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Abstract

With the rapid development of the Internet and the increasing popularity of mobile devices,

the availability of digital image resources is increasing exponentially. How to rapidly and

effectively retrieve and organize image information has been a hot issue that urgently must

be solved. In the field of image retrieval, image auto-annotation remains a basic and chal-

lenging task. Targeting the drawbacks of the low accuracy rate and high memory resource

consumption of current multilabel annotation methods, this study proposed a CM-supple-

ment network model. This model combines the merits of cavity convolutions, Inception mod-

ules and a supplement network. The replacement of common convolutions with cavity

convolutions enlarged the receptive field without increasing the number of parameters. The

incorporation of Inception modules enables the model to extract image features at different

scales with less memory consumption than before. The adoption of the supplement network

enables the model to obtain the negative features of images. After 100 training iterations on

the PASCAL VOC 2012 dataset, the proposed model achieved an overall annotation accu-

racy rate of 94.5%, which increased by 10.0 and 1.1 percentage points compared with the

traditional convolution neural network (CNN) and double-channel CNN (DCCNN). After sta-

bilization, this model achieved an accuracy of up to 96.4%. Moreover, the number of param-

eters in the DCCNN was more than 1.5 times that of the CM-supplement network. Without

increasing the amount of memory resources consumed, the proposed CM-supplement net-

work can achieve comparable or even better annotation effects than a DCCNN.

Introduction

As multimedia technology rapidly develops and image acquisition devices become increasingly

convenient, digital image resources have increased exponentially. How to rapidly retrieve

objects of users’ interest from a large number of images has become an important research

direction in the field of image processing. By automatically annotating the keywords reflecting

semantic content, the auto-annotation technique narrows the gap between the low-level visual
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features of the image and the high-level semantic annotations [1]. It enhances the efficiency

and accuracy of image retrieval and therefore gains broad application prospects in the fields of

image and video retrieval, scene understanding and human-computer interaction [2]. Never-

theless, image auto-annotation remains a challenging topic due to the existence of “semantic

gaps”, although it has long been a hot spot of research in the field of computer vision. As an

image consists of complex semantic information, a single annotation often fails during the

labeling task. Therefore, the adoption of a multilabel annotation approach becomes necessary.

The labels in multilabel auto-annotation contain most of the information contained the anno-

tated image. Thus, the image can be rapidly identified. In addition, this approach satisfies the

retrieval requirement for images on the Internet with large-scale semantic information [3].

To date, scholars have proposed a number of models for image auto-annotation. These

models can be roughly divided into three categories: generative models, nearest models and

discriminative models. With generative models, the visual information of the image, such as

colors, shapes, textures and spatial relations, is extracted. Then, the joint probability distribu-

tion of the visual features and tags or the conditional probability distribution of different tags

is calculated, based on which the tags are scored for complete annotation [4]. The multiple

Bernoulli relevance model and cross-media relevance model are typical examples of this cate-

gory. [5, 6] Later, Moran et al. [7] proposed a modified sparse kernel learning continuous rele-

vance model (SKL-CRM), which enhanced the performance of image annotation by learning

the optimum combination among feature kernels. The fuzzy cross-media relevance model

(FCRM) utilizes nonparametric Gaussian kernels to perform continuous estimation of the fea-

ture generation probability [8], which further improves the annotation accuracy. Although

generative models involve a relatively simple annotation process, the gap between the low-

level features and high-level semantics of the image, as well as semantic dependence, often

leads to inaccurate joint probabilities [9]. In recent years, with the increase in training data, the

nearest models have gained increasing popularity. In this category, image annotation is treated

as a retrieval task, and the basic idea of the tag propagation mechanism is to find images that

resemble the test image and then to annotate the test image with the tags corresponding to the

resembling images [10]. The nearest models include the joint equal contribution (JEC) [11],

tag propagation metric learning (TagProp_ML) [4] and two-pass K-nearest neighbor

(2PKNN) [12] as typical examples. In particular, the 2PKNN Metric Learning (2PKNN_ML)

method has been considered an advanced and representative method of nearest models in

recent years. With the 2PKNN_ML method, after the semantic neighbor images of the test

image are found, the distance weights between features are optimized via metric learning [13].

