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Background The growth of biomedical literature presents challenges in extracting and structuring knowledge. 
Knowledge Graphs (KGs) offer a solution by representing relationships between biomedical entities. However, 
manual construction of KGs is labor-intensive and time-consuming, highlighting the need for automated methods. 
This work introduces BioKGrapher, a tool for automatic KG construction using large-scale publication data, with a 
focus on biomedical concepts related to specific medical conditions. BioKGrapher allows researchers to construct 
KGs from PubMed IDs.
Methods The BioKGrapher pipeline begins with Named Entity Recognition and Linking (NER+NEL) to extract and 
normalize biomedical concepts from PubMed, mapping them to the Unified Medical Language System (UMLS). 
Extracted concepts are weighted and re-ranked using Kullback-Leibler divergence and local frequency balancing. 
These concepts are then integrated into hierarchical KGs, with relationships formed using terminologies like 
SNOMED CT and NCIt. Downstream applications include multi-label document classification using Adapter-
infused Transformer models.
Results BioKGrapher effectively aligns generated concepts with clinical practice guidelines from the German 
Guideline Program in Oncology (GGPO), achieving 𝐹1-Scores of up to 0.6. In multi-label classification, Adapter-
infused models using a BioKGrapher cancer-specific KG improved micro 𝐹1-Scores by up to 0.89 percentage points 
over a non-specific KG and 2.16 points over base models across three BERT variants. The drug-disease extraction 
case study identified indications for Nivolumab and Rituximab.
Conclusion BioKGrapher is a tool for automatic KG construction, aligning with the GGPO and enhancing 
downstream task performance. It offers a scalable solution for managing biomedical knowledge, with potential 
applications in literature recommendation, decision support, and drug repurposing.

1. Introduction

In the rapidly evolving field of healthcare and biomedical research, 
the exponential growth of data presents both opportunities and chal-
lenges. The advance of biomedical research methods, increase in clinical 
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trials and the continuous generation of electronic health records have 
led to an exponential growth in biomedical information [1]. This flood 
of data contains a broad spectrum of knowledge, from clinical trial re-
sults and clinical observations to detailed patient records and results 
published in scientific journals. Among these resources, the PubMed 
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database2 stands out as a treasure of biomedical knowledge, providing 
insights into a variety of conditions, treatments, and outcomes. How-
ever, the volume and complexity of this information, much of which is 
only available in unstructured forms, often obscures valuable connec-
tions and insights, making it increasingly difficult for researchers and 
practitioners to navigate this vast and complicated landscape. One possi-
ble approach to deal with complexity is the representation of knowledge 
at the conceptual level through ontologies and knowledge graphs (KGs). 
At their core, knowledge graphs represent a collection of interlinked 
descriptions of entities, objects, events, or concepts allowing for a struc-
tured way to manage knowledge [2–4].

The manual construction of knowledge graphs is a labor-intensive 
and time-consuming process, often requiring extensive domain exper-
tise and continuous updates to reflect new discoveries or changes in 
recent publications. Given the rapid pace of data generation, there is a 
critical need for more efficient methods of knowledge graph construc-
tion [5], considering that the publication rate in the biomedical field 
is too high for curators to keep up with, making it difficult to find in-
formation using manual approaches. [6]. This necessity has led to the 
exploration and development of automatic knowledge graph construc-
tion methodologies [7].

Automatic and semi-automatic knowledge graph construction aims 
to minimize human intervention by leveraging algorithms and com-
putational techniques to extract, organize, and link data automatically 
[8,9,5]. This approach involves the processes of data acquisition, entity 
recognition, relationship extraction, and integration into a graph struc-
ture [10]. Advances in machine learning, and particularly in natural 
language processing (NLP), have opened new ways for extracting mean-
ingful information from unstructured data sources. Once constructed, 
KGs can support a variety of applications, such as improved informa-
tion retrieval, semantic search functions and expert systems [11]. In 
addition, the relationships between entities enable a range of applica-
tions, including predictive modeling [12], drug discovery [13], drug 
repurposing [13], decision support [14], patient stratification [15,16], 
and precision medicine, and the extraction of genotype-phenotype cor-
relations [17]. A particular example would be their use in molecular 
tumor boards [18]. Structured knowledge representations in the form 
of ontologies and KGs also open up important areas in the field of ma-
chine learning, where KGs can form a semantic framework for tasks 
such as relation extraction [19], question answering [20] and improving 
large language models (LLMs) [21–24]. In the area of recommendation 
systems using machine learning methods, ontologies and KGs are in-
creasingly being applied [25].

In this study, the BioKGrapher application is introduced and eval-
uated for constructing knowledge graphs from large-scale publication 
data, focusing on biomedical concepts that are prevalent, meaning they 
are widespread and commonly occurring, in relation to specific medical 
conditions. Six conditions, including Breast Cancer, Colorectal Cancer, 
Actinic Keratosis and Cutaneous Squamous Cell Carcinoma of the Skin, 
Malignant Melanoma, and Adult Soft Tissue Sarcomas, have been se-
lected for evaluation purposes based on corresponding evidence-based 
clinical practice guidelines. Publications are identified using Medical 
Subject Headings (MeSH) terms, and a Named Entity Recognition and 
Linking (NER+NEL) pipeline extracts and ranks biomedical concepts 
from abstracts, weighted against occurrences in the entire PubMed 
database. The concept rankings are assessed by aligning them with the 
reference clinical practice guideline concepts. The study also examines 
the distribution and relationships of concepts across different seman-
tic types within the KGs. The effectiveness of BioKGrapher is demon-
strated through two downstream tasks: document multi-label classifica-
tion and drug repurposing. A cancer-specific KG, derived from 3.6 mil-
lion neoplasm-related publications, is used to pre-train BioBERT [26], 
SciBERT [27], and PubMedBERT [28] models by infusing KG triples into 

2 https://pubmed .ncbi .nlm .nih .gov /about/ (last accessed: 2024-07-28).

the encoder-decoder architectures through a Mixture-of-Partitions [29]
approach with Adapter [30] modules, followed by fine-tuning on a 
multi-label classification task. In the drug repurposing case study, BioK-
Grapher analyzes publications on two example drugs, re-ranking asso-
ciated neoplastic processes. Top results are validated against existing 
literature, highlighting BioKGrapher’s potential in a practical applica-
tion setting. By linking to the Unified Medical Language System (UMLS) 
[31], several target mappings to knowledge bases such as Systematized 
Nomenclature of Medicine and Clinical Terms (SNOMED CT) [32], Na-
tional Cancer Institute Thesaurus (NCIt) or MeSH are available for BioK-
Grapher, whereby individual hierarchies and relations are generated in 
each case. The BioKGrapher application code is available online and re-
quires a UMLS license.3

The remainder of this work is structured as follows. Section 2 reviews 
existing methodologies for automatic knowledge graph construction in 
the biomedical domain, highlighting recent advancements and chal-
lenges. Section 3 details the datasets used, including the PubMed corpus 
and clinical practice guidelines. Section 4 describes the BioKGrapher ap-
plication pipeline, covering NER+NEL, concept weighting, re-ranking, 
and the construction of hierarchical knowledge graphs with relation 
triples. Section 5 presents the outcomes of the approach, including se-
mantic type distribution analysis, concept re-ranking, clinical practice 
guideline alignment, and performance in multi-label document classifi-
cation and drug repurposing downstream tasks. Finally, Sections 7 and 
8 discuss the findings, state limitations, and suggest future directions.

2. Background

This section reviews the methodologies and advances in automatic 
KG construction, highlighting the role of NLP and ontology integration.

Initial efforts in biomedical KG construction were largely manual 
[5]. These early systems were either labor-intensive or limited in scope, 
but they established foundational ontologies and controlled vocabular-
ies that continue to be integral to modern approaches. Building on this, 
semi-automated methods with expert curation and clinician-in-the-loop 
approaches have been increasingly used in recent years. Most modern 
methods for automatically constructing knowledge graphs rely on NLP 
techniques [33,34]. When deriving KGs from natural language, NER is 
typically employed to identify entities, which are then classified (entity 
typing) and uniquely resolved (entity linking) [35]. After basic knowl-
edge discovery, approaches vary, often using some form of relationship 
extraction [36] and methods to refine the resulting KG [37].

For this work, when selecting NER+NEL tools and methods, it is 
important that entities are linked to large concept databases such as 
UMLS to capture a wide semantic range of concepts related to vari-
ous conditions across the large amounts of publication abstracts. Tools 
for NER+NEL, such as MetaMap [38], SemEHR [39], cTAKES [40], 
CLAMP [41], and ScispaCy [42], have contributed to advancements 
in this area. MetaMap was an early tool developed to map biomedical 
text to the UMLS Metathesaurus, but it struggles with spelling varia-
tions and ambiguous concepts. SemEHR further advanced the approach 
by applying manual rules, although the rule-based approach can be 
time-consuming. cTAKES, CLAMP and ScispaCy offer open-source ap-
proaches, with CLAMP being developed with focus to narrative patient 
reports and ScispaCy providing modern supervised NER approaches but 
only limited linking capabilities. Additionally, BioPortal [43,44] offers 
extensive support for a wide range of ontologies, making it a versa-
tile tool for use cases beyond UMLS. The Medical Concept Annotation 
Toolkit (MedCAT) [45] has emerged with a self-supervised approach to 
address the limitations of earlier tools, showing recent improved per-
formance in extracting UMLS concepts from various datasets. A critical 
component of the NER+NEL tools is contextualization, which enhances 
the understanding and extraction of entities within text. Approaches 

3 https://github .com /rtg -wispermed /BioKGrapher.

https://pubmed.ncbi.nlm.nih.gov/about/
https://github.com/rtg-wispermed/BioKGrapher


Computational and Structural Biotechnology Journal 24 (2024) 639–660

641

H. Schäfer, A. Idrissi-Yaghir, K. Arzideh et al.

Table 1

Descriptive statistics of the corpora used for constructing and evaluating knowledge graphs. The PubMed annual baseline dataset serves to build global concept 
frequency weights. These weights are then applied to concepts found in six publication sets related to the conditions: Breast Cancer, Colorectal Cancer, Actinic 
Keratosis and Cutaneous Squamous Cell Carcinoma of the Skin, Malignant Melanoma and Adult Soft Tissue Sarcomas, collected through MeSH descriptors. Clinical 
practice guidelines of the same conditions serve as a baseline for the evaluation of the identified prevalent concepts. All six guidelines meet the highest possible level 
of the AWMF (S3). † denotes that the document was translated with the fairseq Transformer ported model wmt19-de-en, ∗ denotes statistics are based on citations 
with abstract.

