibroblasts, and released collagen and fibronectin
together form fibrotic scars (Fig. 1). In addition, mesenchymal stem cells
(MSCs) secrete a number of neurotrophic factors, such as brain-derived
growth factor (BDNF), glial-derived growth factor (GDNF), nerve
growth factor (NGF), Neurotensin-1 (NT-1), Neurotensin-3 (NT-3),
Ciliary Neurotrophic Factor (CNTF), and basic fibroblast growth factor
(bFGF) [6-11]. Moreover, MSCs can not only prevent nerve degeneration
and apoptosis, but also support neurogenesis, axonal growth,
re-myelination, and cell metabolism [12-19] (Fig. 2).

As for SCI treatment, current therapies involve Methylprednisolone
(MP), which is a drug approved by both European medical institutions
and the Food and Drug Administration (FDA) for 48 h in high doses in the
acute phase [20]. MP is a corticosteroid that make an inhibition of lipid
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Fig. 1. Schematic diagram of SCI. The upper diagram shows the composition of the intact spinal cord, and the lower diagram shows the synthesis of the spinal cord at

various stages after SCI.
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Fig. 2. The functions of different cell-derived exosomes.

peroxidation as a free radical scavenger. It also inhibits the inflammatory
activities, protects the blood-spinal cord barrier, and promotes blood
flow to the spinal cord. Whereas the side effects like urinary tract
infection, respiratory infection as well as wound surface infection limit
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its” broad utilization [20,21]. According to the pathologic process of
central nervous system damage, the current therapeutic theory is
composed of neuroprotective treatment and neurorestorative treatment.
The neuroprotective treatment focuses on the reduction/prevention of
secondary damage nerve cell death and damage size. And the neuro-
restorative treatment aims to enhance neurological recovery by neuro-
vascular  remodeling, involving angiogenesis,  neurogenesis,
oligodendrogenesis and the outgrowing of dendrite/axon [22].
Exosomes released by oligodendrocytes and the internalization of
neurons play an important role in increasing neuronal activity under
situations of cellular stress (hypoxia and glucose deficiency). Microglia
can also secrete exosomes that contain cytokine interleukin-1f (IL-1p)
proprotein. Furthermore, when exosomes are exposed to high levels of
extracellular ATP-releasing by astrocytes or damaged tissue, the puri-
nergic (P2X7) receptors of micro vesicles are activated, resulting in
caspase-1 mediated leukocyte-mediated division of interleukin-1p pro-
protein and secrete the mature interleukin-1p from the vesicles [27]. This
process may be the promoter of the primary inflammation during SCI.
Besides, recent studies have indicated that the effect of stem cells on
stroke and traumatic brain damage relied on the production and release
of exosomes, which provides the basis for exosome treatment [5,28,29].
Importantly, exosomes could carry proteins, lipids, and RNAs to transport
messages among various cell types that affect the normal physiological
condition and pathological state [23]. And exosomes are capable of
transporting cargoes across blood brain barrier (BBB) and blood-spinal
cord barrier (BSCB) to reach distant organs without significant
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degradation [30]. Moreover, exosomes participate in various biological
processes in SCI, including synaptic plasticity, regulating the myelin
membrane biogenesis, and local delivery of proteins or nucleic acids to
increasingly polarized structures [24,25]. In addition, due to phospho-
lipid bilayers, the inside cargoes are well protected to be delivered to
specific target cells [26].

