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A B S T R A C T

In pursuit of reliable and efficient industrial microbes, this study integrates cutting-edge systems biology tools 
with Halomonas bluephagenesis TD01, a robust halophilic bacterium. We generated the complete and annotated 
circular genome sequence for this model organism, constructed and meticulously curated a genome-scale 
metabolic network, achieving striking 86.32% agreement with Biolog Phenotype Microarray data and visu
alize the network via an interactive Electron/Thrift server architecture. We then analyzed the genome-scale 
network using vertex sampling analysis (VSA) and found that productions of biomass, polyhydroxyalkanoates 
(PHA), citrate, acetate, and pyruvate are mutually competing. Recognizing the dynamic nature of 
H. bluephagenesis TD01, we further developed and implemented the hyper-cube-shrink-analysis (HCSA) frame
work to predict effects of nutrient availabilities and metabolic reactions in the model on biomass and PHA 
accumulation. We then, based on the analysis results, proposed and validate multi-step feeding strategies tailored 
to different fermentation stages. This integrated approach yielded remarkable results, with fermentation 
culminating in a cell dry weight of 100.4 g/L and 70% PHA content, surpassing previous benchmarks. Our 
findings exemplify the powerful potential of system-level tools in the design and optimization of industrial 
microorganisms, paving the way for more efficient and sustainable bio-based processes.

1. Introduction

Microbial production of polyhydroxyalkanoates (PHAs) offers a 
sustainable alternative to petroleum-based plastics due to their biode
gradability and versatile properties (Anderson and Dawes, 1990; Doi, 

1990; Lee, 1996; Poirier et al., 1995; Steinbuchel and Fuchtenbusch, 
1998). Among PHA-producing microbes, Halomonas bluephagenesis 
TD01, isolated from a salt lake in China, shows exceptional promise 
(Chen, 2009; Chen et al., 2017; Lan et al., 2016; Tan et al., 2011). This 
halophile thrives under non-sterile, high-salinity, and continuous 
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culture conditions, significantly reducing production costs associated 
with sterilization. Notably, engineered strains of H. bluephagenesis TD01 
can produce not only the standard P(3HB) but also copolymers like poly 
(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly 
(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] (Lan 
et al., 2016) with enhanced mechanical flexibility (Fu et al., 2014).

While recombinant strains of Escherichia coli and other species have 
been employed for P(3HB-co-4HB) production (Tan et al., 2011), their 
susceptibility to contamination necessitates complex and 
energy-intensive sterilization. Unlike these organisms, H. bluephagenesis 
TD01’s natural tolerance to high pH and salt environments acts as a 
built-in defense against contaminants, simplifying processing and 
reducing resource needs (Chen and Jiang, 2018; Yin et al., 2015). This 
unique characteristic combined with its robust growth under non-sterile 
conditions establishes H. bluephagenesis TD01 as a superior candidate for 
large-scale, cost-effective PHA production and opens doors for various 
industrial applications.

However, Halomonas bluephagenesis TD01’s full biomanufacturing 
potential remains untapped. A major roadblock lies in the lack of 
comprehensive metabolic knowledge. To overcome this, we present the 
first complete and annotated genome sequence of H. bluephagenesis 
TD01, alongside a meticulously curated genome-scale metabolic 
network (GSMN). The GSMN enabled us to apply advanced constraint- 
based approaches for strain optimization. Traditional flux balance 
analysis methods are limited in their ability to predict metabolic 
behavior and identify optimal strain designs. To overcome these limi
tations, we previously developed an algorithm called the Hyper-Cube 
Shrink Algorithm (HCSA) (Xie et al., 2018). HCSA assigns a pair of pa
rameters to each enzyme to represent its activity, enabling the solution 
space to be reduced based on enzymatic activity rather than a single 
objective function. This approach allows us to evaluate the flux distri
bution between multiple outputs, improving the accuracy of our 
predictions.

In this study, we have constructed a genome-scale metabolic network 
based on the whole genome sequence. We developed a map and visu
alization tool for the entire metabolic network. We analyzed metabolic 
prosperities of H. bluephagenesis TD01 with the VSA and HCSA algo
rithm. Based on the analysis, we proposed and validate multi-step 
feeding strategies tailored to different fermentation stages, achieving a 
higher PHA yield.

2. Material and methods

2.1. Genome library preparation and sequencing

We sequenced the genomic DNA using the Illumina Hiseq 4000 and 
the Pacbio RSII platform, separately. The sequencing library for the 
Illumina Hiseq 4000 was prepared by BGI Genomics using their in-house 
reagents. From the resulting libraries, 7.9 million fragments were 
sequenced in paired end reads with a read length of 90 nt. The 
sequencing library for the Pacbio RSII was prepared using the SMRTbell 
template prep kit v1.0, and then 44,274 polymerase reads were 
sequenced with an average length of 14356 bp. The quality and quantity 
of libraries were checked by Agilent 2100, qPCR, and Qubit.

2.2. Genome assembly

The long reads from the Pacbio RSII were assembled into contigs 
using SMRT Analysis v2.3.0 (Pacbio Inc.). Then the hybrid assembly of 
the Illumina-derived short reads and PacBio-derived contigs was done 
using Celera Assembler to generate a complete genome (Istrail et al., 
2004).

2.3. Genome size estimation using k-mer analysis

A k-mer count analysis was done using Jellyfish (version 2.3.0) on 

the Illumina data (Marçais and Kingsford, 2011). From the paired end 
reads, only the first read was used in this analysis, and the second read 
was omitted from this analysis to avoid counting overlapping k-mers. 
K-mer sizes were set as 15. After converting the k-mer counts into a 
histogram format, this file was analyzed using the Genomescope tool 
(Vurture et al., 2017).

2.4. Full genome comparison for identifying evolutionarily conserved 
regions

The whole genome comparison between H. bluephagenesis TD01 and 
some other bacteria were conducted using Mauve to identify the 
evolutionarily conserved regions (ECR) (Darling et al., 2004).

2.5. Genome annotation

For the annotation, we utilized multiple bioinformatics tools, and 
then we merged and manually curated results from different sources 
(Supplementary Fig. 1). We first performed genome annotation using 
RAST (Overbeek et al., 2014) and Prokka (Version 1.7.1) (Seemann, 
2014). These two software generated annotation results fully automat
ically, including annotations for protein coding sequences (CDSs), 
rRNAs and tRNAs. Besides, we also employed Glimmer (Version: 3.02) 
(Delcher et al., 2007), RNAmmer (Version: 1.2) (Lagesen et al., 2007), 
tRNAScan-SE (Version: 1.3.1) (Lowe and Eddy, 1997), Rfam (Version 
9.1) (Griffiths-Jones et al., 2005)/Infernal (Nawrocki et al., 2009), 
CRISPRFinder (Version: 0.4) (Grissa et al., 2007) and Tandem Repeat 
Finder (Version: 4.04) (Benson, 1999) to complete structure annotations 
for CDSs, rRNAs, tRNAs, sRNAs, CRISPRs and Tandem Repeats, 
respectively. After that, we finished function annotations for CDSs using 
KEGG (Kanehisa et al., 2016), SwissProt (Magrane and UniProt, 2011), 
InterPro (Jones et al., 2014) and Gene Ontology (Ashburner et al., 
2000).