Data Set Descriptor Citations/
Documents

Citation has 
Abstract

Token Token per 
Document (std)∗

Concepts 
[distinct]

Concepts per 
Document (std)∗

Distinct Concepts 
per Document (std)∗

MEDLINE
PubMed Baseline 24n

37,522,738 26,171,810 6,399,477,076 239.432 (97.874) 1,557,162,536 [150,628] 58.085 (24.948) 36.782 (13.393)

Breast Cancer
MeSH:D001943

344,172 273,194 72,423,131 261.885 (94.614) 18,284,652 [33,283] 65.959 (24.047) 40.379 (12.217)

Colorectal Cancer
MeSH:D015179

117,332 102,972 28,623,408 276.152 (89.047) 6,979,430 [21,791] 67.231 (22.183) 41.063 (11.290)

Endometrial Cancer
MeSH:D016889

25,326 22,420 6,153,435 272.816 (95.686) 1,523,742 [12,669] 67.471 (23.564) 41.122 (12.032)

AK and SCC of the Skin
MeSH:D055623;D002294

146,815 115,902 29,109,540 247.698 (95.575) 7,308,888 [29,284] 62.032 (23.392) 39.338 (12.549)

Malignant Melanoma
MeSH:D008545

104,531 78,341 19,080,198 239.594 (96.327) 4,949,795 [23,888] 61.949 (24.397) 39.106 (12.958)

Adult Soft Tissue Sarcomas
MeSH:D012509

35,681 20,980 5,205,761 239.567 (105.747) 1,366,514 [16,719] 62.618 (26.704) 40.753 (14.398)

AWMF: 032/045OL v4.4 [58]
Breast Cancer

- - 120,617 - 24,566 [2,302] - -

AWMF: 021/007OL v2.1 [59]
Colorectal Cancer

- - 84,182 - 16,343 [1,726] - -

AWMF: 032/034OL v2.0 [60]
Endometrial Cancer

- - 135,257 - 20,925 [1,897] - -

AWMF: 032/022OL v2.0 [61]
AK and SCC of the Skin

- - 211,265 - 39,566 [2,164] - -

AWMF: 032/024OL v3.3 [62]
Malignant Melanoma†

- - 69,847 - 14,045 [1,858] - -

AWMF: 032/044OL v1.1 [63]
Adult Soft Tissue Sarcomas

- - 65,849 - 13,663 [1,828] - -

like Word2Vec [46], fastText [47], GloVe [48], and more recently, Bidi-
rectional Encoder Representations from Transformers (BERT) [49,50], 
provide contextual embeddings that capture semantic relationships be-
tween words in context, rather than treating them as isolated tokens. 
These embeddings can be used for architectures such as Bidirectional 
Long Short-Term Memory networks (Bi-LSTM) [51,52] and Transform-
ers to improve the accuracy and robustness of NER models. While BERT-
based models generally excel in NLP tasks, the authors of MedCAT [45]
found that the Word2Vec embeddings outperformed Bio_ClinicalBERT 
[53] on average for the task of linking ambiguous mentions to a large 
database. This was attributed to the use of pre-trained static BERT em-
beddings that may not effectively capture context-specific similarities, 
especially with tokenization challenges in the medical domain, where 
terminology often includes complex and rare structures. Tokenization is 
the process of breaking down text into smaller units, such as words or 
sub-words, that can be processed by models like BERT.

These advancements in NER+NEL tools and methods are also re-
flected in the construction of KGs within the biomedical domain. 
Rossanez et al. [54] developed a semi-automatic method using NLP 
and linking to biomedical ontologies for generating KGs from biomed-
ical texts, particularly focusing on Alzheimer’s disease research. It 
was evaluated against manual extractions by physicians. Their results 
demonstrated a high efficiency in extracting relevant triples and link-
ing them to ontologies. Health Knowledge Graph Builder (HKGB) [55]
is a platform for constructing disease-specific health knowledge graphs 
from various sources. This platform incorporates a clinician-in-the-loop 
methodology to leverage medical expertise during the graph construc-
tion process to improve the accuracy. The authors applied HKGB for 
cardiovascular diseases and knee osteoarthritis. Xu et al. [56] focused 
on enhancing knowledge discovery in the medical field by developing a 
PubMed Knowledge Graph. While it integrates bio-entities extracted 
from 29 million PubMed abstracts using BioBERT [26], along with 
supplementary article metadata such as authors, funding sources, and 
affiliations, it takes a broader approach to biomedical knowledge inte-

gration. In contrast, this work focuses on constructing KGs specific to 
medical conditions for more targeted applications. Integrating existing 
medical ontologies into knowledge graphs enhances their applicability 
in specialized domains. For example, Maghawry et al. [57] developed a 
framework that integrates the Human Disease Ontology and Symptom 
Ontology into a knowledge graph. This framework allows for the ex-
traction of specific subgraphs, such as those focused on organ cancer, 
which can be particularly useful for specialized healthcare applications.

3. Data

This work utilizes two types of data sources: PubMed, for automatic 
KG construction, and clinical practice guideline that are used for ref-
erence alignment and evaluation purposes. The descriptive statistics of 
the corpora used are summarized in Table 1. The PubMed annual base-
line dataset, comprising over 37 million citations, serves to build global 
concept frequency weights. These weights are then applied to concepts 
identified in six publication sets related to specific conditions, includ-
ing Breast Cancer, Cervical Cancer, Colorectal Cancer, Actinic Keratosis 
and Cutaneous Squamous Cell Carcinoma of the Skin (AK and SCC of 
the Skin), Malignant Melanoma, and Adult Soft Tissue Sarcomas. These 
publication sets were collected through MeSH descriptors.

3.1. PubMed

For the biomedical literature foundation of this work, the annual 
NLM PubMed baseline version of December 14, 2023, is used. Daily up-
date files were included to incorporate citations up to May 2024 (Files 
24n0001-24n1424). This corresponds to 37,522,738 citations, of which 
26,171,810 citations contain an abstract. Descriptive statistics for the 
collected PubMed data, including extracted and linked concepts, are 
presented in Table 1. The PubMed abstracts feature approximately 6.4
billion tokens, with an average of 239 tokens per abstract. It identifies 
over 1.5 billion concepts, 150,628 of which are distinct. Each condition-
specific publication set varies in size, with Breast Cancer having the 
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Fig. 1. Steps in the BioKGrapher application pipeline for constructing KGs from PubMed citations. The process begins with NER+NEL, followed by concept weighting 
using Kullback-Leibler divergence. It continues with re-ranking through local frequency weighting, hierarchical structuring, terminology mapping, and the incor-
poration of relationships. The final step involves visualization and export options of the constructed KG. In the sunburst chart, different colors represent top-level 
categories within the hierarchy.

largest number of documents (344,172) and Adult Soft Tissue Sarco-
mas the fewest (35,681). The token count per abstract and the average 
number of concepts per abstract are consistent across conditions, with 
minor variations. The top semantic types across the entire PubMed can 
be found in Appendix A.3.

3.2. Clinical practice guidelines

Evidence-based clinical practice guidelines from the German Guide-
line Program in Oncology (GGPO),4 are used to align and evaluate the 
automatically constructed concept sets. GGPO is jointly funded by the 
Association of the Scientific Medical Societies in Germany (AWMF), the 
German Cancer Society and the German Cancer Aid. They provide clin-
ical practice guidelines in machine-readable JSON formats, which are 
also used in the German Guideline Program in Oncology NLP Corpus 
(GGPONC) project [64,65]. From 30 German oncology guidelines, there 
are six English versions available in machine-readable format. Table 1
shows the available publication sets of conditions along with descrip-
tive statistics on the extracted concepts. The guidelines, all meeting the 
highest quality level of AWMF (S3), provide a benchmark for evaluating 
the identified prevalent concepts. These guidelines range from around 
65,849 to 211,265 tokens and encompass a substantial number of dis-
tinct concepts, averaging around 2,000 distinct concepts per guideline, 
that describe each condition. The guideline for Malignant Melanoma 
was translated using the fairseq Transformers port of wmt19de_en [66], 
a model that has previously demonstrated reasonable performance in 
translating biomedical and clinical data between English and German 
[67,68]. The evaluation using these guidelines ensures that the identi-
fied concepts are based on the best available research evidence, forming 
a valid representation of each condition.

4. Methods

The methods are organized into components that collectively de-
scribe how user-provided PubMed IDs (PMIDs) are transformed into 
structured knowledge representations. The “BioKGrapher Pipeline” 
shows an overview of the workflow, detailing how the tool processes 
biomedical literature to create KGs that can be explored or exported 
for further analysis. Next, “Named Entity Recognition and Entity Link-
ing” explains how the application uses NLP to identify and normalize 
biomedical concepts within the provided document set. Following this, 
“Prevalent Concept Weights” describes the statistical methods used to 
weight the identified concepts based on their relevance to the specific 
document set, ensuring that the important concepts are highlighted. 
“Frequency Re-ranking” further refines these weights by incorporat-
ing local frequency data, addressing the challenge of balancing global 
and local relevance of concepts. “Hierarchical Structuring and Semantic 
Triples” covers the process of building the KGs hierarchical structure and 

4 https://www .krebsgesellschaft .de /gcs /german -cancer -society /guidelines .
html (last accessed: 2024-07-28).

defining the relationships between concepts, which are represented as 
semantic triples. Finally, “Guideline Alignment for Concept Evaluation” 
outlines the methods used to evaluate the relevance of the generated 
concepts by comparing them to those found in clinical practice guide-
lines.

4.1. BioKGrapher pipeline

The proposed pipeline as shown in Fig. 1 for processing uploaded 
PMIDs, begins with the use of pre-cached concept annotations that are 
normalized and linked to the UMLS for each citation. Different men-
tions that refer to the same concept are consistently identified. After 
normalization, these concepts undergo a weighting process to deter-
mine their importance within the specific context of the document set, 
for example 104k Melanoma PMIDs. This is achieved by calculating the 
prevalence of each concept within the provided document set relative 
to its frequency across the entire PubMed database. The weighting is 
done using Kullback-Leibler divergence (KLD) [69], a statistical measure 
that quantifies how much one probability distribution diverges from a 
second, expected probability distribution. In this case, KLD highlights 
terms that are disproportionately prevalent in the specific document set 
compared to the general PubMed database, thereby identifying concepts 
that are particularly relevant to the provided PMID set. To address the 
challenge of filtering out relevant concepts that are also common across 
other conditions due to their high global frequency, the pipeline includes 
a re-ranking process that incorporates local frequency weighting. This 
step adjusts the importance of concepts by considering their frequency 
within the local document set, ensuring that globally common terms, 
which may still be highly relevant in the specific context, are not down-
weighted or excluded.

Once the top concepts are identified and ranked, the BioKGrapher 
application proceeds to map these concepts to a standardized biomedical 
terminology, such as SNOMED CT or NCIt. This mapping is done using 
a path to root approach, which traces each concept to its hierarchical 
ancestors within the selected terminology. This approach constructs a 
hierarchical structure and forms a view on the KG, where each node 
represents a concept and its place within the broader condition specific 
biomedical ontology.

To further enrich the KG, BioKGrapher incorporates semantic rela-
tionships between concepts as defined in the chosen set of concepts. 
These relationships are represented as edges connecting the nodes in the 
graph in the form of semantic triples. By default, BioKGrapher restricts 
triples to concepts within the chosen set, ensuring that relationships re-
main consistent with the established ontology. However, this approach 
also limits the introduction of new concepts into the graph when build-
ing the relations.

The final Knowledge Graph can be explored using a variety of in-
teractive visualization tools, such as treemaps5 or sunburst charts6 (as 

5 https://plotly .com /python /treemaps/ (last accessed: 2024-07-28).
6 https://plotly .com /python /sunburst -charts/ (last accessed: 2024-07-28).

https://www.krebsgesellschaft.de/gcs/german-cancer-society/guidelines.html
https://www.krebsgesellschaft.de/gcs/german-cancer-society/guidelines.html
https://plotly.com/python/treemaps/
https://plotly.com/python/sunburst-charts/
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shown in Figs. 1 and 4), which provide a hierarchical view of the con-
cepts related to a condition, with branches colored to represent different 
top-level categories within the hierarchy.

The software provides sorted tables for each semantic type, allow-
ing users to intuitively navigate the hierarchical relationships and the 
underlying data. For those who require further analysis or integration 
with other systems, the KG can also be exported in the Web Ontology 
Language (OWL) [70] format.

