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Atrial fibrillation (AF) with multiple complications, high morbidity and mortality,

and low cure rates, has become a global public health problem. Although

significant progress has been made in the treatment methods represented by

anti-AF drugs and radiofrequency ablation, the therapeutic effect is not as good

as expected. The reason is mainly because of our lack of understanding of AF

mechanisms. This field has benefited from mechanistic and (or) statistical

methodologies. Recent renewed interest in digital twin techniques by

synergizing between mechanistic and statistical models has opened new

frontiers in AF analysis. In the review, we briefly present findings that gave

rise to the AF pathophysiology and current therapeutic modalities. We then

summarize the achievements of digital twin technologies in three aspects:

understanding AF mechanisms, screening anti-AF drugs and optimizing

ablation strategies. Finally, we discuss the challenges that hinder the clinical

application of the digital twin heart. With the rapid progress in data reuse and

sharing, we expect their application to realize the transition from AF description

to response prediction.
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1 Introduction

The most common sustained arrhythmia atrial fibrillation (AF) not only has high

morbidity andmortality, but also is very difficult to prevent, diagnose and treat, bringing a

huge economic burden to individuals, countries and society (Hindricks et al., 2020). AF is

often asymptomatic and frequently undetected clinically (Gibbs et al., 2021), but it

increases the risk of stroke by fivefold (Freedman et al., 2016), heart failure by threefold

(Kotecha and Piccini, 2015), andmortality by twofold (Tsao et al., 2022). Occurring in less

than 0.16% in patients aged≤ 49 years, AF has a prevalence that increases steadily with

advancing age, affecting up to 9% in those aged ≥65 years and 17% in patients beyond the

age of 80 years (Freedman et al., 2021); the overall lifetime risk is at least 37.8% (Staerk
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et al., 2018). The number of individuals affected by AF had

exceeded 46.3 million in 2016, with more than five million each

year new cases diagnosed, as well as the number will double by

2060 (Krijthe et al., 2013). The costs associated with AF are large:

in the U.S. alone, the incremental cost of AF treatment exceeds

$26.0 billion (Kim et al., 2011), while the incremental cost of

asymptomatic AF exceeds $3.1 billion (Turakhia et al., 2015).

Thus, AF has become a global public health problem.

The 2020 European Society of Cardiology guidelines endorse

the Atrial Fibrillation Better Care (ABC) pathway as a structured

approach for AF management, addressing three principal

elements: “A” - avoid stroke (with oral anticoagulation), “B” -

patient-focused better symptom management, and “C” -

cardiovascular and comorbidity risk factor reduction and

management (Hindricks et al., 2021). The mobile AF

application randomized trial confirmed that the ABC

approach could reduce adverse outcomes more significantly

than usual care (Guo et al., 2020). In addition, several studies

found that implementing the ABC pathway can improve cure

rates, decrease related costs and the risk of complications, and

reduce mortality and morbidity (Pastori et al., 2019; Yoon et al.,

2019; Wijtvliet et al., 2020). Despite significant advances in the

management and treatment of AF using the ABC pathway, AF

continues to pose a significant risk of death, partly due to

knowledge gaps in the fundamental AF mechanisms and

treatment strategies (Goette et al., 2019). Developing a

personalized digital twin of the heart, which integrates

coherently and dynamically the patient’s clinical data over

time, will likely be essential to overcome current challenges

(Corral-Acero et al., 2020; Lindemans, 2020; Gerach et al.,

2021). Over the last decades, the digital twin heart has

emerged as a modality to diagnose, understand and therapy

complex arrhythmias (Gillette et al., 2021a; Gillette et al., 2021b).

This mini-review is structured as follows: Section 2 briefly

summarizes the AF pathophysiology and current therapeutic

modalities. Section 3 summarizes the achievements of synergy

between mechanistic and statistical models in three aspects:

understanding AF mechanisms, screening anti-AF drugs and

optimizing ablation strategies. Finally, we discuss the challenges

that hinder the clinical application of synergy between

mechanistic and statistical models. More methodological

details on mechanistic and (or) statistical models can refer to

other reviews (Nattel et al., 2021a; Heijman et al., 2021b; Nattel

et al., 2021b; Leblanc et al., 2021; Trayanova et al., 2021).