However, the nearest models suffer from the loss of much valuable information during image

visual feature extraction, which is very likely to result in an unsatisfactory annotation effect

[14]. Discriminative models treat each tag as a class and consider image annotation as a multi-

classification task. Based on multiple classifier training, the models classify the test image into

a class to which a certain tag belongs [15]. Typical examples of nearest models include the K-

nearest neighbor (KNN) [16], K-means clustering [17], support vector machine (SVM) [18]

algorithms, as well as the modified versions of these methods. However, all these methods are

restricted and influenced by the number and training effect of the classifiers, particularly

under the condition of imbalanced training samples, where the training effect of the classifiers

corresponding to low-frequency tags is unsatisfactory, which in turn affects the total annota-

tion accuracy; in addition, with the increase in the number of class tags, the number of

required classifiers also increases, which makes the annotation model more complex [19].

With the continuous development of deep learning in recent years, convolutional neural

networks (CNNs) have been extensively applied in the field of computer vision [20]. In 2012,

Hinton et al used a multilayer CNN for image classification of the ImageNet dataset [21], and
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an impressive recognition effect was achieved [22]. Later, a large number of research projects

focused on modifying CNNs in terms of structure and performance. For instance, GoogLeNet,

developed by Google, was the champion in the 2014 large-scale image recognition competition

[23], and in the ImageNet 1000 Challenge, the deep-level CNN-based computer vision system

developed by the Visual Computing Group at Microsoft Research Asia outperformed humans

in terms of object recognition and classification for the first time [24]. Furthermore, deep-level

CNN-based discriminative models have also made certain achievements in multilabel image

auto-annotation. Based on a CNN, Li et al. designed a softmax regression-based multilabel

ranking loss function network, which greatly improved the auto-annotation effect compared

with traditional methods [25]. Murthy et al. [26] proposed the linear regression-based CNN-

regression (CNN-R) method, which optimized the model parameters via backpropagation

(BP). Although these methods achieved improvement in image auto-annotation compared

with traditional methods, most of them targeted improving the network itself or on single-

label learning, seldom focusing on the application and improvement in multilabel learning-

based image auto-annotation. Targeting the issue of low annotation accuracy of low-frequency

tags caused by training sample imbalance in image semantic annotation, Cao et al. [27]

designed a double-channel convolutional neural network (DCCNN) in 2019. However, due to

the requirement of the simultaneous operation of the two channels during testing, great mem-

ory usage occurs.

Based on the aforementioned methods, the current study proposes a CM-supplement

CNN, in which the characteristics of multilabel image annotation and the influence of training

sample imbalance on image annotation were both taken into consideration. The proposed

CNN possesses the following advantages: 1) The cavity convolution contained in the model

expands the receptive field for feature extraction but without increasing the calculation burden

and memory overhead; 2) Inception modules are incorporated into the model, which not only

deepens the network but also increases the network width. These changes help extract features

at different scales, strengthen the network robustness, and increase the network calculation

speed along with a reduced memory overhead. 3) the supplement CNN-based structure can

effectively solve the problem of the influence of the discarded negative information on the clas-

sification effect in traditional CNNs during image classification.

Methodology

Supplement CNN

The supplement CNN is a modified version of the traditional CNN [28]; its structure is shown

in Fig 1.

As shown in Fig 1, the modifications of the current model mainly focus on the convolu-

tional layer. The positive features extracted by the convolutional layer are reversed to obtain

Fig 1. Structure of the supplement CNN.

https://doi.org/10.1371/journal.pone.0234014.g001
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the negative features of the image, and then the positive and negative features are fused as

input for the next layer. Compared with traditional CNNs, the current model maintains the

negative information, which endows it with the ability to learn more features, thereby improv-

ing the image annotation and recognition accuracy.

Apart from the abovementioned difference, the supplement network also differs from the

traditional CNN in the selection of the activation function. Normally, traditional CNN uses

the ReLU function as the activation function. However, the ReLU function cannot maintain

the negative information of the image, which can be observed from its expression. Instead, the

supplement network uses ELU [29] as the activation function.

The ELU activation function (an exponential linear unit) is a correction function of ReLU.

It keeps the negative information of the image by adding a nonzero output to a negative input,

and its expression is as follows:

f ðxÞ ¼
@ðex � 1Þ x � 0

x x > 0
ð1Þ

(

where x represents the feature map of the image.

According to Eq (1), the ELU function contains a negative exponential term, which can pre-

vent the appearance of silent neurons, thereby enhancing the overall learning efficiency of the

network.

CM-supplement CNN

Network structure design. The structure of the proposed CM-supplement network in

this study is shown in Fig 2.