After that, we considered merging results from different sources 
together. The first thing to merge was the structure annotations for the 
coding sequences (CDSs). Since we would use the RAST annotation to 
get the initial draft model in the following steps, in the event of a con
flict, results from RAST took precedence over those from Glimmer and 
Prokka. Merging annotations from RAST and Glimmer, we believed 
different predictions were for the same CDS, if they met the following 
conditions: 1) they shared the same start site or end site, and 2) the 
length difference between predicted structures was less than or equal to 
2% of that from RAST, and in the meantime 3) the predicted structures 
were on the same strand. For such CDSs, we saved function annotations 
from all different sources and the structure annotations only from RAST. 
In above situation, if length difference between two predicted structures 
was more than 2% of that from RAST, only the annotation from RAST 
would be saved for the CDS. When predictions from RAST and Glimmer 
overlapped each other and are on the same strand, but neither the start 
site nor the end site was the same, if the number of overlapping bases 
was a multiple of 3, only the annotation from RAST would be saved. In 
other situations, we simply put annotation results together. Then using 
the same method, we merged the above results with the structure an
notations from Prokka.

Structure annotations for rRNAs and tRNAs were also merged in the 
same way. For rRNAs, when a conflict occurs, results from RNAmmer 
took precedence, then RAST, then Prokka. For tRNAs, annotations from 
tRNAScan-SE took precedence, then RAST, then Prokka.

We then merged function annotations from different sources for 
CDSs. Firstly, we merged annotations from RAST and KEGG. During this 
process, some databases including KEGG, Uniprot and so forth, were 
used to find out whether different texts from RAST and KEGG meant the 
same function. When function annotations from RAST and KEGG for one 
CDS were different, we would employ NCBI’s BLAST tool to decide 
which annotation was more likely to be right. If annotation results from 
all three sources were different, we only saved annotations from RAST. 
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Then annotations from Prokka was the third important, then SwissProt, 
then InterPro, and then Gene Ontology. After completing the merging 
process, we might see some different genes have the same name. 
Therefore, we added a number (1, 2, 3, …) to their names to differentiate 
them based on the order of their locus.

2.6. Genome-scale metabolic network reconstruction

2.6.1. The initial draft model
The initial model was automatically constructed using the KBase 

platform (Arkin et al., 2018). Since the KBase could accept the genome 
annotation from RAST rather than our own curated version, we provided 
the RAST annotation for the initial construction. Afterword, we curated 
the model based on our curated genome annotation.

2.6.2. Initial refinement of the model
To construct a high-quality metabolic model and ensure the simu

lation accuracy, we manually inspected, assessed, and refined the 
model. The first issues we encountered were writing formats of the 
metabolite names, some of which cannot be identified by the COBRA 
(Heirendt et al., 2019), the matlab toolbox for metabolic network 
simulation. Non-standard writing formats of metabolite names includes 
spaces, brackets, and apostrophe. All these, therefore, were substituted 
with underscores. Besides, all the NH3 in the model were changed into 
NH4+ since it is aquatic inside the bacteria. Also, all the “_c0[c0]” and 
“_e0[e0]” in the model were changed into “[c0]” and “[e0]”, respec
tively, to make it simplified.

In the preliminary revision process, the COBRA toolbox was used to 
check the reaction balance. Unbalanced reactions were corrected based 
on multiple databases, including KEGG, UniProt, BiGG, SEED and Pub
Chem. Also, we checked the reaction direction using the method 
described below.

2.6.3. Biomass equation
The biomass reaction, which represents cellular growth, is a critical 

indicator of model quality and accuracy. In our draft model from KBase, 
a generic biomass reaction formula is included; however, it has not been 
verified against real-world experimental data. To define the biomass 
equation for Halomonas bluephagenesis TD01, we conducted an extensive 
literature review. Despite numerous studies on the genetic modifications 
and production capabilities of this strain, no reports were found on its 
specific cell composition or component content. We expanded our 
search to the genus Halomonas and identified Chromohalobacter sale
xigens DSM 3043, a γ-proteobacterium closely related to TD01 in 
phylogenetic studies. Notably, genome-scale metabolic models iOA584 
(Ates et al., 2011) and iFP764 (Piubeli et al., 2018) for C. salexigens DSM 
3043 were published in 2011 and 2018, respectively, with iFP764 
demonstrating higher quality. We adopted the biomass composition 
data and biomass equation from iFP764 for Halomonas bluephagenesis 
TD01. Furthermore, for moderate halophiles like H. bluephagenesis 
TD01, ectoine and its hydroxylated derivative, 5-hydroxyectoine, are 
the two primary compatible solutes that they preferentially synthesize 
and accumulate in high osmotic environments to maintain intracellular 
osmotic balance (Liu et al., 2021), also identified and annotated four 
ectoine-related genes in H. bluephagenesis TD01, underscoring its 
osmoregulatory adaptations (Cai et al., 2011). Therefore, to better 
reflect TD01’s metabolic characteristics, we incorporated ectoine and 
5-hydroxyectoine as precursor metabolites in our biomass equation. 
This adjustment aims to capture the strain’s ability to withstand high 
salt stress.

2.6.4. Gap filling
Given that no exchange reactions exist in the draft model from 

KBase, which represent the substances exchange between the media and 
bacteria, we added exchange reactions for metabolites distributed in the 
extracellular compartment of the model. 18 of them were set to be 

reversible (see Supplementary File 5), which provided necessary nutri
tion for the organism, including the exchange reactions of glucose, ox
ygen, carbon dioxide, nitrogen, sulfur, phosphorus, trace elements and 
metal ions. The low and upper bound of the flux of these reactions were 
set as − 1000 mmol/

(
gDW ⋅h

)
) and 1000 mmol/

(
gDW ⋅h

)
), separately, to 

mimic unrestricted conditions, except the glucose exchange reaction, 
whose lower bound was set to be − 10 mmol/

(
gDW ⋅h

)
), which was the 

same with the E. coli models. All other exchange reactions were only 
allowed to carry fluxes out of the organism.

Besides, with missing reactions in the synthetic pathway(s) of their 
correlative metabolites, the draft model has poor simulation accuracy or 
even no prediction results can be attained. Hence iterative manual in
spection and curation for the gaps existing in the metabolic pathways 
were conducted. In practice, gap filling accounts for a significant portion 
of the model refinement. For this process, the first step is calculating the 
optimal growth rate using the glucose as the sole carbon source to 
identify the biomass components that can’t be synthesized or consumed. 
Then, through checking and comparing with the individual metabolic 
maps obtained from the E coli models, KEGG, and BiGG (King et al., 
2016) databases to determine where the gap is and prepare reactions for 
the gap filling. After mapping these reactions to the corresponding GPR 
relationships and verifying their directions using the method described 
below, they were added into the model artificially and the gap(s) were 
eliminated. For reactions added during gap filling, please see Supple
mentary File 5.

2.6.5. Eliminate unrealistic reaction fluxes
After gap filling, the biomass flux was not zero anymore, but too 

large. We, therefore, manually inspect the model again, and found some 
unreasonable reactions existing inside the model, for example, the re
action rxn09240, “H2O[c0] + ATP[c0] + GTP[c0] + Sulfate[c0] <->
Phosphate[c0] + PPi[c0] + GDP[c0] + H + [c0] + APS[c0]”. Enzyme 
that catalyzes this reaction is the sulfate adenyltransferase, which could 
transfer the adenyl group from ATP to the sulfate and generate the 
adenylyl sulfate (APS). If this reaction goes reversely, it could produce 
ATP and GTP in a large amount unreasonably, which might contribute to 
the large biomass flux. So, we manually changed the reaction to be 
irreversible. In total, 17 reactions were changed to be irreversible to 
avoid unrealistic reaction fluxes (see Supplementary File 5).