Furthermore, exosomes have emerged as alternatives to cell-based
therapies owing to their potential for improved safety and therapeutic
efficacy across diverse regenerative applications [10]. Recent studies
have demonstrated that exosomes can serve as both positive and negative
cues for axonal regeneration [31-35]. Neurite outgrowth inhibitor-A
(Nogo-A), a myelin-associated inhibitor (MAI) protein, could be trans-
ported by exosomes to inhibit axon growth by binding to Nogo receptor 1
(NgR1) on neurons [35]. By contrast, endogenous exosomes releasing
induced by an agonist for retinoic acid receptor p (RARf) could improve
axonal regeneration in a rat SCI model [32-34]. Following treatment,
neuronal exosomes transferred phosphatase and tensin homolog (PTEN)
into astrocytes, which lead to a dual benefit: extrusion of PTEN improved
the intrinsic growth capacity by removing inhibition of the
PI3K/Akt/mTOR pathway, whereas transfer of PTEN into astrocytes
created a more permissive environment for axon growth by reducing the
proliferation of astrocytes and led to glial scar formation [32]. However,
the pathophysiological roles of exosomes in the CNS remain largely un-
known, hampering rational design of novel exosome-based treatment
approaches.

MicroRNA (miRNA) is a small RNA molecule without coding
(including approximately 22 nucleotides) discovered among plants, an-
imals, and viruses. They can silence RNA by cleavage of the mRNA strand
into two segments. The expression of post-transcriptional genes can be
regulated by shortening the poly(A) tail to destabilize the mRNA and
reduce the efficient conversion of mRNA to protein [36,37]. There are
more than 70% miRNAs expressed in the central nervous system (CNS)
and been preserved in species as isochronous molecules [38]. Among the
exosomal nucleic acid and silence post-transcriptional mRNA expression,
exosomal miRNAs are the most critical functional substances, which are
involved in cell proliferation and differentiation, immunomodulation
and angiogenesis [30,39,40]. After being sorted in exosomes, the mature
miRNAs can be transported to recipient cells to influence the protein
network and RNA production of the recipient cells by regulating gene
expression and key homeostatic processes. In the middle of the progress
of the SCI, many miRNAs are significant regulators. In brief, nerves could
be controlled by inhibiting translating multiple mRNA targets and/or the
multiple miRNA's effects (e.g., proliferation, migration and differentia-
tion of neural stem cells (NSC) and its progenitor cells [41-43]. The
decreasing effect of Dicer or Drosha (or its co-factor DGSR8) confirms the
role of miRNAs in neurodevelopment, which are important sections of
miRNA biogenesis [44-46].

2. Exosomal miRNAs and SCI

As mentioned above, exosomes serve as a third type of intercellular
communication vector and own an irreplaceable position in the func-
tional integrity of multicellular organisms. Protected by the phospholipid
bilayer, these cargos not only can be accurately transported to the target
tissue but also effectively avoid the hydrolysis of various enzymes in the
extracellular matrix.

In 2007, Hai Valadi et al. claimed a novel intercellular communica-
tion mechanism that exosomes can deliver mRNA and small RNAs be-
tween cells, such as miRNAs. And they proposed that this kind of RNA is
called “exosomal shuttle RNA” (esRNA) [47]. This genetic communica-
tion between cells may potentially occur at a distance by exosomes
through the systemic circulation. And the ability to modify recipient cell
protein production and gene expression by specific mRNA or miRNA
delivered by exosomes make them to be ideal candidate for gene therapy
[48].

Exosome-mediated circulating miRNA is a new way of intercellular
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[49] gene transfer among cells and a biomarker for many diseases
[50-52]. The exosome shuttle miRNA is fused with multivesicular bodies
(MVBs) and secreted by the endosomal membrane compartment, which
can be transported long distances in body fluids [53-55].

Down-regulation of miR-291-3p, —183, —92, —200b, and —200c
through the neurogenesis and neural tube (NT) growth in mouse, and
inner human central nervous system developmental models, while miR-
9, -124a, —7, —125a and —125b are up-regulated [56-58]. MiR-124,
-125b, —137 and —9 enhance neuronal differentiation. However, to the
contrary, miR-183 and miR-8/—200 anti-apoptotic family is divided into
anti-apoptotic, neural progenitor maintenance, and proliferative mole-
cules [59,60].