4.2. Named entity recognition and entity linking

MedCAT [45] is used for NER+NEL to identify and normalize 
biomedical concepts to the UMLS. The process is built upon two core 
components: the Vocabulary (VCB) and the Concept Database (CDB). 
The VCB is a comprehensive list of potential words that can appear in 
the documents, derived from Wikipedia and UMLS terms, and is used for 
spell-checking. The CDB is a structured repository of biomedical con-
cepts, where each concept is represented by a UMLS Concept Unique 
Identifier (CUI) and can be referenced by multiple synonymous terms. 
NER begins with text preprocessing, by using a lightweight spell checker 
that relies on word frequency and edit distance to correct errors, ensur-
ing that variations in terminology or misspellings still allow accurate 
concept identification. Spell-checking is performed against the VCB, but 
corrections are applied only if the corrected word matches a concept in 
the CDB. This process preserves critical abbreviations.

In the preprocessing step, MedCAT uses SciSpaCy for tokeniza-
tion and lemmatization. The detection of entity candidates is achieved 
through a dictionary-based approach along with a moving expanding 
window technique. Starting with a single word, the algorithm expands 
the window until a match with a concept in the CDB is found, which 
allows for identification of biomedical concepts, even when they span 
multiple words or appear in varied order.

Concept disambiguation is tackled by using a self-supervised learn-
ing approach on the Medical Information Mart for Intensive Care 
(MIMIC-III) [71] database. This involves generating dense vector rep-
resentations, which capture the semantic meaning of the surrounding 
text of each concept. When an ambiguous concept is detected, its con-
text embedding is compared to the CDB. If the similarity between these 
embeddings exceeds a defined threshold, the concept is annotated and 
linked to the correct CUI.

To efficiently retrieve concepts for any PMID set, BioKGrapher uses 
an SQLite database. The data is stored in the form PMID1: [‘CUI1’, 
‘CUI2’], with both an inverted index on CUIs and an index on PMIDs. 
The indexing allows for quickly aggregating counts of CUIs across the 
entire PubMed database and enables fast filtering by PMIDs for counting 
CUIs within subsets of PMIDs for subsequent weighting through KLD.

4.3. Prevalent concept weights

The set of concepts is defined by any UMLS Concept 𝐶 = {𝑐1, 𝑐2, … ,
𝑐𝑛} that appears at least once in PubMed. Let 𝐹 (𝑐𝑖) represent the fre-
quency of concept 𝑐𝑖 in the PubMed dataset, excluding the documents 
from the subset and let 𝑓 (𝑐𝑖) represent the frequency of the same con-
cept in the subset. The total number of concept occurrences in PubMed 
is 𝑁 =

∑𝑛
𝑖=1 𝐹 (𝑐𝑖), and in the subset is 𝑛 =

∑𝑛
𝑖=1 𝑓 (𝑐𝑖). The probability 

of a concept 𝑐𝑖 in the PubMed dataset is 𝑃 (𝑐𝑖) =
𝐹 (𝑐𝑖)
𝑁

, and in the subset 
is 𝑝(𝑐𝑖) =

𝑓 (𝑐𝑖)
𝑛

.
The Kullback-Leibler Divergence for a concept 𝑐𝑖 is given by:

𝐷𝐾𝐿(𝑐𝑖) = 𝑝(𝑐𝑖) ⋅ log
(

𝑝(𝑐𝑖)
𝑃 (𝑐𝑖)

)
(1)

The overall divergence measure for all concepts between the subset 
and the entire dataset is:

𝐷𝐾𝐿(Total) =
𝑛∑
𝑖=1

𝑝(𝑐𝑖) ⋅ log
(

𝑝(𝑐𝑖)
𝑃 (𝑐𝑖)

)
(2)

A higher 𝐷𝐾𝐿(𝑐𝑖) indicates that the concept 𝑐𝑖 is more prevalent 
or specific to the subset compared to its general frequency in PubMed. 
Conversely, a lower 𝐷𝐾𝐿(𝑐𝑖) suggests that the concept 𝑐𝑖 is either equally 
prevalent or less specific to the subset. If a concept 𝑐𝑖 does not appear in 
the subset (i.e., 𝑓 (𝑐𝑖) = 0), the KLD for that concept is not defined, and 
a low constant is applied. A justification for choosing KLD is provided 
in Appendix A.1.

4.4. Frequency re-ranking

To balance the identification of relevant concepts within a sub-
set, a re-ranking process is introduced that integrates local frequency 
weighting with the initial KLD. This approach addresses the limitation 
of overlooking relevant but globally common concepts due to their high 
frequency in the broad PubMed dataset. The final ranking score, 𝑆(𝑐𝑖), 
for each concept combines normalized KLD and local frequency (LF) 
scores, applying adjustable weights to balance their influence. The final 
score is defined as

𝑆(𝑐𝑖) = 𝛼 ×𝐷𝐾𝐿(𝑐𝑖) + 𝛽 ×𝐿𝐹 (𝑐𝑖),

where 𝛼 = 0.5 and 𝛽 = 0.5 are the default weights for the normalized 
KLD and LF scores, respectively. This weighting scheme is designed to 
account for the uniqueness of concepts within the subset while still con-
sidering globally common terms. KLD and LF scores are normalized to a 
0 to 1 scale for the final score. The process calculates KLD and LF for all 
concepts, normalizes them, and computes the final scores using the set 
weight parameters, and then ranks the concepts, resulting in prevalent 
terms for that subset.

A threshold 𝑡 can be set to focus on concepts above a certain score, 
highlighting the most prevalent concepts that represent a condition.

4.5. Hierarchical structuring and semantic triples

To generate the hierarchical structure of the KG, the MRHIER Com-
putable Hierarchies (MRHIER.RRF) file from the UMLS version 2023AB 
is used. This file contains the hierarchical paths to the root for each 
atom, represented as a list of AUIs. Nodes for each concept are created 
along their path to the root, forming the hierarchical structure. The list 
of prevalent concepts, identified using KLD and re-ranking, guides this 
process. The resulting hierarchy is dependent on the selected target ter-
minology in the BioKGrapher application, such as SNOMED CT, NCIt, 
or others.

To establish relationships (triples) within the knowledge graph, the 
MRREL Related Concepts (MRREL.RRF) file from the same UMLS ver-
sion is used. This file provides semantic relationships between concepts, 
represented as subject-predicate-object triples. These triples are applied 
to the prevalent concepts identified by KLD and re-ranking them to cre-
ate connections between nodes in the knowledge graph. The specific 
relationships included also depend on the selected target terminology.

4.6. Guideline alignment for concept evaluation

The relevance of the re-ranked concepts is evaluated by compar-
ing them to concepts extracted from corresponding clinical practice 
guidelines using the same NER+NEL pipeline. This alignment serves 
as a benchmark to assess how well the automatically constructed con-
cept sets correspond to those manually curated in guidelines. Precision, 
Recall, and 𝐹1-Score metrics are calculated to determine the overlap be-
tween the top-ranked concepts from the publication sets and the guide-
line concepts. Precision is defined as the proportion of relevant concepts 
(those appearing in the guidelines) among the top k concepts from the 
publication sets. Recall is the proportion of guideline concepts that are 
also present in the top k publication concepts. The 𝐹1-Score provides 
a harmonic mean of precision and recall, offering a balanced measure. 
The top k concepts are retrieved based on the re-ranking algorithm. By 
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Fig. 2. Comparison of semantic type distributions in clinical practice guidelines and PubMed publications based on UMLS semantic types. †Actinic keratosis and 
squamous cell carcinoma.

adjusting 𝑘, the metrics show how alignment with guideline concepts 
changes.

5. Results

This Section is organized as follows. Initially, a descriptive analysis 
of the distribution of semantic types is presented to show similarities 
and differences of concepts between literature sourced from PubMed 
and clinical practice guidelines. Following this, melanoma generated 
concepts are used to showcase the top k re-ranked concepts across three 
semantic types. Subsequently, the evaluation focuses on comparing the 
top k generated and ranked concepts for six medical conditions against 
those found in their respective clinical practice guidelines. Addition-
ally, visual representations, including a sunburst chart, triples tables for 
target mappings such as SNOMED CT and NCIt, and a Fruchterman-
Reingold [72] layout of relationships illustrated using the melanoma 
KG, are provided to demonstrate the outputs produced by the BioKGra-
pher application.

5.1. Semantic type distribution

The radar charts in Fig. 2 show the semantic type distribution over-
lap between all six guidelines and publication sets. This offers a visual 
representation of how various medical concepts are emphasized across 
both sources. The distributions of certain semantic types, such as Find-

ings (T033) and Therapeutic or Preventive Procedures (T061), show strong 
alignment between guidelines and publications, indicating consistency 
in the emphasis on these concepts across both sources. For example, 
findings in breast cancer have distributions of 0.080 in guidelines and 
0.083 in publications, reflecting close alignment. Similarly, therapeutic 
procedures in colon cancer show distributions of 0.062 in guidelines and 

0.048 in publications, again indicating a consistent focus on treatment 
modalities.

However, there are notable differences in other categories. The dis-
tribution of Neoplastic Processes (T191) in melanoma is lower in guide-
lines, at 0.024, compared to publications, at 0.044. This suggests that 
publications may place a greater emphasis on detailed aspects of neo-
plastic processes. This trend is also observed in the distribution of Dis-

eases or Syndromes (T047), where publications show a much higher dis-
tribution for melanoma, at 0.085, compared to guidelines, at 0.036. This 
indicates a stronger focus on disease characterization in publications. 
The distribution for Pharmacologic Substances (T121) is generally higher 
in publications, such as in melanoma, where it is 0.062 in publications 
versus 0.031 in guidelines, reflecting the more exploratory nature of aca-
demic articles in discussing potential new treatments. Similarly, Organic 
Chemicals (T109) are more prominently represented in publications, as 
seen in breast cancer where the distribution is 0.075 in publications 
compared to 0.039 in guidelines.

5.2. Concept re-ranking

Concept re-ranking results for three semantic types in the context of 
melanoma are presented in Table 2: Diagnostic Procedure, Amino Acid, 
Peptide, or Protein, and Disease or Syndrome. Rankings are shown as KLD 
values, frequency counts, and the re-ranking score used to compute the 
final score for concepts associated with the condition.