2.6.6. OmniLog phenotype MicroArray™ experiment
The Phenotype MicroArray™ (Biolog) experiment (PM experiment) 

was performed to analyze the capacity of Halomonas bluephagenesis 
TD01 to utilize various carbon sources in the minimal medium and also 
help refine the in-silico model. On the 96-well plates used in this 
experiment, the first microwell (A1) served as the negative control, and 
in other microwells, bacteria were cultured with different carbon sour
ces. In total, the Biolog plates covered 190 carbon sources. For each 
microwell, we got the value “Max” by following the manufacturer’s’ 
protocol, which represents the metabolic rate of bacteria. Then three 
criteria were set for correctly identifying the possible carbon source for 
the bacteria growth: 1) If the value of one microwell is lower than the 
control, and the dyed well is very light, the corresponding carbon source 
was directly regarded as unusable; 2) If the value is apparently higher 
than the control and the dyed well is very dark, the represented com
pound was directly deemed useable; 3) If the value is slightly higher and 
very close, and the color depth is difficult to differentiate under this 
circumstance, the represented was also classified as unusable. After that, 
based on the results which carbon source is the one that the bacteria 
could utilize and which one is not, we refined our model (see Supple
mentary File 5 for reactions we modified and added).

2.6.7. Reactions for PHA production
PHA related reactions in the model were checked, and the missing 

reactions were added.

L. Zhang et al.                                                                                                                                                                                                                                   Metabolic Engineering Communications 19 (2024) e00251 

3 



2.6.8. Thermodynamic consistency analysis
The standard Gibbs free energy change of reactions, ΔrG ó, can be 

estimated using the component contribution method (Noor et al., 2013). 
The calculation was based upon the standard condition with pH at 7.0, 
temperature at 298.15 K, zero ionic strength and 1 M concentrations of 
all species except H+ and water. However, the 1 M reference state for 
the metabolite concentrations does not reflect the metabolite concen
trations found in the cell (approximately 1 mM) (Feist et al., 2007). 
Thus, ΔrGʹm, which represented the free energy change of reaction at 1 
mM concentrations for all species except H+, water, H2, O2 and CO2, 
was calculated based on ΔrG ó. The reference concentrations for H2, O2 
and CO2 are their saturation concentrations in water at 1 atm and 
298.15 K, i.e. 0.000034, 0.000055 and 0.0014 M, respectively (Feist 
et al., 2007). The ΔrGʹm of transport reactions also include the energy 
contribution of the transmembrane electrochemical potential and pro
ton gradient (Fleming et al., 2009; Henry et al., 2006).

Since intracellular metabolite concentrations are typically 
0.00001–0.02 M (Albe et al., 1990), the actual free energy change of a 
reaction, ΔrGʹ, can differ significantly from ΔrGʹm. Herein, the maximum 
and minimum of ΔrGʹm were calculated using the method stated by Feist 
A.M. et al. (Feist et al., 2007). The ranges of ΔrGʹ were further used in 
the model construction process to assess reaction reversibility and 
directionality. Reactions with exclusively negative ΔrGʹ values were 
identified as thermodynamically irreversible in the forward direction 
and vice versa. The reactions with both positive and negative ΔrGʹ 

values were identified as thermodynamically reversible.

2.7. Fermentation for Halomonas bluephagenesis TD01

The Halomonas bluephagenesis TD01 was activated on 60LB agar 
plates from − 80 ◦C glycerol stocks. Single colonies were picked and 
inoculated into 100 mL shake flasks containing 20 mL of 60LB medium. 
Once cultures reached an OD600 of 2–3, 1% (v/v) of the primary seed 
culture was used to inoculate 50 mL of 60LB medium in a 500 mL conical 
flask. These cultures were incubated on a rotary shaker at 200 rpm and 
37 ◦C for 7–8 h until the OD600 reached 5–6. Subsequently, 10% (v/v) 
of the secondary seed culture was used to inoculate 3 L of 60 MMG 
medium (Ye et al., 2018a) in a 7.5 L bioreactor (Bioflo3000, New 
Brunswick, USA). The pH of the fermentation medium was maintained 
at 8.5 by adding 5M NaOH.

Cell growth was monitored by measuring the optical density at 600 
nm (OD600) using a WPA Biowave DNA spectrophotometer (Biochrom, 
UK), with appropriate dilution to ensure raw OD600 readings between 
0.3 and 0.8. For PHA content analysis, 30 mL of the culture broth was 
sampled into pre-weighed 50 mL test tubes and the cells were harvested 
by centrifugation at 10000 rpm for 15 min at room temperature (Hita
chi, Japan). The supernatant was discarded, and the cell pellets were 
washed twice with distilled water. The cells were then frozen at − 80 ◦C 
for 1.5–2 h and then lyophilized for 18–24 h using a lyophilizator 
(SCIENTZ-18N, Ningbo, China). The cell dry weight (CDW) was deter
mined using a conventional analytical scale. Approximately 40 mg of 
lyophilized cell powder was methyl esterified by adding 2 mL of a so
lution containing 3% concentrated 98% sulfuric acid and 1 g/L benzoic 
acid in methanol, and 2 mL of chloroform. The mixture was incubated at 
100 ◦C for 3.5 h in sealed 10 mL glass tubes in a hot metal bath. After 
methanolysis, the PHA content was analyzed by gas chromatography 
(GC) using a GC-2014 instrument (Shimadzu, Japan), following the 
method described by Tan et al. (2011).

3. Results

3.1. Genome sequence of Halomonas bluephagenesis TD01

With the combination of the Illumina Hiseq 4000 and Pacbio RSII 
sequencing technologies, having an average sequencing depth of 133.97 

and 104.10, separately (Supplementary Fig. 2), we were able to deter
mine the whole genome sequence of H. bluephagenesis TD01 
(Supplementary File 1), which consists of 4,138,583 bases pairs (bp) at 
99.89% accuracy, rather than 26 scaffolds reported several years ago 
(Cai et al., 2011). In Fig. 1a, the previous scaffolds were mapped to our 
genome assembly using NCBI BLAST (highlighted in red). The inner 
black circle represents our complete genome assembly (Fig. 1a). We then 
evaluated sequence integrity and completeness of our genome assembly 
using K-mer analysis (k = 15 here) and the Hiseq data. The whole 
genome size was estimated to be about 4.04 M (Fig. 1b), which is close to 
the genome size we actually got.

Our genome assembly of Halomonas bluephagenesis TD01 consists of 
4,138,583 base pairs, representing a 1.12% increase in total size 
compared to the previous draft genome. The GC content is 52.71%, 
slightly higher than the previously reported 52.57%. We identified 170 
repetitive sequences in the genome with an average length of 630.49 bp. 
The total length of repetitive sequences is 107,184 bp, covering 2.59% of 
the complete genome.