The proposed model is a seven-layer structure with four convolutional layers and three

fully connected layers. The detailed information is as follows.

In layers 1 and 2, cavity convolutions with an expansion coefficient of 2 are used as the con-

volution kernels. This treatment can expand the receptive field, without increasing the net-

work memory overhead and calculation burden, to extract more image features. For example,

when the expansion coefficient of a convolutional kernel with a size of 3�3 is set to 2, its recep-

tive field will change from 3�3 to 7�7, but without increasing the number of the parameters.

Furthermore, pooling layers do not need to be set for a network containing cavity convolutions

because the function of pooling layers is just to expand the receptive field for feature extrac-

tion. In addition, some feature information can be lost during receptive field expansion by

pooling layers, while this drawback can be well remedied by cavity convolutions.

In addition, in both layer 1 and layer 2, a supplement model structure is used to obtain the

negative features of the image for their transfer into the next layer. The implementation of the

supplement model is simple and does not need extra parameters to be added (and only

involves the reversal operation of the features extracted by the cavity convolution followed by

the fusion between the reversed features and the original ones). Therefore, the supplement

model was used as a component of the CM-supplement model in this study.

In layer 3, a common CNN is used for the transition from the fusion structure of the cavity

convolution with the supplement structure to the Inception module. Furthermore, its use can

reduce the calculation burden by reducing the dimensions before the features enter the Incep-

tion module.

The fourth layer contains Inception modules. The reason for the incorporation of the

Inception module is that it possesses the capability to extract image features at different scales.

Furthermore, the number of parameters and computational load of the module are fewer than

those of commonly used CNN convolutions. In this study, the dataset for training was
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Fig 2. The CM-supplement model.

https://doi.org/10.1371/journal.pone.0234014.g002
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PASCAL VOC 2012. Considering that the amount of training data was not large, the Inception

v1 module was utilized for its simple structure with a small number of parameters.

Fully connected layers constitute layers 5–7. According to reference [27], a dropout layer

was added after layers 5 and 6 to prevent overfitting.

Principles of the modified algorithm. Image annotation consists of two key steps: image

feature extraction and the establishment of the mapping relation between the features and

tags. In essence, the CM-supplement network designed in this study is subject to modifications

within the scope of feature extraction: The cavity convolution, Inception v1 structure and sup-

plement structure are combined for the extraction of finer multiscale features to enhance the

accuracy of image annotation. These modifications are embodied in the forward propagation

process of the image input model during network training as well as in the network parameter

adjustment process according to the difference between the network-predicted outcome and

the actual image tag, i.e., the backpropagation process.

(1) Forward propagation process

The forward propagation of the CNN model is primarily accomplished by the operation of

the convolutional layer and pooling layer. Suppose that the first layer is a convolutional layer;

its calculation formula is as follows:

xlj ¼ f ð
X

i2Mj

xl� 1

i �k
l
ij þ bljÞ ð2Þ

where Mj represents the input image dataset, xlj represents the jth feature map of the ith layer, �

denotes the convolution operation, xl� 1
i is the ith feature map of the (l-1)st layer, klij represents

the convolution kernel that connects the jth feature of the lth layer with the ith feature of the

(l-1)st layer, blj represents the bias, and f(�)represents the nonlinear activation function of the

neuron.

Compared with the forward propagation process of the traditional CNN structure, the

adoption of the supplement structure enables the CM-supplement network to fuse the positive

and negative features of the image, and the calculation formula is as follows:

xlj ¼ f ð
X

i2Mj

xl� 1

i �k
l
ij þ bl

jÞ þ f ð� ð
X

i2Mj

xl� 1

i �k
l
ij þ bl

jÞÞ ð3Þ

where Mj is the set of the feature maps output by the preceding layer, xlj is the jth feature map

of the lth layer calculated based on the (l-1)st layer, � denotes the convolution operation, klij is

the convolutional kernel corresponded by the jth feature map of the lth layer based on the con-

volution calculation of the ith feature map of the (l-1)st layer, bl
j represents neural bias, and f(�)

is the activation function that maps the data onto a certain range after the convolution opera-

tion. In Eq (3), the plus symbol does not mean a simple mathematical operation but a connec-

tion (concatenation) operation.