2 Atrial fibrillation pathophysiology
and current therapeutic landscape

Many dynamic predisposing factors, including modifiable

and non-modifiable risk factors, contribute to the onset and

progression of AF. The identified non-modifiable risk factors

include age, sex, ethnicity and genetics, while modifiable factors

consist of smoking, alcohol consumption, hypertension, lipid

profile, diabetes, vascular disease, coronary artery disease, heart

failure, obesity, physical inactivity, chronic kidney disease,

obstructive sleep apnoea, chronic obstructive pulmonary

disease, valve disease and inflammatory diseases (Benjamin

et al., 1994; Mont et al., 2008; Lau et al., 2017; Roselli et al.,

2020). These risk factors can lead to atrial remodeling through

various pathways facilitating the development of AF. The atrial

remodeling can be grouped into electrical, structural, and

autonomic remodeling that allows for the initiation and

maintenance of AF. Recent reviews detailing the role of each

risk factor in the pathophysiology of AF and various underlying

mechanisms can be summarized as follows (Dobrev et al., 2019;

Nattel et al., 2020): Complex electrical defects in the atria,

including reentrant waves and localized premature atrial

contractions, contribute to the development of AF. Among

them, premature atrial beats are mainly derived from the early

and late afterdepolarization (EAD/DAD) of atrial cells, and

reentrant waves are related to the shortening of the effective

refractory period, slow conduction and conduction barriers

(Hansen et al., 2015; Mikhailov et al., 2021). AF is not only a

complex multifactorial disease, but also a progressive condition,

moving from paroxysmal AF (self-terminating in <7 days),
persistent AF (lasting >7 days and requiring termination by

cardioversion) to long-standing persistent AF (lasting >1 year
and requiring a rhythm control strategy) and, may become

resistant to antiarrhythmic drugs (AADs) (Chiang et al., 2012)

and ablation therapies (Wyse et al., 2014; Ogawa et al., 2018). In

addition to advancing age and the progressive remodeling caused

by modifiable risk factors (Mountantonakis et al., 2012), AF

progression also has a substantial genetic component (e.g., the

most common ones at 4q25 near PITX2) (Gudbjartsson et al.,

2007) (Figure 1). However, the contribution of each factor in a

specific patient to AF occurring and progression remains

incompletely understood.

Potential AF patients are usually diagnosed with long-term

electrocardiogram (ECG) monitoring to determine the temporal

patterns (Hindricks et al., 2020). In addition to AF patients with

distinct ECG features, up to 40% of AF patients have no obvious

symptoms (Page et al., 2003; Jones et al., 2020). A large number of

undiagnosed AF patients cannot receive the necessary risk

management (Davidson et al., 2022), resulting in irreversible

AF-causing structural remodeling, increasing the difficulty of

later treatment and reducing therapeutic efficacy. The EAST-

AFNET4 trial has confirmed that early rhythm-control therapy

can reduce the risk of adverse outcomes (Kirchhof et al., 2020).

Although AF screening is also recommended, the best way to

screen is uncertain.

Rate and rhythm control strategies are two cornerstones of

symptomatic AF management. For preventing mortality and

morbidity from cardiovascular causes, the effectiveness of the two

strategies is comparable (Van Gelder et al., 2002; Wyse et al., 2002).