3.2. Genome annotation of Halomonas bluephagenesis TD01

The genome of Halomonas bluephagenesis TD01 was annotated using 
a combination of multiple bioinformatics tools, and the annotations 
from different sources were mutually validated and manually merged to 
produce a final curated annotation (Fig. 1c and Supplementary File 2). 
This strategy allowed us to discover more information about the genome 
than we could from any single tool. In total, we identified 3988 protein- 
coding genes, which is more than any single tool could detect. The final 
curated annotation comprised 3814 protein-coding genes from RAST, 
3268 protein-coding genes from Glimmer, and 3500 protein-coding 
genes from Prokka. Additionally, we identified 61 tRNA genes, 18 
rRNA genes, and one snoRNA gene in the genome. We also predicted the 
presence of 1 CRISPR sequence and 223 tandem repeats in the genome. 
Then, to evaluate the completeness of the genome annotation, we 
identified evolutionarily conserved regions (ECRs) by alignment of the 
H. bluephagenesis TD01’s genome sequence to the genome sequences of 
Halomonas elongata DSM 2581, Halomonas sp. R57-5, Halomonas sp. 
Y2R2 and Halomonas titanicae GPM3 (Darling et al., 2004; Gregory et al., 
2006). We found that 339 of the 354 ECRs conserved in all 5 genomes 
overlap with annotated genes, suggesting that gene annotation is about 
95.8% complete (Supplementary File 3). The remaining 15 ECRs may 
represent additional exons without supporting evidence, or highly 
conserved regulatory and structural elements.

In comparison to the annotation result reported by Cai L. et al.(Cai 
et al., 2011), our annotation identified 4068 genes, representing a 2.65% 
increase in the total number of genes (Fig. 1d). Notably, the number of 
genes assigned to Clusters of Orthologous Groups (COGs) increased by 
20.8%, indicating that our annotation provides more useful genome 
information (Fig. 1d). The GC content of protein-coding genes was found 
to be 53.35%, which is slightly higher than the GC content of the entire 
sequence (52.71%). The protein coding gene distributed across the co
ordinates and protein length distribution was shown in Supplementary 
Fig. 3. To identify the exact genes between the two genome annotations, 
we performed reciprocal best hits analysis, which revealed 3753 iden
tical genes, 141 deleted genes, and 235 newly added genes 
(Supplementary File 4). The annotation edit distance (AED), ranging 
between 0 and 1, is able to quantify the amount of structural changes to 
individual genes between different annotation releases (Eilbeck et al., 
2009). Among the genes of H. bluephagenesis TD01, 1775 of them have 
0 AED value, and 3054 of them have AED values less than 0.01 
(Fig. 1e–Supplementary File 4). However, 150 genes had AED values 
larger than 0.1. For genes with large AEDs, many “N″s were found in the 
previous version of the sequencing result, indicating that the exact 
nucleic acids were not assigned for this locus (Supplementary File 4). 
This highlights the superiority of the third-generation sequencing 
technology used in our sequencing project compared with the 
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traditional next-generation sequencing technology used by Cai L. et al.
The obtained genome of H. bluephagenesis TD01 was 4,138,583 bp in 

size with a 52.7% G + C content. Of the 4068 total genes, 3988 are 
encoding proteins and 80 are ncRNAs. Compared with TD01’s closest 
neighbors and its closely related stains, showed in The SEED Viewer and 
Genome Neighbor report gained from NCBI (https://www.ncbi.nlm.nih. 
gov/genome/neighbors), respectively, the genome size and the total 
gene number of H. bluephagenesis TD01 were at moderate level, while 
the GC content seemed to be slightly lower and on the contrary, the 
coding regions seemed to be slightly larger (Supplementary Table 1).

We used WEGO 2.0 (Ye et al., 2018b) to classify the genes in the 
whole genome of Halomonas bluephagenesis TD01 based on level 2 terms 
in three ontologies of the Gene Ontology (cellular component, molecular 
function, and biological process). The majority of genes were found to be 
involved in catalytic activity and metabolic processes, as opposed to 
other functions (Supplementary Fig. 4). Additionally, the KEGG 
pathway classification for protein coding genes was shown in Supple
mentary Fig. 5 it was obvious that the amount of coding sequences was 
3988, of which assigned to “Carbohydrate metabolism” and “Amino acid 

metabolism” categories occupied the first two in the subsystem distri
bution, with 344 and 340 coding sequences, respectively. In addition, 
“Membrane Transport” category with 176 coding sequences accounted 
for a large proportion, this maybe have an intimate association with its 
ability to resist high salinity environments.

3.3. Genome-scale metabolic network of Halomonas bluephagenesis 
TD01

Based on the genome information, we constructed the metabolic 
model for Halomonas bluephagenesis TD01 as described in the method 
part, and the whole process was summarized in Supplementary Fig. 6
and Supplementary File 5.

The initial draft model from KBase was comprised of 1473 reactions, 
1554 metabolites and 1049 genes. During the initial refinement process, 
the reaction formats were standardized and to be more simplified than 
original KBase formats, and directions of 103 reactions were changed 
according to the Gibbs free energy we calculated (Supplementary File 5). 
Biomass reaction was then curated as mentioned in the method part. 

Fig. 1. Whole genome sequence and annotation of H. Bluephagenesis TD01 and comparison with previous release. (a) A panoramic view of the entire genome, 
visualized using BRIG. GC content and GC skew are visualized. The bold outer circle delineates the previously reported fragmented sequence. (b) K-mer analysis for 
sequencing data using the GenomeScope software. (c) A concise depiction of the annotation pipeline. When annotating, fully automatic tools were used, including 
RAST (http://rast.nmpdr.org/rast.cgi) and Prokka (Version 1.7.1). Software used for structure annotation included Glimmer (Version: 3.02), RNAmmer (Version: 
1.2), tRNAScan-SE (Version: 1.3.1), Rfam (Version 9.1)/Infernal, CRISPRFinder (Version: 0.4) and Tandem Repeat Finder (Version: 4.04). Databases employed for 
function annotation included KEGG, SwissProt, InterPro and Gene Ontology. Results from different sources were merged manually in the end. (d) Comparison of 
genome statistics. The average length of all protein-coding genes is 963.4, and 86.3% of protein-coding genes have a size within the range (100, 1500] (see Sup
plementary Fig. 3 for detailed distribution). (e) Density histogram and cumulative distribution curve underscore the accuracy of annotations, with minimal edit 
distances observed. Note the left vertical axis is noncontinuous between 2.5 and 43.
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Categories of biomass precursors were listed in Supplementary File 6. 
When doing the in-silico simulation, however, biomass precursors could 
not be synthesized. Gap filling, therefore, was an essential step. 130 
exchange reactions were first added for metabolites distributed in the 
extracellular compartment of the model, and then 81 reactions 
(including 15 transport reactions and 1 demand reaction) were added 
for filling the gaps in the metabolite pathways of biomass precursors 
(Supplementary File 5). Two reactions were changed from irreversible 

to reversible and one reaction was removed due to duplication with 
another one in the model (Supplementary File 5). One reaction was 
simplified in format (see Supplementary File 5). After these modifica
tions, the biomass was able to be produced in the model, but the biomass 
flux was, however, too big. We, thus, re-checked the model carefully, 
and found some unreasonable reaction fluxes when doing the simulation 
(Supplementary File 5). As mentioned in the method part, we changed 
the directions for 17 reactions to fix this problem (Supplementary File 

Fig. 2. Unveiling Metabolic Versatility of Halomonas bluephagenesis TD01 through Biolog Phenotype Microarrays (PM) and Model Refinement. (a and b) Confusion 
matrices comparing Biolog PM results with model predictions before and after model refinement based on the Biolog PM results. (c) Biolog PM results and model 
predictions before and after refinement on the 190 carbon sources.
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5).
From genome annotation until fixing unreasonable reaction fluxes, 

all these steps were done computationally, whereas phenotypic data 
from known publications is lacking and insufficient to further refine and 
verify the model. Biolog Phenotype Microarray (PM) experiment in 
minimal medium was, therefore, employed to comprehensively deter
mine growth capabilities of H. bluephagenesis TD01 on 190 different 
carbon sources (see Methods, Supplementary Files 5 and 7), which could 
be divided into the following eleven groups: Polymers (n = 12), Sugars 
and Sugar Derivatives (n = 66), Methyl Esters (n = 3), Carboxylic Acids 
(n = 40), Amides (n = 4), Amino Acids/Peptides and Related Chemicals 
(n = 32), Nucleosides and nucleotides (n = 5), Amines (n = 5), Alcohols 
(n = 4), Sugar Phosphates (n = 4) and Others (n = 15).