(2) Backpropagation process

The errors in CNN backpropagation primarily consist of output layer errors and hidden

layer errors. Suppose that the target function of CNN is a variance cost function as follows:

Jðw; b; x; yÞ ¼
1

2
ky � hw;bðxÞk

2
ð4Þ

where w represents the weight, b represents the bias, x is the input feature of the image, y repre-

sents the output value and hw,b(x) represents the actual value. The specific error adjustment

process is described as follows:
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a. Calculation formula for the output errors:

d
l
j ¼

@J
@zlj

ð5Þ

where d
l
j is the error produced by the jth neuron of the lth layer and zlj represents the input

of the jth neuron of the lth layer, which is associated with the weight and bias, respectively.

b. Calculation formula for error propagation from the pooling layer to the convolutional

layer:

d
l
j ¼ b

l
jðupsampleðdlþ1

j Þ � f
0ðxljÞÞ ð6Þ

where b
l
j is the feature of the jth neuron of the lth layer, d

l
j is the error of the jth neuron of

the lth layer, f’(�) is the derivative of the activation function, unsample(�)denotes the upsam-

pling operation, and � represents the multiplication operation.

c. Calculation formula for error updating from the convolutional layer to the pooling layer:

d
l
¼ d

lþ1
�rot180ðWlÞ � f 0ðzlÞ ð7Þ

where f’(�) is the derivative of the activation function, rot180(�) means 180-degree rotation

of the convolution kernel, and δl+1 represents the error in the next layer.

Then, the updated equations of W (weight) and b (bias) of the network are as follows:

Wl
new ¼Wl

old � a�
@J
@Wl

¼Wl
old � a�ða

l� 1�d
l
Þ ð8Þ

blnew ¼ bl
old � a�

@J
@bl
¼ blold � a�ð

X

u;v

ðd
l
Þu;vÞ ð9Þ

where Wl
new is the updated weight, Wl

old is the weight before updating, α is the learning rate of

the network, bl
new is the updated bias, and blold is the bias before updating.

As the proposed CM-supplement network extracts more feature information during the

forward propagation process than during the backpropagation process, predicted outcomes

close to actual values can be obtained, and the error between the predicted value and the actual

value can then be reduced, which in turn influences the backpropagation process and acceler-

ates the convergence rate of the network.

Multilabel image annotation

The framework of automatic multilabel annotation proposed in this study is shown in Fig 3.

First, the positive and negative features of all the training sets are extracted with the proposed

CM-supplement network. Second, the extracted features are concatenated to establish the

semantic mapping between the image features and the tags, and the mapping is used as the

input to construct the annotation model. Then, the nonannotated images are input into the

trained network for image tag predictions.

The proposed framework modifies the convolutional layer of the CNN model: The feature

map obtained by the convolutional layer is negated, and the negative feature map combined

with the original feature map is introduced into the ELU activation function and then trans-

ferred to the next layer. Such treatment enables the framework to obtain more feature informa-

tion of the image than other methods and reduces the total error, which strengthens the
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learning of valuable feature information and makes the acquisition of the semantic informa-

tion implied in the image easier, thereby benefiting automatic image annotation.

The algorithm is described as follows:

Step 1: Count the number of samples corresponding to each tagging word in the training

set and determine the tag set;

Step 2: Employ the convolutional layer and pooling layer for forward propagation and com-

bine the cavity convolution operation, the Inception v1 structure and the supplement structure

to extract the positive and negative features;

Step 3: Concatenate the positive and negative features of the image;

Step 4: Realize backpropagation by updating the errors of the output layer and hidden layer

and continuously adjust the network parameters according to the differences between the net-

work-predicted results and the actual tags of the image;

Step 5: Repeat Steps 2–4, and train the network model until it is stable;

Step 6: Input the image to be tested into the trained network for annotation to obtain the

annotation outcomes.

Experiments and result analysis

Experimental environment and design

The experimental PC environment consisted of a Windows 10 system, i7-8750 processors, 8

GB of memory, and an NVIDIA GTX1060 GPU. The Python programming language com-

bined with the TensorFlow deep learning framework from Google was adopted to realize the

idea behind the algorithm proposed in this study. The proposed CNN model was established.