Except for their physiological function, miRNAs act on the patho-
genesis processes of SCI. For example, miR-21 has been detected that
determining the shift from hypertrophy to hyperplasia during the process
of astrogliosis [3]. By using viral miR-133b infection adult mouse spinal
cord model, Thomas Theis, etc. observed reduction of RhoA, xylosyl-
transferase 1 (Xylt1), ephrin receptor A7 (Epha?), and purinergic receptor
P2X ligand-gated ion channel 4 (P2RX4), that has been determined as a
negative factor in neurite outgrowth [61]. In addition, mir-494, which
was discovered and proved by Huaguang Zhu et al., has the ability to
inhibit apoptotic cells, reduce lesion size and improve functional recov-
ery [62]. Furthermore, up-regulation of miR-126 enhances angiogenesis
and inhibits leukocyte overflow in the damaged spinal cord [63].
Whereas, due to drug challenges like degradation in the blood and poor
target delivery of system-delivered miRNA mimics, and clinical diffi-
culties related to local transfer, the prime research has barely succeeded
in applying these methods to clinical practice [64].

3. MSCs derived exosomal miRNAs and SCI

Like general exosomes, MSC-derived exosomes carry complex cargo,
including proteins, nucleic acids and lipids [65-67]. The miRNAs
encapsulated in MSC exosomes mainly exist in the form of their pre-
cursors [68]. MSCs have been used to treat central nervous system
damage. It has been demonstrated that MSCs generalized axons promotes
neurogenesis and angiogenesis, decrease neuroinflammation, decrease
model separation and spatial learning disorders, and enhance recovery of
function of animal brain injury models [69-71] (Fig. 2). Emerging evi-
dence shows that the efficacy of MSC treatment is mainly derived from
releasing nutrient factors through paracrine actions to reduce inflam-
mation, support nerves, and promote regeneration of damaged tissue
instead of differentiating and replacing the lost cells in the injury site [72,
73]. Extensive studies have indicated that exosomes from MSCs carrying
miRNAs have efficient repair effects on SCI [74,75]. Exosomal miRNAs
currently studied in SCI mainly include miRNA-486, miRNA-21,
miRNA-133b, and miRNA-126 (Table 1).

Knockdown of miRNA 486 in vitro and in vivo by small interfering
RNAs can effectively improve motor functional recovery and neuro-
protection in mice after SCI by inducing the expression of NeuroD6 [76].

MiRNA-21 is one of the most common and most studied miRNAs
secreted by MSCs derived exosomes for SCI treatment. Xu et al. [77,78]
reported that miRNA-21 regulates apoptosis and differentiation of neu-
rons in patients with SCI by targeting the expression of PTEN or tumor
suppressor gene programmed cell death 4 (PDCD4). Interestingly, the
protective effect of MSCs derived exosomes could be weakened to reduce
the secretion of miRNA-21 by insulin resistance in obese rat [79].

MiRNA-126 was found highly expressed after SCI, while reduced
inflammation, increased angiogenesis and improved functional recovery
were observed when increasing the level of miRNA-126 by using agomir-
126. This process is concurrent with downregulation of expression of
Sprouty Related EVH1 Domain Containing 1 (SPREDI),
Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) and Vascular
Cell Adhesion Molecule 1 (VCAM]1) target genes [80].

MiRNA-133b plays an important role in neuronal differentiation,
growth, and apoptosis [81-83]. Downregulating miRNA-133b by using
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Table 1
Different miRNAs from different cells-derived exosomes and related targets, functions and study models involved in SCI.
Cell (s) MiRNA (s) Target (s)/Mechanism Function Study model Ref
(s)

MSC miR-486 NeuroD6 Reduce neurons protection Mice [76]1
miR-126 RhoA Promote axonal regeneration Alleviate histopathological damage Rat [80]
miR-29b NF, GAP43
miR-133b NF, GAP43 Rat/Mice/ [82,94,