PM results showed that 127 compounds could be oxidized to support 
growth, while 63 couldn’t (Fig. 2). Meanwhile, during the model 
simulation, we found 98 compounds are consistent with the PM exper
iment, which means the preliminary coincidence rate was 51.58%. 
Generally, the discrepancies can be sub-divided into two categories. The 
first is that some compounds couldn’t be utilized for the in-silico growth, 
while PM results turned out they could. 92 compounds were included in 
this category, including turanose, D-fructose, D-mannitol, thymidine, 
putrescine and so forth, which probably due to metabolic gaps, incom
plete gene annotations, or the lack of transport and/or exchange re
actions. Such issues were solved by searching the metabolism 
information in online databases or literatures and adding related re
actions to the model. The other category, which includes a compound 
called 2-deoxyadenosine, was shown by model simulations to support 
the growth of Halomonas bluephagenesis TD01, but not by PM experi
ments. This inconsistency might be due to wrong metabolic reactions/ 
pathways in the model. This issue might be solved by improved genome 
annotations in the future help identifying incorrect reactions in the 
current model. However, currently, it is hard to identify the exact re
actions that should not be in the model due to the lack of the experi
mental data. We, therefore, just leave the model unchanged, but will 
avoid using such compounds as the carbon source when doing 
simulations.

Despite the utmost efforts, 25 of the 93 inconsistent carbon sources 
remain unable to support in-silico growth, but this is within acceptable 
limits. Ultimately, the overall prediction consistency increases to 
86.32% (164/190, Supplementary File 7, Fig. 2, and Table 1), which is 
similar to 85% for iFP764 (C. salexigens) (Piubeli et al., 2018), and 
higher than 76% for iAF1260 (E. coli K12 MG1655) (Feist et al., 2007). 
After that, we examined the reactions added previously for gap filling to 
check whether they are still needed or not for biomass production. If 1) 
the reaction was not needed for biomass anymore, 2) no genes were 
related to this reaction, and 3) its removal will not affect the consistency 
between model and PM experiment, we will remove the reaction since it 

was added purely for gap filling previously (Supplementary File 5).
In total, this update ended up with adding 194 new reactions 

(including 58 transport and 57 exchange reactions) and modifying 4 
reactions for the 93 initially inconsistent carbon sources. 17 reactions 
(including 2 exchange reactions) previously added for gap filling were 
removed. Besides, for simulating PHA production using the model, PHA- 
related reactions were checked, and 7 new reactions were added 
(Supplementary File 5).

In summary, the final metabolic model including 1674 reactions 
(except 185 exchange reactions, 4 demand reactions, 3 sink reactions 
and the biomass reaction) and 1699 metabolites, accounts for two 
cellular compartments: the cytoplasm and extracellular space 
(Supplementary File 8 and Table 2). In total, 1072 genes were included 
in the metabolic network, which accounted for 26.89% of the genes in 
the whole genome of H. bluephagenesis TD01.87.4% reactions (1454 in 
1674) are related to one or more genes, while the remaining 12.6% 
reactions are also included in the model in the form of reactions for 
filling gaps or transport reactions. From the perspective of gene 
coverage, our model resembles other published models (Supplementary 
Table 2), some of which belong to the microorganisms have been 
extensively studied or halophiles, such as iJO1366 for Escherichia coli K- 
12 MG1655 (32% coverage (Orth et al., 2011b)), iEM439 for Zymomonas 
mobilis ZM1 (22.7% coverage (Motamedian et al., 2016)), iWX1009 for 
Bacillus licheniformis WX-02 (22% coverage (Guo et al., 2016)), iFP764 
for Chromohalobacter salexigens (22.4% coverage (Piubeli et al., 2018)), 
iCKL708 for Clostridium kluyveri (17% coverage (Zou et al., 2018)), 
iKYA1142 for Halomonas smyrnensis AAD6T (35.5% coverage (Diken 
et al., 2015)), the model for Halobacterium salinarum R-1 (17.09% 
coverage (Gonzalez et al., 2008)).

We categorized ORFs, reactions, and metabolites in the metabolic 
network based on clusters of orthologous groups (COGs). The number of 
ORFs from each COG functional class that were included in the meta
bolic network are shown in Fig. 3. Amino acid transport and metabolism 
has the highest number of ORFs, while lipid transport and metabolism 
has the highest percent coverage in the metabolic network. The classi
fication of reactions in the metabolic network is shown in Fig. 3b, where 
lipid transport and metabolism is the most significant COG functional 
class. The classification of metabolites in the metabolic network is 
shown in Fig. 3c, where the lipid transport and metabolism class con
tains the most metabolites. Moreover, lipid transport and metabolism 
has the highest reaction to ORF ratio (5.1), followed by secondary me
tabolites biosynthesis, transport, and catabolism (3.7), indicating that 
these two classes have many multiple functional enzymes (Feist et al., 

Table 1 
Model refinement based on the phenotype microarray (PM) experiment.

Carbon source category Compound 
number

Initial 
consistency rate

Revised 
consistency rate

Polymers 12 4/12 7/12
Sugars and Sugar 

Derivatives
66 28/66 59/66

Methyl Esters 3 0/3 0/3
Carboxylic Acids 40 23/40 38/40
Amides 4 2/4 3/4
Amino Acids/Peptides 

and Related Chemicals
32 21/32 31/32

Nucleosides and 
nucleotides

5 3/5 4/5

Amines 5 3/5 4/5
Alcohols 4 2/4 4/4
Sugar Phosphates 4 2/4 3/4
Others 15 9/15 10/15
Total 190 97/190 164/190

Table 2 
Features of the in-silico genome-scale metabolic model of Halomonas bluepha
genesis TD01.

Features Number

Genome ​
Genome size (base pairs, bp) 4138583
No. of open reading frames (ORFs) 3988
No. of ORFs assigned in metabolic network 1067
ORF coverage (%) 26.76%

Reactions (except exchange/demand/sink/biomass 
reactions)

1674

Metabolic reactions 1467
Transport reactions 207
Gene-protein-reaction associations ​

Gene associated (metabolic/transport) 1320/134 
(87.4%)

No gene association (metabolic/transport) 147/73
Exchange reactions 185
Demand reactions 4
Sink reactions 3
Metabolites 1699

Unique metabolites 1522
Cytoplasmic 1514
Extracellular 185
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2007). Additionally, the highest number of unique metabolites involved 
in one class is cell wall/membrane/envelope biogenesis (53.37%), fol
lowed by coenzyme transport and metabolism (43.88%), indicating the 
specialized nature of the proteins in these pathways in Halomonas 
bluephagenesis TD01.