For comparison, the parameters of the CM-supplement model were basically consistent

with those of the CNN in reference [27]. In layer 1, the size of the convolution kernels (n = 20)

was set to 10�10 with a step length of 4. In layer 2, the step length of the convolution kernels

was set to 2 with a size of 5�5 (n = 40). In layer 3, 60 common convolution kernels were used

with sizes and step lengths and 5�5 and 1, respectively. Following the third convolutional layer

was a pooling layer with a size of 7�7 and a step length of 3. The Inception v1 structure fol-

lowed the pooling layer. The last three layers were fully connected layers. A dropout layer was

added following the first two fully connected layers to prevent overfitting, whose parameter set

used the k-fold cross-validation method. After repeated experiments, k was determined to be

10 in this study. The learning rate of the CM-supplement model was set to 0.00001, which was

Fig 3. Schematic diagram of the image annotation part of the CM-supplement network.

https://doi.org/10.1371/journal.pone.0234014.g003
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two orders of magnitude lower than that of the compared CNN model. The reason is that

when the learning rate of the CM-supplement network is set to 0.001 during training, the NaN

error will occur in the corresponding loss function, which means that the obtained loss value

would go beyond the range the computer can display, thereby becoming the non-numeric

type. By reducing the learning rate, the loss function values can return to normal.

The mean average precision (MAP) was used as the assessment index for multilabel image

annotation [27], and its value is the average of the average precision values.

AP ¼
1

11

X

r2f0;0:1;���;1g
PinterpðrÞ ð10Þ

where r represents a group of set thresholds, AP is the average accuracy rate, and Pinterp(r)
represents the maximal precision value corresponding to each threshold:

PinterpðrÞ ¼ max~r :~r�rpð~rÞ ð11Þ

where ~r denotes a certain threshold and pð~rÞ is the accuracy rate corresponding to each ~r .

MAP ¼

XQ

q¼1
APðqÞ

Q
ð12Þ

where q represents a certain category and Q is the number of categories.

The adoption of the MAP as an assessment index was based on the consideration that it can

overcome the limitation of the isolated accuracy rate, recall rate and F1-score to obtain an

index that reflects the overall performance.

Experimental data source

To validate the effectiveness of the proposed CM-supplement network model, the free, open

access PASCAL VOC dataset [30] (http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.

html) was used for the experiment. PASCAL VOC 2012 contains a total of 20 categories and

22,531 images, with approximately 1,000 images in each category.

Results analysis

In this study, comparisons were made in terms of the annotation accuracy rate and memory

consumption.

Annotation accuracy. (1) Comparison after 100 training sessions

The accuracy rates of the CM-supplement network, traditional CNN, DCCNN [27], the

methods from references [29], [31], [32] and [33] after 100 iterations of training are summa-

rized in Table 1.

As shown in Table 1, after 100 training cycles, the proposed CM-supplement model

achieved the highest MAP (94.5%), which was an increase of 10.0, 1.1, 19.9, 7.3, 1.3 and 19.6

percentage points compared with the traditional CNN, DCCNN and the methods from refer-

ences [29], [31], [32], [33], respectively. Due to feature extraction based on artificial selection,

the methods used in references [31] and [33] achieved a low accuracy rate when encountering

some complex categories, such as the bike, chair, dining table, potted plant and sofa images. In

contrast, the convolution neural network-based methods, such as the CNN and the methods

used in references [27], [29] and [32], noticeably improved the accuracy rate, as the extracted

image features by these methods are more abstract and more comprehensive than those fea-

tures extracted by the other methods, which are closer to the high-level semantics of the images

understood by human beings. The proposed CM-supplement network achieved an even
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higher accuracy rate because it can extract more feature information during forward propaga-

tion than these methods; therefore, the predicted results are closer to the actual values.

(2) Comparison of the changes in the MAP according to the number of iterations

Because the methods used in references [27] and [33] are based on artificial feature extrac-

tion, when they encounter a large number of samples, the training time will be long. Therefore,

the changes in the MAP according to number of iterations were compared only between the

proposed CM-supplement network and the other convolution neural network methods, and

the results are shown in Fig 4.

As shown in Fig 4, the CM-supplement network converged much faster than the other four

methods, especially the methods of CNN and literature [29]. Even at the beginning of the

training, the CM-supplement model obtained a high accuracy rate, which showed a relatively

stable tendency. Furthermore, after training and stabilization, the final MAP of the CM-sup-

plement network remained higher than that of any other model.

(3) Comparisons of the annotation accuracy rates after stabilization training

To further validate the performance of the proposed model, the poststabilization annotation

accuracy rates of the seven models based on convolutional neural networks for the 20 catego-

ries in the PASCAL VOC 2012 dataset were compared (Table 2 and Fig 5).