CREB and STAT3 Zebrafish 95]
RhoA
miR-21 FasL Reduce neurons apoptosis Rat/Human [96]
PDCD4 Promote functional recovery
PTEN
miR-19b PTEN Human [78]
miR-216a-5p TLR4/NF-kB Promote microglia polarization Mice [92]
PI3K/AKT
miR125-a IRF5 Promote M2 macropage polarization Rat [89]
miR-124-3p Ernl in vitro [90]
miR199a-3p NGF/TrkA Promote locomotor function Rat [91]
/145-5p
Neuron miR-21 MEF2C Enhance potassium channel behaviors and expression of nerve important Rat/Human [97-99]
transcription factors
miR-146 TLR/NF-xB Promote the repair of SCI and reduce inflammatory responses Rat [100]
TRAF5/IRAK1
miR-7a/b Zdhhc9/Prkeb/Wipf2/ Neurite Outgrowth Rat [101,
Pfn2 Reduce apoptosis 102]
Microglia miR-124-3p Rela/ApoE Promote M2 polarization Mice [103]
Alleviating neurodegeneration
Improve cognitive outcome

Oligoden miR-9 and miR- DCX Initiate neuronal precursor cell differentiation and allow mature neurons to in vitro [53]

drocyte 19a be polarized

morpholino antisense oligonucleotides is not conducive to the recovery
of motor function and reduces neuronal axonal regeneration after SCI
[84]. Li et al. showed increased neurons survival and improved motor
function were observed after systemic injection of miRNA-133b exo-
somes, which were partially due to the ERK1/2, STAT3, CREB and RhoA
signaling activation [85]. In addition, MSCs derived exosomal
miRNA-133b significantly promote the expression of neurofilament (NF),
growth associated protein 43 (GAP-43), glial fibrillary acidic protein
(GFAP), and myelin basic protein (MBP) then induce axonal regeneration
and promote functional recovery in SCI animals [86]. MSCs-derived
exosomes could deliver miR-133b to enhance neurite growth and pro-
mote neural plasticity and functional recovery [87,88].

Other miRNAs like miR-125a derived from bone marrow mesen-
chymal stem cells (BMMSC) exerts neuroprotective effects by targeting
and negatively regulating Interferon Regulatory Factor 5 (IRF5) expres-
sion in SCI rats [89]. MiR-124-3p derived from BMMSCs attenuated
nerve injury induced by regulating endoplasmic reticulum to nucleus
signaling 1 (Ern1) and M2 macrophage polarization [90]. Yang W et al.
found that umbilical mesenchymal stem cell-derived exosomal
miR-199a-3p/145-5p facilitate spinal cord functional recovery through
the mediated NGF/TrkA signaling pathway in rats [91]. Weihua C et al.
suggested that miR-216a-5p from MSCs derived exosomes is involved in
the modulation of microglial polarization [92].

Therefore, MSC-derived exosomes containing genetic materials (such
as miRNA-486, miRNA-21, miRNA-133b, and miRNA-126 et al.) can be
used as a cell-free treatment strategy [93], which have great potential to
promote functional recovery, and their contents can be used as bio-
markers of SCL

4. Neurons derived exosomal miRNAs and SCI

To explore the miRNA's effect in exosomes related to SCI, Emily B and
his colleagues purified RNA from mouse brains of traumatic brain injury
(TBI) and control groups, then sequenced the miRNA [54,97,98]. They
indicated that the miR-212 releasing was significantly reduced with
elevating the simultaneous of miR-21 in neurons, indicating miR-21
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expressed as potential extracellular vesicle cargos out of neurons.
Nevertheless, miR-21, miR-146, miR-7a, and miR-7b all enhanced
dramatically after injury [98]. Interestingly, miR-21 mimics treatment
enhanced neuroprotective effect in SCI model and overexpression of
miR-21 target PTEN [48] reduced the neurotoxicity of the TBI model.
Many studies suggested miR-21 plays an important role in neuro-
protection and regeneration in stroke [104] and axotomy [105] models.
Otherwise, miR-21 is vital in glial cell activities after SCI by decreasing
astrocyte hypertrophy and glial scar formation [106]. Moreover, miR-21
targets microglia FasL to reduce microglia-mediated Neuronal death in
the stroke model [107]. Although miR-21 expression has potential ad-
vantages in neuronal damage, it remains defective. Such as in the human
immunodeficiency virus infection (HIV), which is a related neuro-
cognitive disorder, elevated miR-21 leads to enhanced potassium chan-
nel behaviors and expression of nerve important transcription factors
MEF2C, causing neurological disorders [108]. Recently, Weihua C and
his colleagues also found exosomal miR-124-3p derived from neuron can
suppress the activation of M1 microglia and Al astrocytes by attenuating
the activity of myosin heavy chain 9 (MYH9) to promote recovery after
SCI through PI3K/AKT/NF-kB signaling cascade in mice [109]. In sum-
mary, miRNAs, especially miR-21 secreted by neurons might be a great
approach to treating the SCI [110].