Following Heirendt, L. et al. (Heirendt et al., 2019), we identified 

157 essential genes in the metabolic network, which account for 14.65% 
of the genes in the metabolic network and 3.94% of the genes in the 
whole genome. These essential genes were then categorized by 
eggNOG-Mapper (Huerta-Cepas et al., 2017), which assigned them to 
different COGs. Our findings revealed that the COG class “amino acid 
transport and metabolism” has the highest number of essential genes, 

Fig. 3. Classification of the ORFs, reactions and metabolites; thermodynamic properties of reactions in the metabolic network of Halomonas bluephagenesis TD01. 
(a) Mapping Functional Domains in the Genome: This panel shows the coverage of characterized ORFs from each COG functional class included in the reconstructed 
metabolic network. Each percentage value represents the proportion of ORFs within a specific class relative to the entire genome. (b and c) Unveiling Reaction and 
Metabolite Landscape: These panels illustrate the distribution of reactions and metabolites within the network, categorized by their associated COG functional 
classes. Yellow bars represent unique reactions/metabolites within a class, while orange bars show those involved in multiple classes. Other and unassigned classes 
are grouped separately. (d) The distribution of estimated ΔrG ‘m values for the reactions in the metabolic network has been calculated for 1290 reactions (77.1%) in 
the reconstruction. 851 reactions have a negative ΔrG ‘m, and 109 reactions have a zero ΔrG ‘m. (e) The range of possible ΔrG ′ values for the reactions in the 
metabolic network. ΔrG ′ differs from ΔrG ‘o (black points) and ΔrG ‘m (orange diamonds) due to variations in metabolite concentrations from the 1 M and 1 mM 
reference states, respectively. Metabolite concentrations typically range from 0.00001 to 0.02 M, resulting in a wide range of values for ΔrG ′ (blue error bars). Taking 
uncertainty into account, the range of possible values for ΔrG ′ can be extended (purple error bars). (For interpretation of the references to color in this figure legend, 
the reader is referred to the Web version of this article.)
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whereas the COG class “cell wall/membrane/envelope biogenesis” has 
the highest percentage of essential genes (Supplementary Fig. 7), indi
cating genes related to these pathways are crucial for the growth of 
Halomonas bluephagenesis TD01. In addition, we performed double gene 
deletion analysis as shown in Supplementary Fig. 7 and Supplementary 
Table 3.

3.4. Thermodynamic consistency analysis

The standard Gibbs free energy change of reactions, ΔrG ó, was 
estimated using the component contribution method (Noor et al., 2013). 
The calculation was based on standard conditions with a pH of 7.0, 
temperature of 298.15 K, zero ionic strength, and 1 M concentrations of 
all species except H+ and water. However, the use of 1 M as the refer
ence state for metabolite concentrations does not reflect the concen
trations found in cells, which are typically around 1 mM (Feist et al., 
2007). Therefore, ΔrG ó, which represents the free energy change of the 
reaction at 1 mM concentrations for all species except H+, water, H2, 
O2, and CO2, was calculated based on ΔrG ó. The reference concentra
tions for H2, O2, and CO2 are their saturation concentrations in water at 
1 atm and 298.15 K, i.e., 0.000034, 0.000055, and 0.0014 M, respec
tively (Feist et al., 2007). The ΔrGʹm values of transport reactions also 
include the energy contribution of the transmembrane electrochemical 
potential and proton gradient (Fleming et al., 2009; Henry et al., 2006). 
We found that 74.2% of the estimated ΔrGʹm values are less than or equal 
to zero, indicating that the majority of the represented reactions are 
thermodynamically feasible at 1 mM metabolite concentrations 

(Fig. 3d).
The actual free energy change of a reaction, denoted as ΔG’, can 

deviate significantly from the estimated ΔG’0 value when the intracel
lular metabolite concentrations differ from the standard 1 mM condition 
used for the calculation (Albe et al., 1990). To evaluate the range of ΔG’ 
values that could be expected in vivo, we employed the method pro
posed by Feist et al. (2007) to estimate the maximum and minimum 
values of ΔG’ for each reaction.

We then used the calculated ranges of ΔG’ values to determine the 
thermodynamic reversibility of reactions in the metabolic network 
(Fig. 3e and Supplementary Table 4). Reactions with only negative ΔG’ 
values were deemed thermodynamically irreversible in the forward di
rection, and those with only positive values were deemed irreversible in 
the reverse direction. Reactions with both positive and negative ΔG’ 
values were considered reversible.

By comparing the predicted and estimated ΔG’ values, we identified 
108 reactions in the draft model that were initially specified as revers
ible but were found to be thermodynamically irreversible., and 1 reac
tion in the draft model having wrong direction (Supplementary Table 4). 
We corrected these reactions to match our thermodynamic estimates, 
resulting in 852 reversible and 822 irreversible reactions (the numbers 
do not include exchange/demand/sink/biomass reactions) in the final 
metabolic network.

3.5. A visualization application to access the metabolic network

To better visualize the metabolic network of Halomonas 

Fig. 4. Interactive Visualization of Metabolic Networks. This figure showcases the interface of our interactive visualization application for exploring metabolic 
networks. (a) Network Overview: This panel displays a portion of the metabolic network. Users can navigate the map by dragging and adjust the zoom level using the 
provided slider. Hovering over metabolite labels displays enlarged versions for better readability. (b) Molecule Details: Clicking on a metabolite triggers a pop-up 
window displaying the chemical structure of the corresponding molecule. This provides users with instant access to detailed information about each metabolite 
within the network.
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bluephagenesis TD01, we constructed a metabolic network diagram in 
SVG format (Fig. 4). We first generated vector diagrams for each indi
vidual reaction using a Perl script, and then manually connected these 
reactions. This work was very labor-intensive. Then, we developed an 
application based on a client-server framework. The front end is built on 
Electron, and the back end uses a Thrift server based on Python. This 
allows us to browse the metabolic network in a scalable way on the front 
end, and to transmit data to the front end through the back end, for 
example, when we click on a metabolite, it can display its molecular 
image, which is generated by RDKit on the back end. We believe that this 
tool can help researchers better understand halophilic bacteria. The 
source code and application are deposited at github (https://github. 
com/kekegg/HalomonasBluephagenesisTD01).

3.6. Vertex sampling analysis for reducing byproducts

We have previously reported the real-time monitoring of the 
fermentation process of Halomonas bluephagenesis TD01, including the 
cell growth (OD600), PHA, and byproduct accumulation (Ye et al., 
2018a). During the fermentation process, both OD600 and PHA accu
mulation increased simultaneously, while several byproducts, such as 
citrate, acetate, and pyruvate, were also produced.

We utilized the convex basis method (Bordel et al., 2010) to conduct 
vertex sampling analysis, which helped us uncover the impact of 
different metabolites (e.g., the byproduct citrate and acetate) on PHA 
output. This algorithm enables the exploration of the solution space in 
flux balance analysis by generating a two-dimensional projection of the 
steady-state flux space and analyzing the relationships between different 
products. Here, we performed vertex sampling analysis for some me
tabolites in our model. The mathematical expression of this algorithm is 
as follows: 

max or min f = vi cos θ + vj sin θ i, j ∈ N, θ ∈ [0, π]

s.t.

Sm×nvn =0 m, n ∈ N 

lz < vz < uz z ∈ N 

Where Sm×n is a stoichiometric matrix of the network, and lz and uz is the 
lower and upper bounds of reaction z. θ was sampled from 0 to π when 
maximizing and minimizing f respectively.

Although we performed multiple samplings in different directions, 
the solution collapsed to a limited vertex. By plotting the solution vec
tors in Cartesian coordinates, we were able to obtain a two-dimensional 
projection of the steady-state flux space, which allowed us to analyze the 
relationships between two metabolites.