Due to the limited efficacy and proarrhythmic side effects. AADs are
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widely used but cannot effectively control sinus rhythm (Heijman

et al., 2021a). Although pulmonary vein isolation (PVI) via catheter

ablation (CA) can improve sinus rhythm maintenance compared to

AADs (Marrouche et al., 2018; Kelly et al., 2019), many AF

recurrence cases illustrate that the one-size-fits-all approach is still

suboptimal (Andrade et al., 2019). These studies found patients with

later AF recurrences respond better to AADs and repeat ablation,

providingmetrics to assess different CA strategies (i.e., the time to AF

recurrence) (Gaztañaga et al., 2013). Despite the increasing

importance of CA strategies (Asad et al., 2019; Blomström-

Lundqvist et al., 2019), AADs remain an important component of

AFmanagement (Markman et al., 2020; Andrade et al., 2021), since a

large number of AF patients, and the costs and risks of the invasive

procedures of CA should be considered. However, the choice of

AADs is limited by their proarrhythmic and toxic properties

(Zimetbaum, 2012). Therefore, specific rate or rhythm control

strategies for distinct fundamental molecular and cellular

determinants of AF are likely to yield better therapeutic outcomes

(Garvanski et al., 2019). Nevertheless, it is challenging to predict

which AF patients are likely to recur and thereby require more

aggressive therapy.

3 Applications of digital twin
techniques in atrial fibrillation
management

Digital twin technologies are expected to overcome existing

difficulties. The digital twin was firstly presented by Michael

Grieves in 2003 and was initially described as a virtual

representation of a physical product (Grieves, 2005). Its

definition was expanded to consist of three components: a

physical product, its virtual representation and a two-way data

connection between the virtual and the physical representations

(Haag and Anderl, 2018). The digital twin in health care denotes

the vision of “a comprehensive, virtual tool that integrates

coherently and dynamically the clinical data acquired over

time for an individual using statistical models and mechanistic

modeling and simulation” (Alber et al., 2019). Using digital twin

techniques, precision cardiology will be provided in a

collaborative way, through mechanistic modeling and

simulation of multiscale heart and the use of statistical models

learned from massive raw data (including simulated,

experimental and clinical data) (Bai et al., 2016; Bai et al.,

FIGURE 1
Schematic overview ofmechanisms underlying AF development and progression. This figure depicts the interrelationships between risk factors,
time-dependent atrial remodeling and progression from sinus rhythm (SR) through paroxysmal and persistent to permanent AF. ECV = electrical
cardioversion; ERP= effective refractory period; AADs = antiarrhythmic drugs; EADs = Early afterdepolarization; DADs =Delayed afterdepolarization.
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2017a; Bai et al., 2017b). Following fundamental biophysical laws

and concepts, mechanistic models integrate fragmented data into

a “biologically functional heart” that can be used to simulate

cardiac electrophysiological dynamics to explore underlying

mechanisms (Bai et al., 2021a). However, it is a difficult task

to reduce hundreds of thousands of multiscale simulation data to

meaningful predictive biomarkers, and clinical biomarkers or

quantitative measures of structural remodeling derived from raw

imaging data were not considered in mechanistic modeling.

Statistical models are ideal for identifying meaningful

predictive biomarkers in high-dimensional simulation and

clinical data (Corral-Acero et al., 2020; Liu et al., 2021; Zeng

et al., 2021; Zhong et al., 2022). Therefore, digital twin techniques

have value in evidence generation, diagnosis and treatment.

Although personalized atrial computer models from either

imaging data or electroanatomical maps have been developed,

their standardization has just begun. Lately, Razeghi et al.

published the CemrgApp platform for image processing to

provide MRI segmentation, including fibrotic tissue

distribution derived from late gadolinium enhancement (LGE)

intensity in a semi-automatic and userfriendly way (Razeghi

et al., 2020). In addition, Williams et al. presented the

OpenEP framework for evaluating electroanatomic mapping

data (Williams et al., 2021). Considering the advantages of

CemrgApp and OpenEP, Azzolin et al. proposed a patient-

specific Augmented Atria generation pipeline (AugmentA)

that ingests the tomographic segmentations and (or) the

electroanatomic map, and provided ready-to-use atrial

personalized computational models from clinical data.