In the Diagnostic Procedure category, the term Sentinel Lymph 
Node Biopsy has the highest KLD value of 0.0033, indicating a high 
specificity to melanoma research. Despite a moderate frequency of 2,991 
occurrences, it ranks highest after re-ranking with a score of 0.708, un-
derscoring its importance in melanoma diagnostics. Similarly, Biopsy
exhibits a high KLD value of 0.0021 and a high re-ranking score of 0.477, 



Computational and Structural Biotechnology Journal 24 (2024) 639–660

645

H. Schäfer, A. Idrissi-Yaghir, K. Arzideh et al.

Table 2

Top concept ranking before and after KLD re-ranking across different categories for melanoma.
(a) Diagnostic Procedure

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Sentinel Lymph Node Biopsy 0.003334 Magnetic Resonance Imaging 28,081 Sentinel Lymph Node Biopsy 0.708
Biopsy 0.002091 Echocardiography 10,321 Biopsy 0.477
Immunohistochemistry 0.001117 Chest CT 5,496 Immunohistochemistry 0.231
Lymphoscintigraphy 0.000884 Biopsy 4,902 Lymphoscintigraphy 0.180
Examination of skin 0.000530 Sentinel Lymph Node Biopsy 2,991 Examination of skin 0.108
Skin self-examination 0.000381 Biopsy of lymph node 2,375 Skin self-examination 0.078
Excision biopsy 0.000335 Radionuclide Imaging 2,233 Excision biopsy 0.069
Diagnostic Imaging 0.000224 Contrast used 2,088 Fine needle aspiration biopsy 0.039
Fine needle aspiration biopsy 0.000188 X-Ray Computed Tomography 1,896 Contrast used 0.038
PET 0.000180 MRI of abdomen 1,875 PET 0.037
Self-Examination 0.000137 Colonoscopy 1,851 Biopsy of lymph node 0.035
PET/CT scan 0.000133 Radiographic Examination 1,773 Self-Examination 0.030
Fluorescein Angiography 0.000123 CT of abdomen 1,350 Radionuclide Imaging 0.029
Biopsy of skin 0.000123 Ultrasonography 919 PET/CT scan 0.029
Incisional biopsy 0.000102 Palpation 738 Fluorescein Angiography 0.026

(b) Amino Acid, Peptide, or Protein

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Ipilimumab 0.00320 Nivolumab 48,767 Ipilimumab 0.759
Nivolumab 0.00187 Pembrolizumab 18,756 Nivolumab 0.709
Tumor Antigens 0.00137 Ipilimumab 9,553 Pembrolizumab 0.381
Interferons 0.00131 Levothyroxine 4,814 Interferons 0.311
Interleukin-2 0.00127 Interferons 4,013 Tumor Antigens 0.301
Monoclonal Antibodies 0.00126 Troponin 3,221 Interleukin-2 0.284
Pembrolizumab 0.00121 Denosumab 3,095 Monoclonal Antibodies 0.279
Antibodies 0.00104 Antibodies 2,481 Antibodies 0.243
HLA-A2 Antigen 0.00056 Transaminases 1,554 HLA-A2 Antigen 0.126
Growth Factor 0.00055 Atezolizumab 1,514 Growth Factor 0.121
Melphalan 0.00051 Lipase 1,511 Melphalan 0.112
Protein-Serine-Threonine Kinases 0.00043 Fibrin 1,053 Protein-Serine-Threonine Kinases 0.095
Proteins 0.00040 Interleukin-2 917 Proteins 0.090
Cytokine 0.00039 Pregabalin 899 Cytokine 0.085
T-Cell Receptor 0.00036 Insulin 859 T-Cell Receptor 0.080

(c) Disease or Syndrome

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Sentinel node (disorder) 0.00149 Inflammatory disorder 5,565 Lentigo 0.584
Lentigo 0.00144 Hypothyroidism 4,690 Sentinel node (disorder) 0.574
Skin lesion 0.00096 Communicable Diseases 4,231 Skin lesion 0.423
Pigmented skin lesion 0.00076 Pneumonitis 3,856 Pigmented skin lesion 0.295
Vitiligo 0.00041 Pericardial effusion 3,343 Vitiligo 0.191
Melanosis 0.00038 Uveoparotid Fever 3,269 Hyperkeratosis 0.155
Hyperkeratosis 0.00024 Lymphadenopathy 3,240 Melanosis 0.147
Hypopigmentation disorder 0.00021 Obesity 2,922 Lymphadenopathy 0.113
Recurrent disease 0.00018 Hyperthyroidism 2,889 Pneumonitis 0.112
Local disease 0.00018 Colitis 2,758 Colitis 0.107
Glaucoma 0.00017 Hepatitis 2,414 Uveoparotid Fever 0.097
Hypophysitis 0.00013 Lymphocytopenia 2,355 Hypophysitis 0.089
Dermatologic disorders 0.00013 Hyperkeratosis 2,260 Hypopigmentation disorder 0.087
Actinic porokeratosis 0.00010 Skin lesion 2,053 Lymphocytopenia 0.073
Secondary glaucoma 0.00010 Thyroiditis 1,631 Recurrent disease 0.072

emphasizing its importance in the melanoma context, while also having 
a high frequency of 4,902 occurrences. In contrast, terms like Mag-

netic Resonance Imaging and Echocardiography, which ap-
pear frequently in melanoma publications with 28,081 and 10,321 oc-
currences respectively, have low KLD values and do not make it into 
the top 16 KLD melanoma concepts. This suggests that these procedures 
are more commonly referenced across various medical fields and are 
not uniquely tied to melanoma, resulting in low re-ranking positions. 
Other notable diagnostic procedures with high KLD values, lower occur-
rences, and high final re-ranking positions include Immunohistochem-
istry, Lymphoscintigraphy, Examination of skin, and Exci-
sion biopsy, indicating their specific association with melanoma.

In the Amino Acid, Peptide, or Protein category, the drugs Ipili-
mumab and Nivolumab have the highest KLD values of 0.0032 and 
0.0019, while also having high local frequencies of 9,553 and 48,767 
occurrences, respectively. These terms are therefore top-ranked after 
re-ranking with scores of 0.759 and 0.709, emphasizing their critical 

role in melanoma treatment. Other terms, such as Pembrolizumab,
Interferons, and Tumor Antigens, also achieved high KLD val-
ues and high re-ranking positions, indicating their specific relevance 
to melanoma. Despite lower frequency counts of 18,756 for Pem-

brolizumab and 4,013 for Interferons these terms end up with 
high final re-ranking scores, 0.381 for Pembrolizumab and 0.311 for
Interferons.

Conversely, terms like Levothyroxine and Troponin, which ap-
pear to be frequent in general medical literature, show low KLD values. 
These terms are classified as less specific to melanoma, as indicated by 
their absence from the top re-ranked positions.

In the Disease or Syndrome category, Sentinel node (disor-
der) shows a high KLD value of 0.0015, highlighting its specificity for 
this category. Although it has a moderate frequency of 5,565 occur-
rences, it is top-ranked after re-ranking with a score of 0.574. Lentigo
similarly shows a high KLD score of 0.0014 and a high re-ranking score 
of 0.584 despite a lower frequency count.
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Fig. 3. Precision, recall, and 𝐹1-Score for different thresholds and across multiple conditions. The figure shows the performance of the re-ranking algorithm that 
balances local frequency (LF) and Kullback-Leibler divergence (KLD) to rank prevalent concepts. Parameter weights: 𝛼 = 0.5, 𝛽 = 0.5. †Actinic keratosis and squamous 
cell carcinoma of the skin.

Other notable concepts with high KLD values and high re-ranking 
positions include Skin lesion and Pigmented skin lesion. In 
contrast, terms like the generic Inflammatory disorder and Hy-
pothyroidism, which are frequently mentioned in general medical 
literature with 5,565 and 4,690 occurrences respectively, show lower 
KLD values. These terms appear to be frequent in other medical fields as 
well. Immunotherapy-induced undesirable inflammations such as Hy-
pophysitis, Pneumonitis, and Colitis are brought into an im-
portant position by the final ranking of the Disease or Syndrome-related 
concepts.

The ranking tables for the same semantic types for other conditions 
can be found in Appendix A.4.

5.3. Evaluation of reference guideline alignment

Fig. 3 shows Precision, Recall, and 𝐹1-Score metrics for guideline 
concept overlap at different concept retrieval thresholds from publica-
tion sets across multiple conditions (a–f). Top k concepts are retrieved 
based on the re-ranking algorithm to balance term frequency and KLD. 
The results show how the metrics change at different concept retrieval 
amounts. The points where the Precision and Recall curves intersect 
represent the optimal threshold values for each condition based on the 
reference guideline alignment. The 𝐹1-Score provides a single score to 
evaluate the performance, though higher Recall might be preferred at 
the cost of Precision when evaluating KGs. It can be seen across all con-
ditions that the concepts with the highest ranking often appear within 
the guidelines from the start. In the conditions Actinic keratosis and squa-

mous cell carcinoma of the skin, Breast Cancer, and Soft Tissue Sarcoma, 
some of the first concepts show a constant alignment with the guideline, 
resulting in a short horizontal precision curve before this continuously 
decreases. The 𝐹1-Scores peak at around 0.6 when approximately 2,000 
concepts are retrieved, suggesting that this threshold offers an optimal 
balance between Precision and Recall for aligning with reference guide-
lines.

5.4. Hierarchy and triples for knowledge graph construction

For all six conditions, the resulting triples for various specialized 
target terminologies and classification systems were analyzed, focusing 

on purpose and domain. The results of the different target terminologies 
are shown in Table 3. The hierarchical order of the constructed KG at 
the example of melanoma can be seen in Fig. 4, where Pharmacologic 
Substances are shown. An additional example of Colon Cancer Operative 
Surgical Procedures can be seen in Appendix A.2.

SNOMED CT, covering a comprehensive range of clinical terms, ex-
hibited the highest density of concepts and relationships. Actinic kerato-

sis and squamous cell carcinoma (AK-SCC) of the Skin demonstrated the 
largest dataset with 3,975 concepts and 19,114 relationships. However, 
Breast Cancer showed a high count of orphan nodes without any rela-
tionships, totaling 1,975. The NCIt, dedicated to cancer-related clinical 
and research terms, also showed substantial coverage but with fewer 
concepts than SNOMED CT. Soft Tissue Sarcoma had the highest num-
ber of concepts (2,291) and relationships (9,086) within this dataset. 
Breast Cancer had the most orphan nodes, with 1,310 instances, indicat-
ing potential gaps in connectivity. LOINC, focusing on laboratory and 
clinical observations, presented fewer concepts and relationships. Ma-

lignant Melanoma had the highest figures with 708 concepts and 752 
relationships. Orphan nodes were most prevalent in Soft Tissue Sarcoma, 
totaling 400, reflecting potential isolation in specific test-related data.
Foundational Model of Anatomy (FMA), which catalogs human 
anatomical structures, showed lower overall coverage and a higher num-
ber of orphan nodes. This indicates that while FMA provides detailed 
anatomical concepts, these concepts are less interconnected within the 
KG, resulting in a sparser network. Soft Tissue Sarcoma had the highest 
number of concepts (518) and relationships (280). Orphan nodes were 
notably high in Soft Tissue Sarcoma at 420. Online Mendelian In-
heritance in Man (OMIM), cataloging genetic disorders, included 
fewer concepts but demonstrated high connectivity in diseases with ge-
netic implications, like Melanoma, which had 193 concepts and 668 
relationships. Orphan nodes were minimal in OMIM, indicating a highly 
interconnected network of genetic data. This high degree of connectiv-
ity reflects the close relationships among genetic concepts within this 
terminology.

RxNorm, focusing on clinical drugs and having a flatter hierarchical 
structure compared to other terminologies, had very limited data with 
no depth values recorded, meaning that the concepts did not form hier-
archical relationships within the KG. Breast Cancer featured the highest 
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Table 3

Summary of constructed knowledge graph triples statistics for different vocabularies. † Orphan nodes are concepts that 
have no connections within the graph in addition to their hierarchical classification through isa relationships.