As shown in Table 2, the accuracy rates of the methods from references [31] and [33] were

noticeably lower than those involving convolution neural network-based methods. For the

labels with sufficient training and a high original annotation accuracy rate, such as plane, cat,

cow and train, the annotation accuracy rates of the five networks were comparable. However,

for those labels corresponding to a relatively small number of training images, the CM-

Table 1. Comparisons of the annotation accuracy rates for each category of the PASCAL VOC 2012 dataset based on different algorithms after 100 training

iterations.

Image

category

Annotation accuracy rate

CNN DCCNN

[27]

Method from reference

[31]

Method from reference

[29]

Method from referenc

[32]

Method from reference

[33]

Method proposed in this

study

plane 0.983 0.999 0.919 0.985 0.993 0.981 1.0

bike 0.877 0.973 0.448 0.902 0.973 0.452 0.978

bird 0.918 0.984 0.912 0.925 0.981 0.911 0.991

boat 0.920 0.972 0.639 0.919 0.971 0.647 0.976

bottle 0.722 0.892 0.750 0.822 0.889 0.720 0.892

bus 0.920 0.980 0.928 0.925 0.978 0.919 0.985

car 0.819 0.939 0.874 0.832 0.939 0.873 0.943

cat 0.916 0.970 0.921 0.934 0.965 0.922 0.978

chair 0.668 0.804 0.345 0.708 0.803 0.408 0.823

cow 0.999 1.0 0.851 0.999 0.999 0.862 1.0

dining table 0.570 0.757 0.693 0.695 0.748 0.627 0.803

dog 0.894 0.971 0.871 0.898 0.976 0.883 0.992

horse 0.927 0.978 0.886 0.938 0.969 0.876 0.990

motorbike 0.849 0.931 0.743 0.866 0.942 0.746 0.977

person 0.871 0.957 0.772 0.894 0.956 0.791 0.969

potted plant 0.729 0.881 0.654 0.805 0.878 0.639 0.880

sheep 0.960 0.993 0.851 0.963 0.991 0.849 0.991

sofa 0.618 0.827 0.332 0.666 0.824 0.307 0.828

train 1.0 0.999 0.813 1.0 1.0 0.825 1.0

tv monitor 0.746 0.866 0.721 0.765 0.867 0.738 0.896

MAP value 0.845 0.934 0.746 0.872 0.932 0.749 0.945

https://doi.org/10.1371/journal.pone.0234014.t001
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Fig 4. Comparisons of the MAPs of the CM-supplement model and other methods based on convolution neural

networks (CNN, DCCNN and references [29] and [32]). The horizontal axis represents the number of iterations

implemented during network training, and the vertical axis represents the increase in the number of iterations. MAP,

mean average precision.

https://doi.org/10.1371/journal.pone.0234014.g004

Table 2. Comparisons of the annotation accuracy rates for each category in the PASCAL VOC 2012 dataset after stabilization training.

Image

category

Annotation accuracy rate

CNN DCCNN

[27]

Method from reference

[31]

Method from reference

[29]

Method from reference

[32]

Method from reference

[33]

Method in this

study

plane 0.983 0.999 0.924 0.989 0.992 0.981 1.0

bike 0.877 0.973 0.451 0.902 0.969 0.455 0.979

bird 0.977 0.984 0.946 0.978 0.980 0.916 0.996

boat 0.920 0.972 0.652 0.935 0.968 0.653 0.977

bottle 0.879 0.919 0.758 0.886 0.903 0.727 0.920

bus 0.971 0.980 0.951 0.925 0.978 0.928 0.986

car 0.949 0.987 0.891 0.949 0.985 0.890 0.987

cat 0.955 0.970 0.923 0.967 0.964 0.922 0.979

chair 0.794 0.893 0.39 0.825 0.883 0.415 0.917

cow 0.999 1.0 0.857 0.999 0.999 0.864 1.0

dining table 0.825 0.885 0.704 0.827 0.889 0.699 0.919

dog 0.905 0.971 0.886 0.909 0.970 0.895 0.996

horse 0.927 0.978 0.894 0.940 0.968 0.893 0.995

motorbike 0.849 0.931 0.761 0.871 0.941 0.757 0.979

person 0.897 0.957 0.794 0.899 0.945 0.799 0.973

potted plant 0.829 0.881 0.658 0.838 0.873 0.668 0.910

sheep 0.960 0.993 0.862 0.963 0.991 0.864 0.996

sofa 0.719 0.816 0.339 0.782 0.810 0.379 0.864

train 0.989 1.0 0.818 1.0 0.993 0.825 1.0

tv monitor 0.816 0.856 0.729 0.835 0.852 0.741 0.903

MAP value 0.901 0.947 0.759 0.911 0.943 0.764 0.964

https://doi.org/10.1371/journal.pone.0234014.t002
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supplement network, the DCCNN and the methods from references [29] and [32] showed a