AugmentA consists of a preprocessing step (Azzolin et al.,

2021a), atrial orifices’ annotation, a statistical shape model

fitting procedure, fiber generation (Zheng et al., 2021) and

conduction velocity (CV) estimation. AugmentA offers an

automated and comprehensive pipeline delivering personalized

atrial computer models from clinical data in procedural time

(Azzolin et al., 2022a). This is a step forward toward standardized

assessment of arrhythmia vulnerability and testing of ablation

strategies. The following part of the review addressed studies

using digital twin techniques for understanding AF mechanisms,

screening anti-AF drugs and optimizing AF ablation strategies.

3.1 Understanding AF mechanisms using
digital twin techniques

Recently, several hybrid studies utilizing both mechanistic and

statistical approaches investigated AF mechanisms. An example of

the use of digital twin techniques is investigations of atrial

electrophysiological variability (Muszkiewicz et al., 2016).

Although the variability is manifested through functional

differences between individuals and has important implications

for AF progression, it is often ignored in traditional studies by

averaging samples from multiple individuals (Bai et al., 2018).

Recently, a digital twin framework has been designed to study its

underlying mechanisms and arrhythmogenic risks under different

conditions (Ni et al., 2020). Based on the common assumption of

heterogeneous current properties and an appropriate atrial cell

model, parameters of the baseline model are varied to construct a

population of candidate models by using different samplingmethods

(e.g., Latin Hypercube sampling (Burrage et al., 2015), sequential

Monte Carlo (Lawson et al., 2018) and Bayesian history matching

(Coveney and Clayton, 2018)). Populations of models (POMs) are

directly calibrated to experimental data distributions to provide

valuable tools for investigating the factors that underlie emergent

atrial electrophysiology. In detail, experimentally-calibrated POMs

are used to conduct simulations of atrial electrophysiology, whereas

statistical models are used to identify how variability in in-silico atrial

electrophysiology modulates the dynamics of AF.

At the cellular level, several studies concentrated on

identifying potential determinants of inter-subject variability

in calcium transient (Muszkiewicz et al., 2018; Vagos et al.,

2021), action potential (AP) duration (APD) (Sánchez et al.,

2014; Chang et al., 2017; Coveney and Clayton, 2020; Nesterova

et al., 2020), triggered activity (Morotti and Grandi, 2017; Zhu

et al., 2021) and dynamic AP restitution (Vagos et al., 2017). In

these studies, the kinetic parameters influencing ion currents

(Chang et al., 2017) and ionic conductances (Sánchez et al., 2014;

Coveney and Clayton, 2020; Nesterova et al., 2020) were

identified to have a strong influence on APD and Dome

potential. In addition to ionic current properties, external

factors (e.g., stimulus strength) were also found to modulate

AP amplitude and APD (Muszkiewicz et al., 2014). Digital twin

techniques were also used to classify different AF types, such as

AFs at different ages (Nesterova et al., 2020), as well as

upregulated vs downregulated Pitx2-induced AFs (Zhu et al.,

2021). At the tissue level, factors related to the maintenance and

formation of reentrant waves were investigated. For example, the

study of Simon et al. employed a population of tissue models to

identify inter-subject variability that modulates CV that is critical

for arrhythmia inducibility (Simon et al., 2017), while the study

of Clayton et al. investigated the influence of the spatial scale of

fibrosis regions on the APD dispersion and vulnerability to re-

entry (Clayton, 2018). They found that the specific balance

between sodium current and diffusion coefficient can promote

the formation of reentrant waves, and small fibrosis areas favor

the maintenance of reentrant waves. The potential of the digital

twin heart in exploring AF mechanisms was directly highlighted

in these studies reviewed in this section.