Cancer Type Concepts+PTR Mean Node Depth (std) Relationships Nodes with Relations Orphan Nodes†

Systematized Nomenclature of Medicine and Clinical Terms (SNOMED CT)

AK-SCC of the Skin 3,975 7.673 (3.311) 19,114 2,180 1,795
Breast Cancer 3,821 6.875 (2.556) 12,254 1,846 1,975
Colon Cancer 3,705 7.036 (2.914) 12,658 1,720 1,985
Endometrial Cancer 3,744 7.289 (3.355) 14,102 1,842 1,902
Malignant Melanoma 3,763 7.030 (2.910) 14,416 1,913 1,850
Soft Tissue Sarcoma 3,799 7.648 (3.343) 15,046 1,909 1,890

National Cancer Institute Thesaurus (NCIt)

AK-SCC of the Skin 2,203 6.900 (2.121) 7,732 1,071 1,132
Breast Cancer 2,049 6.676 (2.032) 3,814 739 1,310
Colon Cancer 1,948 6.500 (1.990) 3,510 681 1,267
Endometrial Cancer 1,936 6.888 (2.188) 5,604 779 1,157
Malignant Melanoma 2,054 6.560 (1.948) 4,720 885 1,169
Soft Tissue Sarcoma 2,291 7.117 (2.216) 9,086 1,221 1,070

Logical Observation Identifier Names and Codes (LOINC)

AK-SCC of the Skin 613 2.008 (3.393) 558 235 378
Breast Cancer 643 2.431 (3.657) 658 278 365
Colon Cancer 697 2.197 (3.497) 664 282 415
Endometrial Cancer 636 2.485 (3.671) 672 282 354
Malignant Melanoma 708 2.483 (3.584) 752 313 395
Soft Tissue Sarcoma 643 2.004 (3.347) 556 243 400

Foundational Model of Anatomy (FMA)

AK-SCC of the Skin 535 11.0 (2.562) 310 117 418
Breast Cancer 252 10.766 (3.065) 34 19 233
Colon Cancer 287 11.117 (3.162) 196 51 236
Endometrial Cancer 325 10.614 (2.751) 180 66 259
Malignant Melanoma 445 10.466 (2.581) 130 71 374
Soft Tissue Sarcoma 518 10.812 (2.654) 280 98 420

Online Mendelian Inheritance in Man (OMIM)

AK-SCC of the Skin 178 3.174 (1.180) 540 166 12
Breast Cancer 134 3.202 (1.180) 436 129 5
Colon Cancer 138 3.035 (1.363) 384 127 11
Endometrial Cancer 139 3.093 (1.212) 492 134 5
Melanoma 193 3.378 (0.996) 668 188 5
Soft Tissue Sarcoma 188 2.818 (1.340) 600 168 20

Drugs in RxNorm

AK-SCC of the Skin 87 - 6 6 81
Breast Cancer 152 - 22 20 132
Colon Cancer 118 - 16 12 106
Endometrial Cancer 120 - 24 21 99
Malignant Melanoma 82 - 10 9 73
Soft Tissue Sarcoma 96 - 14 10 86

number of concepts (152) and relationships (22). Orphan nodes, indicat-
ing unlinked drugs, were predominant in Breast Cancer with 132 nodes.

The Fruchterman-Reingold [72] layout was applied to visualize the 
relationships between biomedical concepts extracted from PubMed pub-
lications related to melanoma, as generated by BioKGrapher. The result-
ing KG includes a diverse set of concepts categorized under different 
semantic types, such as Diagnostic Procedures, Therapeutic Interventions, 
and Pharmacologic Substances. The relationships in Fig. 5 were mapped 
using SNOMED CT and reveal clusters of related concepts.

The zoomed-in subgraphs highlight specific clusters focused on di-
agnostic methods like Shave biopsy and Light Microscopy, and 
key therapeutic strategies such as Immune checkpoint inhibitor 
therapy. The visualization allows exploration of concept connec-
tions and shows the complexity and depth of relationships within the 
melanoma KG. The chosen layout helps to represent these relationships 
as clusters to identify important concept groupings.

6. Downstream applications

Two downstream tasks are evaluated to further evaluate the effec-
tiveness of the proposed BioKGrapher approach. The first task focuses 

on document multi-label classification using Adapter infusion, while the 
second task presents a small case study on drug repurposing. These eval-
uations are conducted in addition to the prior alignment analysis on 
clinical practice guidelines and descriptive statistical results.

6.1. Multi-label document classification

Recent approaches have focused on leveraging and embedding 
knowledge from KGs for downstream tasks. One of them is Mixture-
of-Partitions (MoP) [29], an infusion approach that can handle large 
KGs by partitioning it into smaller subgraphs and infusing their knowl-
edge into BERT style models using Adapters [73,30]. Adapters are new 
initialized modules inserted between the layers of a pre-trained Trans-
former. For each sub-graph 𝐺𝑘, the tail entity in each triple (ℎ, 𝑟, 𝑡) ∈ 𝐺𝑘

is removed, and the remaining elements are transformed into a sequence 
of tokens: [CLS] h [SEP] r [SEP]. The sub-graph-specific Adapter 
is then trained to predict the tail entity using the representation of the
[CLS] token. The parameters Φ𝐺𝑘

are optimized by minimising the 
cross-entropy loss [74]. This allows information from the knowledge 
graph to be embedded in the models, which has led to improved per-
formance on multiple biomedical downstream tasks (Natural Language 
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Fig. 4. Hierarchical structure automatically generated from melanoma publications (hierarchy classification by NCIt) with a re-ranking threshold of 2,000 concepts. 
The figure shows the Pharmacologic Substances subcategory visualized in an interactive sunburst chart, displaying a maximum of 5 depths at a time.

Inference (NLI), Question Answering (QA) and Classification) when ap-
plying a large SNOMED CT-based knowledge graph [29].

For this evaluation, a large cancer KG is generated using the BioKG-
rapher application. All publications in which MeSH terms appear under 
the tree number C04, which represents neoplasms, are used to select 
cancer related publications. This resulted in 3,596,405 PMIDs as in-
put for the application. The top 15,000 concepts, representing about 
20% of all possible concepts in the publication set, were re-ranked and 
used to build a large cancer relation network using intra-concept triples 
from NCIt. This network, represented as triples, was then used for pre-
training Adapter infusion on three models: BioBERT [26], SciBERT [27], 
and BiomedBERT (former PubMedBERT) [28] for comparison purpose. 
The graph was partitioned into five sub-graphs using METIS [75] and 
pre-training was performed for one epoch using the publicly available 
implementation from [29]. The resulting configuration used for the infu-
sion is presented in Table 5. In this setup, SFull and S20Rel, which were 
utilized in prior research, are compared to BioKGrapher Neoplasms, the 
cancer-specific KG designed to better align with the HoC data domain.

The effectiveness of the infusion is evaluated using a downstream 
multi-label classification task on the Hallmarks of Cancer (HoC) cor-
pus [76–78]. The corpus is derived from 1,852 PubMed abstracts. In 
this corpus, class labels are manually annotated by experts according to 
the HoC taxonomy [79,80]. While the taxonomy comprises 37 classes, 
organized hierarchically, only the ten top-level classes are used for con-
sistency with previous research. Following the MoP experiments [29], 
the publicly available train/dev/test splits provided by the Biomedical 
Language Understanding and Reasoning Benchmark (BLURB) [28] are 
used. Results are reported as the average micro 𝐹1-Score performance 
across five runs with standard deviation.

The performance on the multi-label classification downstream task 
on the HoC corpus can be seen in Table 4. The results show effectiveness 
of using the BioKGrapher Neoplasms KG for Adapter infusion. The MoP 
BioKGrapher Neoplasms variant increased the micro 𝐹1-Score across all 
three models SciBERT, BioBERT, and BiomedBERT compared to the pre-
viously reported results for MoP (SFull) and MoP (S20Rel). Notably, 
the highest score on HoC was observed with BiomedBERT, where the 
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Fig. 5. Fruchterman-Reingold layout of concepts for melanoma, with isa relationships omitted. The edges represent bidirectional relationships, i.e., all concepts 
that have a relation in SNOMED CT or NCIt within a re-ranking threshold of the top 2,000 concepts.

Table 4

Micro 𝐹1-score HoC multi-label classification re-
sults grouped by model and knowledge graph 
adapter infusion variants averaged across 5 runs 
with standard deviation. † denotes results from 
MoP authors [29].

Model 𝐹1-Score (%)

SciBERT† 80.5 ±0.6
MoP (SFull)† 81.5 ±0.4
MoP (S20Rel)† 81.8 ±0.7
MoP (BioKGrapher Neoplasms) 82.7 ±0.4

BioBERT† 81.4 ±0.6
MoP (SFull)† 81.5 ±0.9
MoP (S20Rel)† 82.5 ±1.1
MoP (BioKGrapher Neoplasms) 82.9 ±0.6

BiomedBERT (PubMedBERT)† 82.3 ±0.5
MoP (SFull)† 82.7 ±0.6
MoP (S20Rel)† 83.3 ±0.3
MoP (BioKGrapher Neoplasms) 84.1 ±0.3

Table 5

Statistics of the knowledge graphs by MoP authors in compari-
son to BioKGrapher neoplasms knowledge graph.

Entities Relations Triples

SFull 302,332 229 4,129,726
S20Rel 263,808 20 1,750,677
BioKGrapher Neoplasms 15,000 27 68,995

𝐹1-Score increased by 0.85 percentage points over MoP (S20Rel). De-
spite the smaller size of the BioKGrapher Neoplasms KG (68,995 triples) 
relative to SFull and S20Rel, its tailored cancer-specific knowledge ap-
pears to enhance on the cancer specific HoC corpus, leading to improved 
downstream performance.

6.2. Extracting known drug uses from the literature

Drug repurposing involves finding new therapeutic uses for existing 
drugs [81]. The semantic type Amino Acid, Peptide, or Protein (T116) as 
defined by the UMLS Semantic Network includes a wide range of biologi-
cal molecules, such as amino acids, peptides, proteins, and protein-based 
therapeutics like monoclonal antibodies. Table 2 can give an impression 
of commonly used therapies associated with a disease that fall under 
this semantic type. Conversely, Neoplastic Processes associated with a 
drug can be determined on the basis of all publications in which the 
drug appears. In this small downstream case study, the aim is to re-
trieve already known indications using the BioKGrapher application 
on the example of Nivolumab (MeSH:D000077594) and Rituximab
(MeSH:D000069283). This approach could be extended to identify novel 
associations for potential drug repurposing. By analyzing the ranked 
associations, researchers can explore ABC relations [82] and identify 
possible applications of existing drugs beyond their current indications.

For Nivolumab and Rituximab, two large publication sets in 
which the drugs appear are collected and entered into the BioKGrapher 
application as a list of PMIDs. Subsequently, re-ranking is performed, 
and the results are sorted in descending order for the semantic type 
Neoplastic Process (T191) to find strong associated conditions. From the 
ranking results, the top neoplasms associated with each drug are ex-
tracted and manually tested against evidence in literature.

The results of this small case study as shown in Table 6 provide clear 
evidence supporting the use of Nivolumab and Rituximab for various 
neoplastic conditions beyond their main indications.

For Nivolumab, the re-ranking results strongly associate it with 
melanoma with a re-ranking score of 0.963, which aligns with its known 
use as a treatment for advanced melanoma. Additionally, strong asso-
ciations are found with non-small cell lung carcinoma with a re-ranking 
score of 0.711 and metastatic renal cell carcinoma with a re-ranking score 
of 0.324, which are also consistent with established clinical applications 
[84,85].
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Table 6

Relevance scores for Nivolumab and Rituximab for top associated neoplasms (neoplastic process).
(a) Nivolumab (b) Rituximab

Condition Re-rank↓ Evidence

Melanoma 0.963 [83]
Non-Small Cell Lung Carcinoma 0.711 [84]
Metastatic Renal Cell Carcinoma 0.324 [85]
Clear Cell Renal Cell Carcinoma 0.173 [86]
Renal Cell Carcinoma 0.155 [87]
Renal Carcinoma 0.153 [87]
Malignant Neoplasm Of Stomach 0.104 [88]
SCC Of The Head And Neck 0.104 [89]
Secondary Neoplasm 0.100 -
Metastatic Malignant Neoplasm To Brain 0.093 [90]
Hodgkin Disease 0.078 [91]
Cutaneous Melanoma 0.060 [83,92]
Liver Carcinoma 0.060 [93]
Secondary Malignant Neoplasm Of Liver 0.058 -
Adenocarcinoma Of Lung (Disorder) 0.057 [94]
Malignant Head And Neck Neoplasm 0.052 [89]
Classical Hodgkin’s Lymphoma 0.048 [91]
Adenocarcinoma 0.046 [94]
Secondary Malignant Neoplasm Of Lung 0.045 -

Condition Re-rank↓ Evidence

THRLBCL 1.000 [95]
Lymphoma, Non-Hodgkin 0.691 [96]
Lymphoma, Follicular 0.496 [97]
Chronic Lymphocytic Leukemia 0.369 [98]
B-Cell Lymphomas 0.362 [99]
Mantle Cell Lymphoma 0.236 [100]
Lymphoproliferative Disorders 0.225 [101]
Marginal Zone B-Cell Lymphoma 0.127 [102]
Waldenstrom Macroglobulinemia 0.102 [103]
Residual Tumor 0.071 [104,105]
Microglioma 0.062 [106]
Burkitt-Like Lymphoma 0.049 [107]
Hodgkin Disease 0.047 [108]
Small Lymphocytic Lymphoma 0.046 [109]
Hematologic Neoplasms 0.034 [110]
Hairy Cell Leukemia 0.034 [111]
Monoclonal Gammapathies 0.033 [112]
Mediastinal large B-cell lymphoma 0.029 [113]
Primary Cutaneous B-Cell Lymphoma 0.029 [114]

In the case of Rituximab, the top-ranked condition is THRLBCL (T-

cell/histiocyte-rich large B-cell lymphoma) with a perfect re-ranking score 
of 1.000, indicating a strong association [95]. Other highly relevant neo-
plasms include non-Hodgkin lymphoma with a re-ranking score of 0.691 
and follicular lymphoma with a re-ranking score of 0.496, which are well-
documented indications for Rituximab [96,97].