noticeably better annotation effect compared with the CNN, with the best performance was

observed for the CM-supplement model. For instance, compared with the traditional CNN,

the CM-supplement network increased the annotation accuracy rate for ‘chair’ by 12.3 per-

centage points, ‘dining table’ by 9.4 percentage points, ‘motorbike’ by 13 percentage points,

‘potted plant’ by 8.1 percentage points, ‘sofa’ by 14.5 percentage points, and ‘TV monitor’ by

8.7 percentage points.

As shown in Fig 5, the annotation rates of the CM-supplement network for the 20 anno-

tated words were much higher than those of the methods from reference [31] and [33], were

superior to those of the methods from reference [29] and [32] and were comparable to those of

the DCCNN. Overall, the average accuracy rate of the former was only 1.7 percentage points

higher than that of the latter. However, the proposed model had a smaller number of parame-

ters and consumed fewer memory resources than the DCCNN.

Comparisons of the amount of memory consumed. Although the CM-supplement and

DCCNN models were comparable in terms of the annotation effect, they differed greatly in the

number of network parameters (Tables 3 and 4).

As shown in Tables 3 and 4, the total number of parameters in the DCCNN was more than

1.5 times that of the CM-supplement network. This result fully indicates the effectiveness of

the proposed model in image auto-annotation; it achieved a comparable or even better annota-

tion effect compared with the DCCNN but without increasing the amount of memory

resources consumed.

Fig 5. Comparisons of the annotation accuracy rates of the three networks for PASCAL VOC 2012 dataset after

stabilization.

https://doi.org/10.1371/journal.pone.0234014.g005
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Comparison with the actual annotation effects

To validate the annotation effect of the method proposed in this study, the automatic annota-

tion outcomes of the proposed CM-supplement network for high-frequency and low-fre-

quency words were compared with those based on the methods from reference [27] and [32],

as the latter two methods achieved a relatively high annotation accuracy rate. The results are

summarized in Tables 5 and 6.

Table 5 shows that the annotation outcomes of the three methods were similar in terms of

high-frequency words. However, as shown in Table 6, compared with the other two methods, the

CM-supplement network exhibited better image descriptions and more complete annotations

than the other methods. Moreover, for low-frequency words, such as chair, sofa, tv monitor

and dining table, the proposed method had a higher recognition rate. Therefore, although the

DCCNN and the method from reference [32] also achieved a more accurate and comprehensive

description of the images, the proposed method provided the most complete description of the

images.

Table 3. The number of parameters in each layer of the DCCNN.

DCCNN Parameters corresponding to each layer of the channel Number of parameters

256�256 input image Channel 1 Channel 2

Convolution layer 1 Convolution kernel [10, 10, 3, 20] Convolution kernel [12, 12, 3, 20] ((10�10�3+1)+(12�12�3+1))�20 = 14680

Convolution layer 2 Convolution kernel [5, 5, 20, 40] Convolution kernel [5, 5, 20, 40] ((5�5+1)+(5�5+1))�40 = 2080

Convolution layer 3 Convolution kernel [6, 6, 40, 60] Convolution kernel [5, 5, 40, 60] ((6�6+1)+(5�5+1))�60 = 3780

Fully connected layer 1 [6�6�60, 1000] [5�5�60, 1000] (6�6�60+5�5�60)�1000+2000 = 3662000

Fully connected layer 2 [1000, 1000] [1000, 1000] 1000�1000�2+2000 = 2002000

Output [1000, 20] [1000, 20] 1000�20�2 = 4000

Total number of parameters 14680+2080+3780+3662000+2002000+4000 = 5688540

https://doi.org/10.1371/journal.pone.0234014.t003

Table 4. The number of parameters of each layer of the CM-supplement network.