5. Microglia derived exosomal miRNAs and SCI

Shan Huang and his colleagues found that miR-124-3p expression
was elevated in exosomes from microglia at 3, 7,14, 21-, and 28-days post
TBI. And microglia exosomal miR-124-3p could reduce neuro-
degeneration and improve cognitive outcome by targeting Rela/ApoE
signaling pathway. It is revealed that miR-124-3p can switch cell po-
larization from the M1 to the M2 phenotype in various subsets of
monocyte cells and microglia [111]. Down-regulation of its expression
level is an indicator of neuroinflammation in various diseases, such as
experimental autoimmune encephalomyelitis [112] intracerebral hem-
orrhage [93]. At present, researchers confirmed that miR-124-3p
benefited anti-inflammatory M2 polarization in microglia and exerted an
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anti-inflammatory effect on injured neurons via their transfer by micro-
glial exosomes. Thus, these findings suggest that the increased
miR-124-3p in microglial exosomes exerts a protective effect in injured
brain after TBI [111]. Guofeng C et al. suggested that exosomes derived
from M2 microglia alleviates ischemia-reperfusion brain injury through
transporting exosomal miRNA-137 targeting Notchl, which indicate a
potential therapeutic target for SCI treatment.

6. Oligodendrocyte derived exosomal miRNAs and SCI

In the central nervous system, the significant function of oligoden-
drocytes is providing support and insulation to axons, equivalent to the
function of Schwann cells in the peripheral nervous system [113]. Oli-
godendrocytes includes multivesicular bodies (MVBs) at the axon
perimeter, express exosomes involving proteolipid proteins (PLP),
myelin proteins, and anti-oxidative stress-related proteins [113,114].
Besides, oligodendroglial precursor cell line Oli-neu can secret exosomes,
carrying miR-9 and miR-19a, to decrease neuronal DCX expression. Both
miRNAs were predicted to combine with Doublecortin (DCX)
[115].Thus, the downregulated expression of neuronal DCX may be
mediated by the miRNAs in the exosomes. DCX, as a microtubule-stable
protein, is down-regulated in the course of neuronal differentiation.
Exosomal-mediated down-regulation of DCX might be vital in the pro-
gram of the nervous system. During the growth of the nervous system,
oligodendrocytes can provide differentiation signals to neurons. The type
of DCX can initiate neuronal precursor cell differentiation and also allow
mature neurons to be polarized [116]. As a result, the miRNAs carried by
exosomes released by oligodendroglial precursor cells may play an
essential role in neuroplasticity post SCL

7. Conclusions and future perspectives

Transferring information through circulating vesicles is considered a
third way of intercellular association, as crucial as intercellular contact-
dependent signals and soluble molecular delivery signals [93,112].
Extracellular vesicles, subdivided into exosomes, microvesicles (MVs),
and apoptotic bodies, can transport proteins, lipids, mRNAs and miRNAs.
In particular, exosomal miRNA has been shown to regulate protein
expression in recipient cells and have functional role in vivo [48,117]. It
has been reported that treatment by exosomes in the early stage after SCI
could attenuate neuronal cell apoptosis [118]. For example, systemic
injection of MSCs derived exosomes could promote recovery of SCI rats
by increasing the expression level of anti-apoptotic protein B-cell lym-
phoma 2 (Bcl2) and markedly reducing the activity of pro-apoptotic
protein Bcl-2-associated X protein (BaX) [119,120]. In addition, other
studies also demonstrated that the anti-apoptotic effect induced by
MSC-exosomes targeting Wnt/p-catenin signaling pathway [121] and
MSC-exosomes could also reduce neuronal apoptosis by inducing auto-
phagosome formation through improving the expression of
autophagy-related proteins, including LC3IIB and Beclinl [122,123]
(Fig. 2).