Using vertex sampling analysis, we investigated the relationships 
between biomass, PHA, and several byproducts identified during the 
fermentation process (Fig. 5a). The geometries in these six images in 
Fig. 5a all form lower-left triangles or similar shapes, indicating that 
these two metabolites, as products of the model, compete with each 
other. Therefore, to increase the yield of biomass and PHA, it is neces
sary to reduce the production of these byproducts and make more car
bon available for biomass and PHA production. We also performed 
vertex sampling analysis between PHA and other metabolites, and a 
similar conclusion was reached (Supplementary Fig. 8). Furthermore, 
we conducted a three-dimensional vertex sampling analysis, as shown in 
Supplementary Fig. 9.

To explore ways to reduce the output of byproducts, we utilized 
traditional FBA for double nutrient analysis (Fig. 5b). The objective 
function was a linear combination of biomass and PHA. During the early 
stages of the fermentation process, when the proportion of PHA in the 
objective function is low, a large amount of oxygen is required to 
maximize the metabolic flux compared to the later stages as shown in 
Fig. 5b and Supplementary Movie 1. Therefore, a high ventilation rate 
for the culture system is necessary in the early stages, while the venti
lation rate should be reduced later. Specifically, the amounts of glucose 
and oxygen consumed by H. bluephagenesis TD01 must meet the optimal 
values shown in Fig. 5b during different fermentation stages. This will 
result in the most efficient accumulation of biomass and PHA, with no 
other byproducts being produced, such as acetate and pyruvate. Based 
on the above analysis results, the fermentation medium could be opti
mized to increase PHA yield. Additionally, the analysis process was 
performed among some other nutrients (Supplementary Fig. 10), 
providing more information for optimization of the culture medium.

Fig. 5. Trade-offs between biomass/PHA production and other byproducts. (a) Vertex sampling analysis for biomass, PHA and byproducts. (d) Phase plane analysis 
using flux balance analysis (FBA).
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3.7. Hyper cube shrink analysis yield a strate segmented feeding

During the fermentation process, the availability of dissolved oxygen 
in the water poses a significant limitation for cell growth, and improving 
oxygen supply can be challenging. In the early stages of fermentation, 
the bacteria have sufficient oxygen, resulting in a high biomass accu
mulation rate. However, as more biomass accumulates, the amount of 
oxygen available to each bacterium decreases, leading to a decrease in 
the biomass accumulation rate and an increase in PHA accumulation 
rate since carbon is still available for PHA synthesis. When the oxygen 
available to each bacterium becomes very limited, biomass accumula
tion stops, and only PHA production continues. Toward the end of 
fermentation, the PHA production rate decreases due to bacterial aging 
and decreased enzyme activity.

To optimize production, we suggested adopting different fermenta
tion strategies in different periods. The early fermentation stage requires 
a strategy that favors biomass, while in the later stages, strategies that 
promote PHA accumulation should be employed to achieve a high PHA 
production rate. In the middle stage of fermentation, transitional stra
tegies should be applied to promote the ideal conditions for bacterial 
growth and improve PHA yield.

We initially conducted simulations for single nutrient analysis to 
identify the optimal substrate composition strategy (Fig. 6a–c). Since 
FBA can only maximize biomass or PHA production at one time and 
cannot predict the causal relationships between inputs and outputs, we 
employed the previously developed HCSA in this analysis, which allows 
us to explore the flux distribution between multiple outputs, ensuring 
the accuracy of our predictions (Xie et al., 2018). In HCSA, we defined a 
pseudo flux V which defines a “shrink cube” when it increases: 

li +CiV ≤ vi ≤ ui − Di(1 − Ci)V 

vi represents the flux of the reaction i that we pose the “shrink cube” on. 
When performing the nutrient analysis in this study, we will apply this 
“shrink cube” on the corresponding nutrient import reactions in the 
model. Civi represents the enzyme regulatory activities for reaction i. li 
(ui) is the lower (upper) bound of the flux for reaction i, which are 
calculated by flux variability analysis (FVA). Di = ui − li. An inner point 
of the metabolic flux solution space can be found by solving: 

maximize V s.t.

[Sm×n 0m×1]

[
vn×1
V1×1

]

= 0(n+1)×1 

[
− Iz×z Cz×1
Iz×z Gz×1

][
vz×1
V1×1

]

≤

[
lz×1
uz×1

]

vi ∈ [ li ui ]

where S is the stoichiometric matrix for the metabolic model, I is an 
identity matrix with its diagonal elements all being 1 and the rest being 
0, and Gi = Di(1 − Ci). m and n represent number of metabolites and 
reactions in the metabolic network respectively, and z represents num
ber of reactions we apply the “shrink cube” on.

HCSA optimizes the consistency between enzymatic activity and flux 
and generate flux outputs for multiple targets at the same time. The 
nutrients we analyzed here include oxygen, nitrogen, and phosphorus. 
As shown in Fig. 6a–c, when intake rates of these nutrients, except ox
ygen, are within the range shown on the line charts, they all have 
inhibitory effects on PHA output but are beneficial to biomass 

Fig. 6. Effects of nutrient uptake and other metabolic reactions on biomass and PHA production. (a–c) Single nutrient analysis using HCSA. The intake rate of glucose 
was fixed at 10 mmol/(gDW.
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accumulation.
The above results provide important guidance for optimizing 

fermentation strategies to improve PHA yield. Specifically, in the early 
stage of fermentation when biomass accumulation is the objective, it is 
essential to provide sufficient oxygen, nitrogen, and phosphorus to 
facilitate biomass synthesis. In contrast, in the late stage of fermentation, 
when PHA production is the primary objective, the addition of these 
nutrients should be limited to avoid inhibiting PHA production. This 
strategy can also prevent the early synthesis of PHA, which can occupy 
the cytosol and inhibit bacterial growth and metabolism. By inhibiting 
PHA production in the early stage of fermentation, enough biomass can 
be obtained for PHA production in the later stage, ultimately resulting in 
a larger PHA yield.

To gain a comprehensive understanding of the causal relationships 
between other reactions and biomass growth rate or PHA production, we 
performed HCSA on all metabolic reactions in the model. Fig. 6d shows 
that a large portion (305 of 941 reaction fluxes being evaluated, 32.4%) 
of reaction have positive impact on biomass but negative impact on 
PHA, that is, flux increases in these reactions will promote biomass 
accumulation but inhibit PHA production. Besides, there is another large 
portion (343 of 941 reaction fluxes being evaluated, 36.5%) of reactions 
in the model shown in Fig. 6d have negative impact on biomass but 
positive impact on PHA. This might indicate that PHA and biomass 
productions mostly compete with each other. We are also able to see that 
there are small groups of reactions having negative impacts on both 
biomass and PHA production, and there are also small group of reactions 
having very positive impacts on both PHA and biomass production. The 
detailed HCSA analysis results are shown in Supplementary Table 5.

The double-nutrients analysis was also conducted using HCSA 
(Fig. 6e and f). In this analysis, we focused on the effect of nutrient 
intake on biomass and PHA productions, and therefore, we set the fluxes 
of all other exchange reactions to zero, except for the biomass function, 
PHA exchange reaction, and exchange reactions for necessary nutrients. 
In this HCSA simulation, by changing the activities of hypothetical en
zymes that control nutrient intake reactions in the metabolic model, we 
could simulate changes in nutrient intake rate and observe its effect on 
biomass and PHA yield. The results showed that decreasing the inputs of 
oxygen, nitrogen, and phosphorus can increase the PHA production 
(Fig. 6e and f).