7. Discussion

The semantic type distributions between clinical practice guidelines 
and biomedical publications reveal both alignments and differences. For 
example, categories such as Findings and Therapeutic Procedures show a 
high degree of consistency, indicating similar priorities in both sources. 
However, differences are noticeable in areas such as Neoplastic Processes

and Pharmacologic Substances, where publications tend to focus more on 
exploratory topics that may not yet be fully reflected in clinical prac-
tice guidelines. This divergence could highlight the different roles of 
research literature and clinical practice guidelines where the former may 
explore new frontiers, and the latter consolidates established knowl-
edge. The translation from literature to clinical practice also reflects 
into the unrestricted selection of literature and therefore impacts the 
alignment evaluation.

The re-ranking process effectively prioritizes concepts specific to 
certain conditions, such as melanoma and breast cancer. For instance, 
concepts like Sentinel Lymph Node Biopsy and Ipilimumab are 
ranked highly in their respective categories, reflecting their relevance 
in the diagnosis and treatment of melanoma. This indicates that the 
re-ranking mechanism, which balances local frequency and KLD, suc-
cessfully identifies key concepts that are prevalent and frequent in the 
subset. However, common concepts with high global frequency, such 
as Magnetic Resonance Imaging, are down-weighted unless they 
have specific relevance to the condition, which underscores the im-
portance of context-specific ranking parameters in KG construction. As 
the weighting of KLD and LF can be adjusted via the parameters, the 
final re-ranking of the BioKGrapher concepts can be fine-tuned to em-
phasize either specificity to the condition (as indicated by higher KLD 
values) or prevalence in the literature (as indicated by higher LF counts). 
For instance, in the Diagnostic Procedure category of melanoma, increas-
ing the weight of KLD would push terms like Sentinel Lymph Node 
Biopsy and Biopsy even higher in the rankings, due to their strong 
association with melanoma. Conversely, prioritizing LF might elevate 
more commonly referenced procedures such as Magnetic Resonance 
Imaging and Echocardiography, which are frequently mentioned 
across various medical fields. The focus during re-ranking may vary de-

pending on the intended application of the KG and the user. Therefore, 
the weighting is made adjustable in the software, allowing for modifi-
cation from the default values of 0.5 for both frequency and KLD.

The evaluation metrics demonstrate the effectiveness of the re-
ranking algorithm in aligning automatically extracted concepts with 
those in clinical practice guidelines. The precision curves start high, 
indicating that the top-ranked concepts are highly relevant to the guide-
lines. However, precision generally decreases as more concepts are in-
cluded, reflecting the broader scope of biomedical publications com-
pared to the more focused nature of clinical practice guidelines. The 
𝐹1-Score peaks suggest that a balance between precision and recall can 
be optimized at specific thresholds, providing practical guidance for KG 
construction with a focus on conditions.

The analysis of constructed KGs across various vocabularies reveals 
differences in node depth, relationship density, and the presence of 
orphan nodes. These variations reflect the different focuses of each vo-
cabulary, with SNOMED CT offering broader clinical coverage, while 
NCIt is more specialized in oncology. The presence of orphan nodes, 
particularly in more focused ontologies like RxNorm and FMA, sug-
gests potential gaps in connectivity that could impact the usability of 
the graphs.

The resulting KGs are versatile, enabling a range of potential use 
cases in intelligent medicine and healthcare. One possible key applica-
tion is in clinical decision support systems, where KGs can assist health-
care providers in diagnosing conditions and suggesting evidence-based 
treatments that may align with the conceptual view on recent literature. 
Due to the nature of the proposed KLD re-ranking approach, the KGs not 
only represent strong associations but also strong disassociations, which 
could be employed for abnormality checks, flagging unusual or incon-
sistent data in patient records. For instance, if symptoms and treatments 
for a patient do not typically align, the KG could alert the clinician to 
this anomaly, prompting further investigation.

7.1. Limitations

The appropriate evaluation of ontologies and KGs across multiple 
conditions is difficult to implement. In this work, it was decided to lever-
age extracted concepts from consensus-based clinical practice guidelines 
as reference terminology. In addition to advantages such as a large data 
basis for a variety of conditions, this also has some disadvantages. For 
example, it does not achieve the evaluation quality that would be pos-
sible with a manual evaluation by domain experts and may lag behind 
the latest scientific discoveries due to the time required for validation 
and consensus-building. The initial extraction of concepts is based on 
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the same extraction pipeline that produces references of silver-standard 
quality, which therefore may contain biases in entity extraction and link-
ing that leads to degradation or improvement of the reported results. 
Until now, the relations have been obtained from existing terminologies 
and classification systems such as SNOMED CT or NCIt, which on the 
one hand guarantees correctness, but on the other hand means that no 
novel relations, for example from the latest publications, can be added 
to the KG. This principle also pertains to concepts. However, because 
BioKGrapher is open-source, users can enhance or replace UMLS MR-
REL relationships or concepts with NLP-mined relations or other data 
sources to capture novel concepts and emerging relations from the lat-
est literature. It is also possible to recognize new concepts by separating 
the entity recognition process from the entity linking process during in-
dexing.

8. Conclusion

This study introduced BioKGrapher, a tool for automatically con-
structing biomedical KGs from unstructured text sources, such as 
PubMed abstracts. The evaluation of BioKGrapher shows that it effec-
tively identifies and ranks biomedical concepts, achieving a high degree 
of overlap with guideline-recommended terms. Across multiple condi-
tions, the tool maintains 𝐹1-Scores around 0.6 when retrieving the top 
2,000 concepts, balancing precision and recall. Semantic differences 
between publications and guidelines indicate that publications may fo-
cus on different aspects compared to guidelines. Overall, BioKGrapher 
proves to be an effective tool for generating and applying KGs in biomed-
ical research, showing particular promise in enhancing information 
retrieval and improving downstream applications. The level of concept 
overlap observed in the guideline literature suggests that restricting the 
literature based on common characteristics found in guidelines is not 
needed. However, future work could explore using bibliometrics such 
as study phase, level of evidence, and publication recency to enhance 
the initial publication selection, potentially improving the alignment of 
biomedical concepts in the KG compared to the guidelines. BioKGrapher 
allows for the adjustment of metadata and bibliometrics when provid-
ing custom PMID lists. By using a list of only the most recent PMIDs on 
a given topic, one can construct a KG that captures recent trends in the 
field. Regularly updating guidelines with bibliometric criteria could en-
hance the precision of predicting which concepts should be included in 
future guideline revisions. Beyond traditional structure-based KG eval-
uations, task-based methods now enhance applications like information 
retrieval, LLM integration, and machine learning. Combining graph neu-
ral networks with RAG for tasks like question answering is a promising 
direction, and future work could improve relation extraction from texts 
to capture new insights.
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Appendix A

This appendix includes additional tables and figure examples to sup-
port the main content (Figs. A.6, A.7 and Tables A.7–A.12).

A.1. Justification for KLD

Kullback-Leibler Divergence (KLD) is used to compare concept dis-
tributions between two corpora, making it suitable for identifying and 
weighting biomedical concepts that are more prevalent in a condition-
specific subset of literature compared to the general PubMed corpus. 
Unlike TF-IDF, which focuses on term importance within individual doc-
uments relative to a single corpus, or BM25, which ranks documents 
based on query relevance, KLD measures the divergence between two 
probability distributions, allowing for a direct comparison of concept 
frequencies between the two corpora. This made KLD an appropriate 
choice for the task of highlighting how specific concepts are dispropor-
tionately represented in the condition-specific literature relative to the 
general biomedical corpus.

A.2. Knowledge graphs

This subsection presents additional constructed KGs as examples.

A.3. Semantic type distribution

This subsection shows the distribution of the 10 most frequent con-
cept classes in PubMed.
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Fig. A.6. Sunburst chart of the hierarchical KG generated from melanoma-related publications, highlighting the “biological response modifiers” category and its 
associated pharmacological substances.

Table A.8

Top concept ranking before and after KLD re-ranking across different categories for AK-SCC of the skin.
(a) Diagnostic Procedure

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Diagnosis 0.00305 Diagnosis 34,735 Diagnosis 1.0
Immunohistochemistry 0.00228 Biopsy 9,895 Immunohistochemistry 0.595
Biopsy 0.00214 Immunohistochemistry 8,516 Biopsy 0.576
Endoscopy (procedure) 0.00081 Diagnostic Imaging 6,742 Endoscopy (procedure) 0.234
Sentinel Lymph Node Biopsy 0.00052 Contrast used 5,676 X-Ray Computed Tomography 0.149
Positron-Emission Tomography 0.00051 Endoscopy (procedure) 5,557 Positron-Emission Tomography 0.138
X-Ray Computed Tomography 0.00046 Magnetic Resonance Imaging 5,404 Sentinel Lymph Node Biopsy 0.132
Endoscopic Ultrasound 0.00036 X-Ray Computed Tomography 5,123 Endoscopic Ultrasound 0.098
Colposcopy 0.00034 Radionuclide Imaging 2,539 Colposcopy 0.088
PET/CT scan 0.00024 Positron-Emission Tomography 2,499 Diagnostic Imaging 0.07
Diagnostic Neoplasm Staging 0.00021 Ultrasonography 2,144 PET/CT scan 0.063
Differential Diagnosis 0.00017 Endoscopic Ultrasound 1,719 Magnetic Resonance Imaging 0.062
Bronchoscopy 0.00016 Differential Diagnosis 1,664 Diagnostic Neoplasm Staging 0.053
Lymphoscintigraphy 0.00016 Sentinel Lymph Node Biopsy 1,484 Differential Diagnosis 0.053
Cervical biopsy (procedure) 0.00014 Radiographic imaging procedure 1245 Bronchoscopy 0.043
Mediastinoscopy 0.00012 Autopsy 1,013 Lymphoscintigraphy 0.04
Diffusion weighted imaging 0.00011 Colposcopy 993 Cervical biopsy (procedure) 0.034
Incisional biopsy - action 0.0001 Sampling - Surgical action 897 Diffusion weighted imaging 0.034