CM-supplement network Parameters in each layer Number of parameters

256�256 input image

Cavity convolution layer 1 Convolution kernel [10, 10, 3, 20] (10�10�3+1)�20 = 6020

Cavity convolution layer 2 Convolution kernel [5, 5, 20, 40] (5�5+1)�40 = 1040

Cavity convolution layer 3 Convolution kernel [5, 5, 40, 60] (5�5+1)�60 = 1560

Inception v1 (1�1+1)�4+3�3+5�5 (1�1+1)�4+3�3+5�5+2 = 44

Fully connected layer 1 [10�1�256, 1000] 10�1�256�1000+1000 = 2561000

Fully connected layer 2 [1000, 1000] 1000�1000+1000 = 1001000

Output [1000, 20] 1000�20 = 20000

Total parameter number 6020+1040+1560+44+2561000+1001000+2000 = 3572664

For the parameters and the number of parameters:

(1) Convolutional layer: Convolution kernel [height, c_height; width, c_width; number of input channels, channel_input; number of output channels, channel_output]

Number of parameters in the convolutional layer = (c_height�c_width�channel_input+1)� channel_output

(2) Number of parameters in the Inception v1 layer = number of feature maps �the size of the convolution kernel

(3) Fully connected layer: [number of input feature maps, fc_inputfeature; number of output feature maps, fc_outputfeature]

Number of parameters in the fully connected layer = fc_inputfeature�fc_outputfeature+fc_outputfeature

(4) Output layer: [number of the input feature maps, out_ inputfeature; number of image categories, cata_num]

Number of parameters in the output layer = out_ inputfeature�cata_num

https://doi.org/10.1371/journal.pone.0234014.t004
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Table 5. Comparisons of the annotation effects from different algorithms for high-frequency words.

Image example Auto-annotation outcomes

DCCNN [27] Reference [32] Method proposed in this study

people people people, horse

dog, people, cat dog, people dog, people, cat

boat boat boat, people

train train, people train, people

bird bird, people bird, people

people, train people people, train

dog, potted plant dog, potted plant dog, potted plant

boat, people boat, people boat, cow, people

plane, people plane, people plane, people

train train train, bus

All images in this table are sourced from the photos taken by the current team. For copyright consideration, they are

similar but not identical to the original images sourced from PASCAL VOC 2012 and are therefore for illustrative

purposes only.

https://doi.org/10.1371/journal.pone.0234014.t005

Table 6. Comparisons of the annotation effects from different algorithms for low-frequency words.

Image example Auto-annotation outcomes

DCCNN[27] Reference [32] Method proposed in this study

people people people, sofa, chair

sofa sofa sofa, potted plant, chair, tv monitor

chair, sofa sofa chair, sofa, dining table

people, car people, car people, car, tv monitor

chair, dining table chair, dining table potted plant, chair, dining table, sofa

dining table, chair dining table dining table, chair, potted plant, sofa

motorbike motorbike people, motorbike, chair

people, bus people, bus people, bus, car, bike

chair, tv monitor chair, tv monitor sofa, chair, tv monitor, dining table

chair, people chair, people, dog, chair, people, sofa, potted plant

All images in this table are sourced from the photos taken by the current team. For copyright consideration, they are similar but not identical to the original images

sourced from PASCAL VOC 2012 and are therefore for illustrative purposes only.

https://doi.org/10.1371/journal.pone.0234014.t006
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Conclusion

In this study, a CM-supplement network was proposed for multilabel image auto-annotation

based on the characteristics of multilabel learning as well as the consideration of the memory

resource consumption, and the typical, frequently used multilabel image dataset PASCAL

VOC 2012 was selected for result validation. The comparisons between the proposed CM-sup-

plement network and double-channel CNN proved the improved overall annotation efficiency

and reduced memory resource consumption of the model proposed in this study.

Based on the outcomes of this study, future research may be carried out in the following

three aspects:

(1) Larger-scale datasets can be used. As CNN training requires a large amount of data,

larger datasets can leverage the advantages of neural networks. They aid in obtaining better

parameters and avoiding overfitting, which can further improve the stability of the solution;

(2) Due attention can be given to word-word symbiotic relations and the image-image dis-

tance to further enhance the annotation accuracy rate;

(3) A semi or even unsupervised strategy can be adopted. As the resources of labeled images

are limited in quantity, artificial annotation requires a large amount of labor and materials

resources. The introduction of a semi- or unsupervised strategy can realize satisfactory annota-

tion outcomes by resorting to a small portion of labeled images.
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