The metabolic network predictions of Halomonas bluephagenesis 
TD01 were consistent with results from wet experiments. We previously 
reported wet experiment results of single nutrient analysis for nitrogen 
(Ye et al., 2018a), using urea or corn steep powder as the nitrogen source 
in the culture medium, where high nitrogen medium inhibited PHA 
synthesis but promoted biomass accumulation, but low nitrogen me
dium would increase PHA production, which agrees with our model 
predictions. The results are reproduced in Fig. 7a and b with different 
metrics from the original paper. Here, we performed wet experiments of 
single nutrient analysis for phosphorus, with dihydrogen phosphate 
being the phosphorus source in the culture medium (Fig. 7c). Our wet 
experimental results on phosphorus were also consistent with the model 
predictions, where high phosphorus concentrations in the culture me
dium inhibited PHA synthesis but promoted biomass accumulation. 
Conversely, low phosphorus concentrations were beneficial for PHA 
production.

We have previously reported three-stage feeding fermentation and 
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achieved a high PHA yield, 82.6 g/L CDW containing 79.86% PHA in the 
lab-scale 7.5 L bioreactor with H. bluephagenesis TD01, 90 g/L CDW 
containing 74.1% PHA in the scale-up 5000 L fermentor with 
H. bluephagenesis TD40 (a H. bluephagenesis TD01 derivative) (Ye et al., 
2018a).

In light of our model simulations, we decided to conduct a four-stage 
feeding fermentation, modifying and optimizing our previous three- 
stage feeding fermentation process. The first stage of the previous 
three-stage feeding fermentation is between the 7th and 18th hour of the 
fermentation in the 7.5 L bioreactor, which is in the logarithmic phase of 
the cell growth (Ye et al., 2018a). Here, we split the first stage of the 
original three-stage feeding into two sections, splitting at the 15th hour 
of the fermentation, with the urea being distributed between first and 
second sections in a ratio of 7:3. Besides, corn steep powder was also 
added into these two sections and the concentration were 5 g/L and 3 
g/L, respectively. This allowed more nitrogen in the very early stage of 
the fermentation to accelerate biomass accumulation and inhibit the 
accumulation of PHA. The four-stage feeding fermentation was per
formed in the lab-scale 7.5 L bioreactor, and results are shown in Fig. 7d.

Compared to previous three-stage feeding fermentation performed in 
the 7.5 L bioreactor, we obtained a lower PHA content at the early stage 
of fermentation. The PHA content was 13.2% at the 16th hour of the 
fermentation, whereas in the previous three-stage feeding fermentation, 
the PHA content was more than 30% at the same time point. However, 
the final total cell dry weight obtained by the four-stage feeding 
fermentation was 100.4 g/L, which was 25% higher than that obtained 
by the three-stage one, and we got a higher PHA yield (100.4 g/L CDW 
with 70.4% PHA content).

4. Discussion

By combining third-generation and NGS technologies, we obtained a 
complete and richly annotated genome sequence for Halomonas blue
phagenesis TD01, significantly advancing our understanding of this 
bacterium. Comprehensive information on gene functions, regulatory 
elements, and potential metabolic pathways now paves the way for in- 
depth studies and novel applications.

Leveraging this detailed genomic data, we built the first genome- 
scale metabolic network for H. bluephagenesis TD01, providing a holis
tic view of its metabolic capabilities. While uncertainties remain due to 
the presence of hypothetical genes (17% potential impact), the network 
captures the core metabolic machinery and reveals promising new tar
gets for metabolic engineering. Its comprehensive nature, as a "bird’s- 
eye view” of TD01’s metabolism, has already informed our strategies for 
improving the production rate of PHA and holds significant potential for 
future bio-based production processes.

With our metabolic model, we conducted vertex sampling analysis 
using the convex basis method to identify competitive metabolites 
within the network. This analysis revealed that the productions of 
biomass, PHA, citrate, acetate, and pyruvate are mutually compensable, 
guiding our efforts to enhance PHA yield through strategic inhibition or 
activation of specific pathways.

Recognizing the dynamic nature of H. bluephagenesis TD01, we 
employed our previously proposed HCSA algorithm to identify optimal 
feeding strategies tailored to different fermentation stages. Notably, 
HCSA’s strength lies in its ability to introduce a flexible-regulatory 
constraint to multiple reactions, unlike traditional flux balance anal
ysis (FBA) which focuses on a single objective function. Previously, we 
employed HCSA on a genome-scale level, achieving a narrow range of 
flux variations. In this work, we apply the HCSA constraint to specific 
reactions within a full-scale network, thereby circumventing its limita
tions and yielding a more significant redistributed flux distribution 
across reactions. This comprehensive approach led to the design of 
effective batch fermentation strategies, culminating in a remarkable cell 
dry weight of 100.4 g/L with a 70.4% PHA content, surpassing previ
ously reported values (82.6 g/L CDW containing 79.86% PHA in the 7.5 

L bioreactor, and 90 g/L CDW containing 74% PHA in a 5000 L 
fermentor) (Ye et al., 2018a).

Recently, the genome-scale metabolic model (HaloGEM) for Hal
omonas campaniensis was reconstructed (Deantas-Jahn et al., 2024). 
Halomonas campaniensis, similar to Halomonas bluephagenesis, is another 
Halomonas spp. that performed well in PHA accumulation. Halomonas 
campaniensis was reported to produce 55–70 g/L CDW containing over 
70 % PHA (Yue et al., 2014), whereas H. bluephagenesis is able to 
accumulate 100.4 g/L biomass containing 70.4 % of PHA in our study. 
Specifically for the metabolic model, the Halomonas campaniensis model 
includes 888 genes, 1528 reactions, and 1274 metabolites 
(Deantas-Jahn et al., 2024), which is smaller than our model for Hal
omonas bluephagenesis TD01, which contains 1067 genes, 1860 re
actions, and 1701 metabolites. The Halomonas campaniensis model 
shows that nitrogen source could limit aerobic growth of Halomonas 
campaniensis in minimal media and improving nitrogen source by using 
a combination of glutamate and arginine in the culture media could 
improve the biomass production, promoting a higher PHA yield at the 
end, which was predicted by their model and verified by wet experi
ments (Deantas-Jahn et al., 2024). We also discovered a similar feature 
in H. bluephagenesis TD01, where in the early stage of fermentation for 
H. bluephagenesis TD01, when the cell density in the culture media is low 
and oxygen is not a limiting factor for cell growth, a higher nitrogen 
source supply would promote rapid biomass accumulation, which in the 
end will promote a higher PHA yield, as shown by our four-stage feeding 
strategy. Taken together, genome-scale metabolic models in both strains 
will be beneficial for improvements in future PHA production.

H. bluephagenesis TD01’s robust growth under non-sterile, high-salt 
conditions positions it as a prime candidate for industrial PHA produc
tion. This study presents the first genome-scale metabolic model for 
H. bluephagenesis TD01, unlocking its metabolic potential and paving the 
way for future optimization. Through network analysis and fermenta
tion strategies guided by the model, we achieved significantly higher 
PHA yields compared to previous reports. As research on 
H. bluephagenesis TD01 progresses, refinement and expansion of this 
model will undoubtedly lead to further breakthroughs in microbial 
systems biology and bio-based PHA production.
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