3.2 Screening anti-AF drug using the
digital twin techniques

A variety of computational models have been used to screen

anti-AF drugs. Some of them are related to potential drug targets,

as is the case of Liberos et al., who used chronic AF-induced
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remodeling tissue models to investigate the effect of each

remodeled target on rotor dynamics. The study found that the

effectiveness of ICaL block as a rhythm control strategy depends

on the availability of Na+ and Ca2+ currents (Liberos et al., 2016;

Liberos et al., 2017). In addition, special ion channels as drug

targets (including INa and/or INaL, IKr, IKur, IK,Ach, IK,2P and IK,Ca)

were investigated by altering the conductance or the gating

kinetics. Scholz et al. introduced a mathematical description

of IKur blockade into models of normal and remodeled atrial

electrophysiology and found antiarrhythmic effects of IKur
inhibitors are dependent on kinetic properties of blockade

(Scholz et al., 2013). Schmidt et al. changed the conductance

of IK,2P to investigate the effects of genetic ablation of TASK-1

and found antiarrhythmic effects of anti-TASK-1-siRNA were

associated with APD prolongation (Schmidt et al., 2019). Using a

population of virtual whole-atria human models, Sánchez et al.

found specific inhibitions of IK1, INaK, or INa may be a promising

rhythm control strategy by enlarging wave meandering to reduce

the dominant frequency (Sánchez et al., 2017). Another

interesting study by Ni et al. investigated the synergistic anti-

AF effects of the combined block of multiple atrial-predominant

K+ currents using populations of cell and tissue models. The

study found that the proposed strategy can promote favorable

positive rate-dependent APD prolongation, illustrating its

potential anti-AF effects (Ni et al., 2020). Some other studies

concentrated on predicting the risk of anti-AF drugs. In the

study by Bai et al., the focus was on evaluating the efficacy of

disopyramide, quinidine, and propafenone on Pitx2-induced

AF. The study found that disopyramide is most effective in

the three drugs for Pitx2-induced AF by prolonging the

wavelength (Bai et al., 2021b). Wiedmann et al. tested the

antiarrhythmic effects of the high-affinity TASK-1 inhibitor

A293 on cardioversion in a porcine model of paroxysmal AF

and multicellular tissue modeling predicted that the

antiarrhythmic effect of TASK-1 inhibition by A293 was

strongly dependent on the tissue conductivity and the

resulting CV (Wiedmann et al., 2020). Loewe et al.

evaluated the dynamic effects of amiodarone and

dronedarone on human atrial patho-electrophysiology and

simulated results provided possible explanations for the

superior efficacy of amiodarone (Loewe et al., 2014). The

digital twin techniques also were used to classify drugs. For

example, Sanchez et al. predicted the effects of isoproterenol,

flecainide and verapamil using in silico simulations and then

classified these drugs based on proarrhythmic patterns using

a random forest algorithm. The study found that IK1 is the

most important current for classifying the proarrhythmicity

of a given profile (Sanchez de la Nava et al., 2021). These

initial results point to future developments where the

combination of mechanistic and statistical models could

create efficient platforms for drug screening and

cardiotoxicity studies, and, importantly, platforms for

individualized medication.

3.3 Optimizing AF ablation strategies using
the digital twin techniques

Pulmonary vein isolation (PVI) by cardiac ablation emerged

as a feasible strategy in AF ablation and has evolved from

segmental ostial pulmonary vein ablation to the guide ablation

with the 3D electroanatomical mapping, to wide-area

circumferential ablation with verification of conduction block.

For long-term ablation success, PVI using point-by-point

radiofrequency or with the cryoballoon has evolved

substantially, with multiple energy sources and a variety of

ablation tools being available to make it safe and effective.

These emerging tools include numerous novel radiofrequency

catheters (such as Satake HotBalloon, Heliostar, Luminize-RF,

Sphere-9 catheter and NADH autofluorescence-guided ablation

catheter) and alternative energy sources (e.g., endoscopic laser

balloon and pulsed field electroporation). Although PVI has been

shown to have a high success rate in patients with paroxysmal AF

in proximity to the PV regions, it is insufficient in the most

patients with persistent AF outside the PV regions. Over the past

2 decades, numerous anatomical structures have been suggested

as sites from which non-pulmonary vein triggers might occur,

including the posterior wall of the left atrium, the left atrial

appendage, the superior vena cava, the crista terminalis, the fossa

ovalis, the coronary sinus, the ligament of Marshall and adjacent

to the atrioventricular valve annuli. Unfortunately, strong

evidence to support improved clinical outcomes for any

adjunctive ablation strategies is lacking and identifying

functional localized target sites for ablation remains

challenging (Wu et al., 2021). This may be optimized by using

digital twin techniques.