Moreover, when SCI occurs, the injured spinal column is hypoxic.
MSCs derived exosomes, which full of phosphatase and tensin homolo-
gous small interfering RNA (ExoPTEN), can significantly enhance the
angiogenesis and axon regeneration in the damaged spinal cord by
reducing PTEN expression in rats [30,124] (Fig. 2). More importantly,
MSCs derived exosomes are also found to decrease the permeability of
the blood-spinal- cord barrier (BSCB), enhance its integrity, and promote
axon regeneration by down-regulating the NF-xB p65 signaling pathway
in pericytes [125]. Furthermore, our previous work also indicated that
schwann cell-derived exosomes could repair SCI by attenuating chon-
droitin sulfate proteoglycans (CSPGs) deposition through activating the
Toll-like receptor II 2 on astrocytes [126].

MiRNAs have been shown to bind to mRNA in cells and silence their
expression and participate in post-transcriptional regulation. A miRNA
can have hundreds of target mRNAs and interact with other miRNAs to
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regulate post-transcriptional mRNA expression [69]. Previously, miRNAs
can only exert their modulatory function within the cell to regulate
mRNA expression instead of being secreted outside the cell and act on
other cells [70]. The miRNAs cannot exert their regulatory effects if they
existing in the extracellular matrix with no protection and no target cells.
However, the miRNAs in exosomes can not only been well protected by
the phospholipid bilayer and then escape the hydrolysis of RNases, but
also receive targeting effect of exosomes, which can act on specific cell
populations [71,127,128].

Accumulated researches have indicated that exosomes are capable of
mediating cell-to-cell communication [129-131], packaging and trans-
porting miRNAs to new cells and participating in regulating gene
expression. Nowadays, exosomal miRNAs are regarded as novel bio-
markers for cervical cancer prediction and diagnosis [131,132]. More-
over, BMSCs-derived exosomal miR-150-5p can inhibit the apoptosis of
cardiomyocytes and improve the cardiac function via targeting Bax [133,
134]. In addition, exosomes derived from BMSCs contained higher
miR-29 and miR-24 and lower miR-21, miR-34, and miR-378. These
exosomal miRNAs can improve cardiac function by attenuating fibrosis
and inflammation in the rat model of myocardial infarction [133,
135].Except for MSCs, neurons, microglia and oligodendrocytes,
emerging studies also indicate that astrocytes-derived exosomal miR-26a
may impact neuronal function and morphology [136] and infiltrated
macrophages after SCI could aggravate BSCB integrity breakdown by
delivering exosomal miR-155 through activating the NF-xB pathway
[137]. Nevertheless, it has not been well studied whether exosomes can
accurately transfer miRNAs from their parent cells to their target cells,
and the functions of regulating post-transcriptional translation and
contribution of SCI and TBI are not transparent.

According to the traditional understanding, most of the carriers for
communication between different cells are proteins. However, it has not
been found that cells can also transport nucleic acids from one cell to
another by encapsulating vesicles and exerting their regulatory effects on
target cells [26]. Is this regulation vital in cell's growing, differentiating,
as well as function? Does it also participate in various pathophysiological
processes that include damage to the CNS and regeneration after SCI?
The structure and function of multicellular individuals are inseparable
from the information and material exchanges between cells. However,
the detailed mechanism of communication between cells is still not well
known. As the individual organisms evolve toward higher levels, the
communication between cells will also be more accurate, stable, and
rapid. The appearance of synapses is a way of precise communication
between cells. Exosomal microRNA work on specific cell populations also
suggests that they are a more accurate and stable means of the cell-to-cell
communication.
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