(b) Amino Acid, Peptide, or Protein

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Cetuximab 0.00186 Proteins 25279 Cetuximab 0.746
Epidermal Growth Factor Receptor 0.00169 Receptor 8460 Epidermal Growth Factor Receptor 0.697
Cytokeratin 0.00136 Antibodies 6227 Cytokeratin 0.559
Squamous Cell Carcinoma Antigen 0.00131 Epidermal Growth Factor Receptor 4971 Squamous Cell Carcinoma Antigen 0.516
Oncogene Protein Bcl-1 0.0011 Cytokeratin 3956 Oncogene Protein Bcl-1 0.451
Bleomycin 0.00075 Cetuximab 3863 Bleomycin 0.308
Matrix Metalloproteinase 2 0.0005 Monoclonal Antibodies 3241 Matrix Metalloproteinase 2 0.213
Matrix Metalloproteinase 9 0.0004 Oncogene Protein Bcl-1 3082 Monoclonal Antibodies 0.177
Monoclonal Antibodies 0.00037 Growth Factor 2689 Matrix Metalloproteinase 9 0.176
PTHrP 0.00033 Cytokine 2558 VEGF-A 0.148
VEGF-A 0.00033 Enzymes 2554 PTHrP 0.139
Vimentin 0.0003 Bleomycin 2227 Vimentin 0.131
Epidermal Growth Factor 0.00028 Matrix Metalloproteinase 2 2048 Epidermal Growth Factor 0.119
Nivolumab 0.00025 Squamous Cell Carcinoma Antigen 2017 Nivolumab 0.105
Cemiplimab 0.00024 Matrix Metalloproteinase 9 1997 Protein Tyrosine Kinase 0.103
Protein Tyrosine Kinase 0.00022 VEGF-A 1898 Cemiplimab 0.095
Carcinoembryonic Antigen 0.00021 Peptides 1871 Carcinoembryonic Antigen 0.09
Oncogene Proteins 0.0002 Protein Tyrosine Kinase 1735 Oncogene Proteins 0.086
652
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Table A.8 (continued)
(c) Disease or Syndrome

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Esophageal Diseases 0.00249 Syndrome 42097 Syndrome 0.999
Syndrome 0.00249 Esophageal Diseases 6526 Esophageal Diseases 0.746
Human papilloma virus infection 0.00164 Communicable Diseases 4689 Human papilloma virus infection 0.488
Hyperkeratosis 0.00148 Human papilloma virus infection 3703 Hyperkeratosis 0.436
Actinic porokeratosis 0.0011 Hyperkeratosis 2788 Actinic porokeratosis 0.321
Deglutition Disorders 0.00063 Inflammatory disorder 2701 Deglutition Disorders 0.193
Recurrent disease 0.00049 Deglutition Disorders 2369 Recurrent disease 0.147
Disorder of neck 0.00035 Actinic porokeratosis 1732 Disorder of neck 0.104
Condyloma 0.00034 Recurrent disease 1324 Condyloma 0.102
Sentinel node (disorder) 0.00032 Skin lesion 1117 Sentinel node (disorder) 0.095
Skin lesion 0.00024 Hypercalcemia 877 Skin lesion 0.077
Lichen Planus, Oral 0.00023 Absolute anemia 873 Lichen Planus, Oral 0.069
Lichen Sclerosus et Atrophicus 0.00022 Sentinel node (disorder) 857 Xerostomia 0.066
Xerostomia 0.00022 Lymphadenopathy 831 Hypercalcemia 0.065
Hypercalcemia 0.00021 Condyloma 816 Lichen Sclerosus et Atrophicus 0.064
Lymphadenopathy 0.00019 Xerostomia 782 Lymphadenopathy 0.058
Leukopenia 0.00016 Leukopenia 669 Leukopenia 0.051
653

Fig. A.7. Sunburst chart of the hierarchical KG generated from colon cancer-related publications, highlighting the “operative surgical procedures” category.
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Table A.9

Top concept ranking before and after KLD re-ranking across different categories for breast cancer.
(a) Diagnostic Procedure

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Mammography 0.01054 Diagnosis 92,089 Mammography 0.853
Diagnosis 0.00357 Mammography 46,922 Diagnosis 0.537
Screening mammography 0.00296 Diagnostic Imaging 32,352 Screening mammography 0.238
Sentinel Lymph Node Biopsy 0.00221 MRI 28,002 Biopsy 0.199
Biopsy 0.00188 Biopsy 22,776 Diagnostic Imaging 0.19
MRI 0.00127 Contrast used 19,526 Sentinel Lymph Node Biopsy 0.182
Diagnostic Imaging 0.00127 Ultrasonography 16,093 MRI 0.176
Core needle biopsy 0.00122 Screening mammography 12,730 Core needle biopsy 0.103
MRI of breast 0.00099 Immunohistochemistry 11,885 Immunohistochemistry 0.098
Biopsy of breast 0.0009 Sentinel Lymph Node Biopsy 10,991 Ultrasonography 0.094
Immunohistochemistry 0.00089 Radionuclide Imaging 6,669 MRI of breast 0.08
Screening for cancer 0.0008 Core needle biopsy 6,609 Screening for cancer 0.073
Ultrasonography 0.00063 Screening for cancer 6,105 Biopsy of breast 0.073
Breast Self-Examination 0.0006 Radiographic imaging procedure 5,544 Contrast used 0.073
Examination of breast 0.00055 X-Ray Computed Tomography 4,892 Breast Self-Examination 0.048
Ultrasonography, Mammary 0.00054 MRI of breast 4,260 Examination of breast 0.045
Digital Breast Tomosynthesis 0.00038 Sampling - Surgical action 4,002 Ultrasonography, Mammary 0.044
Lymphoscintigraphy 0.00034 Biopsy of breast 3,952 Digital Breast Tomosynthesis 0.031

(b) Amino Acid, Peptide, or Protein

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Estrogen Receptors 0.00668 Proteins 56438 Estrogen Receptors 0.888
Trastuzumab 0.00544 Receptor 48155 Trastuzumab 0.702
Receptors, Progesterone 0.00246 Estrogen Receptors 35401 Receptor 0.366
Erbb-2 Receptor 0.00193 Trastuzumab 24893 Receptors, Progesterone 0.327
EGFR 0.00164 Antibodies 15160 Erbb-2 Receptor 0.256
Receptor 0.00105 Receptors, Progesterone 13061 EGFR 0.236
Pertuzumab 0.00061 EGFR 12107 Growth Factor 0.091
Oncogene Protein Bcl-1 0.00052 Erbb-2 Receptor 10111 Pertuzumab 0.079
Growth Factor 0.00038 Growth Factor 9549 Oncogene Protein Bcl-1 0.078
Mucinous CA Antigen 0.00037 Enzymes 8914 Monoclonal Antibodies 0.064
Cytokeratin 0.00028 Peptides 8788 Mucinous CA Antigen 0.052
G-CSF 0.00028 Monoclonal Antibodies 6972 G-CSF 0.048
Receptors, Steroid 0.00027 Cytokine 5706 Cytokeratin 0.048
Monoclonal Antibodies 0.00026 Oncogene Protein Bcl-1 4537 Insulin-Like Growth Factor I 0.044
Cathepsin D 0.00023 Protein Tyrosine Kinase 4156 Protein Tyrosine Kinase 0.043
Bevacizumab 0.00023 Insulin-Like Growth Factor I 4120 Bevacizumab 0.04
Ado-Trastuzumab Emtansine 0.00022 Chromatin 3812 Matrix Metalloproteinase 9 0.04

(c) Disease or Syndrome

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Sentinel Node (Disorder) 0.001 Syndrome 82535 Syndrome 0.902
Breast Diseases 0.00089 Sentinel Node (Disorder) 5087 Sentinel Node (Disorder) 0.718
Syndrome 0.00086 Inflammatory Disorder 4969 Breast Diseases 0.638
Cystic Breast Disease 0.00071 Diabetes Mellitus 4370 Cystic Breast Disease 0.511
Febrile Neutropenia 0.00021 Communicable Diseases 4118 Febrile Neutropenia 0.15
Adenosis 0.00018 Breast Diseases 4051 Adenosis 0.128
Comedone 0.00018 Coronary Artery Disease 3843 Comedone 0.127
Alopecia 0.00013 Auditory Recruitment 3267 Alopecia 0.094
IGF-I 0.0001 Cystic Breast Disease 3264 IGF-I 0.074
Osteitis 0.0001 Obesity 3221 Osteitis 0.07
Leukopenia 0.00009 Covid19 (Disease) 2500 Leukopenia 0.065
Disorder Of Axilla 0.00007 Disorder Of Circulatory System 1957 Recurrent Disease 0.049
Recurrent Disease 0.00007 Diabetes Mellitus, Insulin-Dependent 1857 Disorder Of Axilla 0.048
Sickle Cell Dactylitis 0.00006 Osteoporosis 1811 Sickle Cell Dactylitis 0.046
TRPS I 0.00006 Alopecia 1757 Thrombotic Microangiopathies 0.044
Thrombotic Microangiopathies 0.00006 Febrile Neutropenia 1659 TRPS I 0.042
Local Disease 0.00005 Drug Resistant Epilepsy 1436 Pleural Effusion Disorder 0.041
Pleural Effusion Disorder 0.00005 Osteopenia 1429 Local Disease 0.041

A.4. Concept ranking for remaining conditions

This subsection presents concept rankings for conditions such as AK-
SCC of the skin, breast cancer, colon cancer, endometrial cancer, and 
soft tissue sarcoma. The tables compare the top concepts before and 

after KLD re-ranking, focusing on diagnostic procedures, amino acids, 
peptides or proteins, and diseases or syndromes, highlighting key diag-
nostic and therapeutic targets.
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Table A.10

Top concept ranking before and after KLD re-ranking across different categories for colon cancer.
(a) Diagnostic Procedure

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Colonoscopy 0.01668 Diagnosis 29484 Colonoscopy 0.971
Endoscopy 0.00285 Colonoscopy 26636 Diagnosis 0.396
Diagnosis 0.00227 Endoscopy 10931 Endoscopy 0.231
Screening For Cancer 0.00178 Immunohistochemistry 6095 Immunohistochemistry 0.124
Screening Colonoscopy 0.00174 Diagnostic Imaging 5965 Screening For Cancer 0.118
Immunohistochemistry 0.00147 Contrast Used 5187 Screening Colonoscopy 0.099
Flexible Sigmoidoscopy 0.0011 Screening For Cancer 4156 Flexible Sigmoidoscopy 0.063
Sigmoidoscopy 0.00099 Biopsy 3831 Diagnostic Imaging 0.061
Intraoperative Ultrasound 0.00039 X-Ray Computed Tomography 3068 Sigmoidoscopy 0.058
Biopsy 0.00038 Magnetic Resonance Imaging 2974 Biopsy 0.055
Diagnostic Neoplasm Staging 0.00035 Screening Colonoscopy 2501 X-Ray Computed Tomography 0.035
Total Colonoscopy 0.00031 Flexible Fiberoptic Sigmoidoscopy 1632 Intraoperative Ultrasound 0.025
Barium Enema 0.00021 Radionuclide Imaging 1587 Diagnostic Neoplasm Staging 0.024
Double Contrast Barium Enema 0.0002 Sigmoidoscopy 1548 Positron-Emission Tomography 0.019
Endoscopic Examination On Colon 0.00019 Ultrasonography 1246 Total Colonoscopy 0.019
Laparoscopy 0.00018 Positron-Emission Tomography 1215 Laparoscopy 0.018
Malignant Neoplasm Screening 0.00017 Sampling - Surgical Action 1185 Barium Enema 0.014