One of the applications of digital twin techniques is to link

biomarkers to tissue properties. For example, Corrado et al.

found combing CV and APD with the atrial surface area can

improve the accuracy in identifying regions that tether re-entrant

activation patterns using both biophysically detailed

computational models of the atria and a support vector

machine classifier (Corrado et al., 2021). Godoy et al. linked

body surface potential mapping (BSPM) derived indexes to the

location of ectopic foci, indicating its potential application of

these biomarkers in targeting ectopic foci (Ferrer-Albero et al.,

2017; Godoy et al., 2018a; Godoy et al., 2018b).

Another application is to identify potential ablation targets.

In these studies, mechanistic models were used to simulate the

typical AF scenarios and statistical models were used to find the

regions in the atria where arrhythmias are inducible (Sha et al.,

2022). For example, Ravikumar et al. evaluated the performance

of multiscale frequency [MSF], Shannon entropy [SE], kurtosis

[Kt], and multiscale entropy [MSE] techniques to identify the

pivot point of the rotor using unipolar and bipolar EGMs

obtained from numerical simulations (Ravikumar et al., 2021).

Ganesan et al. developed and evaluated the AF source area

probability (ASAP) mapping algorithm in 2D and 3D atrial
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simulated tissues with various arrhythmia scenarios and a

retrospective study with three cases of clinical human AF.

They found that ASAP delineated the AF source in over 95%

of the simulated human AF cases within less than eight catheter

placements regardless of the initial catheter placement (Ganesan

et al., 2020). The study of Sánchez et al. characterized atrial

fibrotic substrate with a hybrid in silico and in vivo dataset and

found the digital twin techniques can overcome a single voltage

cut-off value to identify fibrotic tissue from intracardiac signals

(Sánchez et al., 2021). Using personalized biophysically detailed

computational models of the atria based on the patient’s LGE-

MRI, Zahid et al. employed mechine learning to determine the

characteristics of fibrosis distribution and found the ablation

targets may be the regions with high fibrosis density and entropy

(Zahid et al., 2016). And this approach has been shown to be

more accurate than these purely image-driven learning schemes

for identifying ablation targets (Lozoya et al., 2019). These

findings have important consequences for clinical decision-

making as they indicate how mechanistic and statistical

models work together to determine ablation targets (Ali et al.,

2019; Muffoletto et al., 2019; Cámara-Vázquez et al., 2021;

Gander et al., 2022).

Moreover, a digital twin heart may indicate a CA strategy is

appropriate for a patient by predicting the likelihood of AF

recurrence before a specific therapy is selected (Muffoletto et al.,

2019; Shade et al., 2020; Seno et al., 2021; Roney et al., 2022). For

example, in the study of Roney et al., AF patient-specific models

incorporating fibrotic remodeling from LGE-MRI scans were

constructed to test six different ablation approaches. A random

forest classifier was subsequently trained to predict ablation

response. The study found the surface areas of pre-ablation

driver regions and of fibrotic tissue not isolated by the

proposed ablation strategy are both important for predicting

ablation outcome (Roney et al., 2020). In addition, Azzolin et al.

developed a technology to tailor ablations in AF patient-specific

models aiming to identify the most successful ablation strategy.

They used the Pacing at the End of the Effective Refractory

Period (PEERP) protocol to localize emergent AF episodes, and

then connected localized ablations to the closest non-conductive

barrier to prevent recurrence of AF (Azzolin et al., 2021b). This

study found that the proposed Personalized Ablation Lines

(PersonAL) plan, consisting of iteratively targeting emergent

high dominant frequency regions, outperformed state-of-the-

art anatomical and substrate ablation strategies (Azzolin et al.,

2022b).

4 Challenges and perspectives for the
digital twin heart in AF

Before considering the digital twin techniques to improve the

clinical treatment strategy, it may be beneficial to assess the

sources of current therapies. Currently, most drugs used for the

treatment of AF, such as quinidine, flecainide, propafenone,

amiodarone, dofetilide, sotalol, and dronedarone, are not

developed specifically to target AF (Nattel et al., 2021b). This

fact is related to the importance of ventricular tachyarrhythmia

as a potentially fatal clinical target. However, as the importance of

AF to public health becomes apparent, drug development

targeting AF is booming. In the major interventional

approaches, the surgical maze procedure is the first

mechanism-targeted approach to AF pathophysiology, whereas

the empirical PVI is the most effective catheter-based procedure

(Noheria et al., 2008). However, the apparent failure of AF

treatment has primarity been attributed to the limited efficacy

of AADs and the suboptimal PVI.

A digital twin heart that promises to transform from AF

description to response prediction (i.e., from understanding AF

mechanisms to screening anti-AF drugs and optimizing AF

ablation strategies). In the digital twin heart, on the one hand,

potential pathological mechanisms are explored through

personalized multi-scale modeling and simulation; on the

other hand, AF phenotypes are identified through a data-

driven statistical model. Mechanistic and statistical models

complement each other’s strengths to facilitate AF mechanism

understanding and therapeutic evaluation. As experimental

methods and imaging techniques continue to advance, more

abundant and high-quality data will facilitate the development of

digital twin hearts. Standardization of data acquisition and

improved attention to re-usability will accelerate the

development of digital twin technologies (Strocchi et al.,

2020), while their integration into existing workflows will

facilitate its clinical application. In the future, AF patients can

be screened based on ECG biomarkers using statistical models

(Xiong et al., 2018), while personalized biophysically detailed

computational models of the atria based on the patient’s LGE-

MRI can be used to interpret AF phenotypes (Figure 2) (Aslanidi

et al., 2011).

Although there is a palpable exuberance in AF research

regarding the potential of digital twin techniques, limitations

of the various approaches and challenges in ensuring their

clinical application remain. Whether it is the development of

digital twin hearts or their clinical applications, the main

challenge is the limited availability of experimental data at

present. In order to achieve tailored AF treatment, we need to

develop a more detailed personalized mechanistic model, but the

functional and structural data required to build personalized atria

are lacking. Except for the electrophysiological function data of

the right atrial appendage of AF patients, other microstructural

data, especially from the healthy atrium, are currently very scarce.

Although individual structural data represented by patient-

specific anatomy and fibrosis distribution can be obtained

with LGE-MRI, the limited spatial resolution makes modeling

fiber orientations and atrial fibrosis patterns difficult. Even if

patient-specific models of the heart can be personalized, we still

need to address the issue of intra-individual heterogeneity,
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including variability in atrial structural and functional properties.

Due to the lack of massive experimental and clinical data, these

heterogeneous features and their effect on the overall behavior of

AF are poorly understood. For statistical models, supervised

algorithms require significant amounts of high-quality labeled

data. Annotation of data with labels is labor-intensive and

datasets with poor data seriously affect the performance of

algorithms. Therefore, data with its many aspects presents

challenges to the digital twin heart adoption in AF management.

5 Conclusion

AF continues to pose a significant risk of death, in part due to

knowledge gaps in the fundamental AF mechanisms and

treatment strategies. These clinical challenges in

understanding AF mechanisms, screening anti-AF drugs and

optimizing AF ablation strategies might benefit from the digital

twin techniques. Although limited by the availability of

experimental data, the digital twin heart remains a promising

path towards the vision of precision cardiology and its clinical

applications are emerging.
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FIGURE 2
Digital twin heart in exploring the AF mechanisms. Clinical data are used to create and validate statistical and mechanistic models. Synergy
betweenmechanistic and statistical models gives valuable insight that is clinically interpreted and combined with traditional data to aid in the process
of clinical decision-making.
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