(b) Amino Acid, Peptide, or Protein

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Cetuximab 0.00469 Proteins 21940 Cetuximab 0.804
Bevacizumab 0.00444 Bevacizumab 8936 Bevacizumab 0.784
Carcinoembryonic Antigen 0.00221 Receptor 8033 Carcinoembryonic Antigen 0.39
Panitumumab 0.00175 Cetuximab 7636 Panitumumab 0.296
EGFR 0.00074 Antibodies 6206 EGFR 0.148
Monoclonal Antibodies 0.00058 Carcinoembryonic Antigen 4380 Monoclonal Antibodies 0.14
VEGF-A 0.00058 Monoclonal Antibodies 3813 VEGF-A 0.122
Thymidylate Synthase 0.00044 Enzymes 3444 Antibodies 0.096
Oncogene Protein Bcl-1 0.00035 Cytokine 3185 Thymidylate Synthase 0.081
Cyclooxygenase 2 0.00035 EGFR 2672 Oncogene Protein Bcl-1 0.073
Matrix Metalloproteinase 7 0.0003 Panitumumab 2531 Cyclooxygenase 2 0.071
Mucins 0.00027 Peptides 2497 Mucins 0.059
Aflibercept 0.00026 VEGF-A 2491 Matrix Metalloproteinase 7 0.057
Matrix Metalloproteinase 9 0.00024 Growth Factor 2431 Matrix Metalloproteinase 9 0.056
Ramucirumab 0.00023 Matrix Metalloproteinase 9 1406 Growth Factor 0.052
Dihydropyrimidine Dehydrogenase 0.00022 Oncogene Protein Bcl-1 1343 Aflibercept 0.049
Matrix Metalloproteinase 2 0.00019 Protein-Serine-Threonine Kinases 1264 Matrix Metalloproteinase 2 0.045
Tissue-Inhibitor Of Metalloproteinase-1 0.00018 Mucins 1260 Ramucirumab 0.042

(c) Disease or Syndrome

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Lynch Syndrome 0.00244 Syndrome 33788 Lynch Syndrome 0.738
Inflammatory Bowel Diseases 0.00167 Inflammatory Bowel Diseases 5889 Syndrome 0.673
Syndrome 0.00129 Inflammatory Disorder 4334 Inflammatory Bowel Diseases 0.532
Chronic Ulcerative Colitis 0.00084 Lynch Syndrome 4265 Chronic Ulcerative Colitis 0.269
Colitis 0.00082 Diabetes Mellitus 2995 Colitis 0.263
Turcot Syndrome (Disorder) 0.00068 Chronic Ulcerative Colitis 2844 Turcot Syndrome (Disorder) 0.208
Hematochezia 0.0003 Colitis 2755 Hematochezia 0.096
Primary Sclerosing Cholangitis 0.00029 Communicable Diseases 1744 Primary Sclerosing Cholangitis 0.094
Ileus 0.00021 Crohn Disease 1202 Ileus 0.072
Recurrent Disease 0.00021 Obesity 1164 Recurrent Disease 0.07
Sarcopenia 0.00017 Turcot Syndrome (Disorder) 1089 Sarcopenia 0.061
Sickle Cell Dactylitis 0.00017 Absolute Anemia 1058 Crohn Disease 0.059
Crohn Disease 0.00016 Covid19 (Disease) 1040 Sickle Cell Dactylitis 0.054
Obstruction Of Colon 0.00016 Sarcopenia 1016 Obstruction Of Colon 0.051
Diverticulitis 0.00013 Auditory Recruitment 1001 Diverticulitis 0.045
Diverticular Diseases 0.00013 Primary Sclerosing Cholangitis 943 Diverticular Diseases 0.044
CMMRD 0.0001 Ileus 875 CMMRD 0.034
Stomatitis 0.0001 Hematochezia 764 Stomatitis 0.034



Computational and Structural Biotechnology Journal 24 (2024) 639–660

656

H. Schäfer, A. Idrissi-Yaghir, K. Arzideh et al.

Table A.11

Top concept ranking before and after KLD re-ranking across different categories for endometrial cancer.
(a) Diagnostic Procedure

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Endometrial Biopsy 0.00689 Diagnosis 9843 Diagnosis 0.929
Diagnosis 0.00618 Magnetic Resonance Imaging 2542 Endometrial Biopsy 0.759
Hysteroscopy 0.00543 Immunohistochemistry 2198 Hysteroscopy 0.606
Transvaginal Echography 0.00368 Endometrial Biopsy 1928 Transvaginal Echography 0.417
Immunohistochemistry 0.00314 Hysteroscopy 1698 Immunohistochemistry 0.393
Laparoscopy 0.00214 Ultrasonography 1675 Laparoscopy 0.261
Magnetic Resonance Imaging 0.00153 Biopsy 1673 Magnetic Resonance Imaging 0.243
Biopsy 0.00151 Diagnostic Imaging 1536 Biopsy 0.215
Infertility Study 0.00148 Contrast Used 1369 Infertility Study 0.196
Ultrasonography 0.00103 Transvaginal Echography 1213 Ultrasonography 0.168
Diagnostic Neoplasm Staging 0.0008 Infertility Study 1173 Diagnostic Neoplasm Staging 0.104
Sentinel Lymph Node Biopsy 0.00072 Laparoscopy 1132 Diffusion Weighted Imaging 0.1
Diffusion Weighted Imaging 0.0007 Sampling - Surgical Action 685 Sentinel Lymph Node Biopsy 0.097
Sampling Of Lymph Node 0.00032 Diffusion Weighted Imaging 522 Diagnostic Imaging 0.075
Differential Diagnosis 0.00026 X-Ray Computed Tomography 483 Differential Diagnosis 0.052
Screening For Cancer 0.00022 Differential Diagnosis 422 Contrast Used 0.051
Magnetic Resonance Imaging (Mri) Of Pelvis 0.0002 Sentinel Lymph Node Biopsy 390 Sampling - Surgical Action 0.049
Diagnostic Imaging 0.00015 Diagnostic Neoplasm Staging 366 Sampling Of Lymph Node 0.048

(b) Amino Acid, Peptide, or Protein

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Estrogen Receptors 0.0029 Proteins 5101 Estrogen Receptors 0.793
Receptors, Progesterone 0.00281 Receptor 2568 Receptors, Progesterone 0.75
Oncogene Protein Bcl-1 0.00077 Estrogen Receptors 1574 Proteins 0.359
Pembrolizumab 0.00054 Receptors, Progesterone 1206 Oncogene Protein Bcl-1 0.279
Receptors, Steroid 0.00044 Antibodies 703 Receptor 0.218
Vimentin 0.00042 Growth Factor 549 Pembrolizumab 0.218
Matrix Metalloproteinase 2 0.00041 Enzymes 518 Vimentin 0.195
Cytokeratin 0.00033 Oncogene Protein Bcl-1 499 Matrix Metalloproteinase 2 0.194
GnRH 0.0003 Insulin 402 Receptors, Steroid 0.192
Cytochrome P-450 Cyp1B1 0.00028 Leptin 396 Cytokeratin 0.175
VEGF-A 0.00027 Matrix Metalloproteinase 2 374 VEGF-A 0.163
Erbb-2 Receptor 0.00025 VEGF-A 350 GnRH 0.159
Adiponectin 0.00025 Vimentin 345 Adiponectin 0.156
Thymidine Phosphorylase 0.00025 Monoclonal Antibodies 342 Cytochrome P-450 Cyp1B1 0.155
Wfdc2 Protein, Human 0.00024 Cytokeratin 322 Leptin 0.154
Cytochrome P-450 Cyp1A1 0.00024 Insulin-Like Growth Factor I 319 Erbb-2 Receptor 0.15
Inhibin 0.00023 Pembrolizumab 305 Cytochrome P-450 Cyp1A1 0.146
Gonadorelin 0.00022 Adiponectin 302 Thymidine Phosphorylase 0.145

(c) Disease or Syndrome

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Endometrial Hyperplasia 0.00808 Syndrome 9585 Endometrial Hyperplasia 0.765
Lynch Syndrome 0.00617 Endometrial Hyperplasia 2063 Lynch Syndrome 0.602
Syndrome 0.0033 Lynch Syndrome 1986 Syndrome 0.601
Atypical Endometrial Hyperplasia 0.00289 Obesity 1353 Atypical Endometrial Hyperplasia 0.287
Endometriosis 0.00195 Endometriosis 1139 Endometriosis 0.223
Obesity 0.00116 Diabetes Mellitus 1064 Obesity 0.164
Recurrent Disease 0.00093 Atypical Endometrial Hyperplasia 679 Recurrent Disease 0.117
Turcot Syndrome (Disorder) 0.00092 Recurrent Disease 445 Sentinel Node (Disorder) 0.113
Sentinel Node (Disorder) 0.00091 Sentinel Node (Disorder) 394 Turcot Syndrome (Disorder) 0.112
Lymphocele 0.00052 Inflammatory Disorder 326 Lymphocele 0.075
Benign Endometrial Hyperplasia 0.00033 Turcot Syndrome (Disorder) 306 Benign Endometrial Hyperplasia 0.055
Complex Endometrial Hyperplasia 0.00029 Absolute Anemia 213 Polycystic Ovary Syndrome 0.053
Uterine Diseases 0.00026 Lymphocele 211 Complex Endometrial Hyperplasia 0.052
Polycystic Ovary Syndrome 0.00025 Polycystic Ovary Syndrome 208 Uterine Diseases 0.049
Hyperestrogenism 0.00018 Communicable Diseases 169 Hyperestrogenism 0.042
Lymphedema Of Lower Extremity 0.00015 Metabolic Syndrome X 161 Lymphedema Of Lower Extremity 0.039
Endometrial Disorder 0.00014 Auditory Recruitment 138 Female Genital Diseases 0.039
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Table A.12

Top concept ranking before and after KLD re-ranking across different categories for soft tissue sarcoma.
(a) Diagnostic Procedure

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Biopsy 0.00201 Diagnostic Imaging 2561 Biopsy 0.213
Differential Diagnosis 0.00174 Magnetic Resonance Imaging 2358 Magnetic Resonance Imaging 0.202
Magnetic Resonance Imaging 0.00165 Biopsy 1767 Diagnostic Imaging 0.194
Immunohistochemistry 0.00153 Immunohistochemistry 1227 Differential Diagnosis 0.175
Diagnostic Imaging 0.00147 X-Ray Computed Tomography 1202 Immunohistochemistry 0.161
X-Ray Computed Tomography 0.00079 Differential Diagnosis 1148 X-Ray Computed Tomography 0.103
Incisional Biopsy - Action 0.00057 Contrast Used 1133 Positron-Emission Tomography 0.062
Core Needle Biopsy 0.00052 Radionuclide Imaging 663 Incisional Biopsy - Action 0.059
Positron-Emission Tomography 0.00052 Ultrasonography 550 Core Needle Biopsy 0.057
Autopsy 0.0003 Positron-Emission Tomography 470 Autopsy 0.043
Fine Needle Aspiration Biopsy 0.00021 Autopsy 374 Radionuclide Imaging 0.036
Diffusion Weighted Imaging 0.00019 Radiographic Imaging Procedure 332 Contrast Used 0.033
Pet/Ct Scan 0.00018 Echocardiography 261 Diffusion Weighted Imaging 0.029
Excision Biopsy 0.00017 Core Needle Biopsy 261 Fine Needle Aspiration Biopsy 0.029
Surgical Pathology Procedure 0.00017 Incisional Biopsy - Action 210 Pet/Ct Scan 0.026
Needle Biopsy Procedure 0.00015 Diffusion Weighted Imaging 208 Excision Biopsy 0.025
Chest Ct 0.00015 Sampling - Surgical Action 202 Surgical Pathology Procedure 0.025

(b) Amino Acid, Peptide, or Protein

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Cytokeratin 0.00159 Proteins 2172 Cytokeratin 0.814
Vimentin 0.00139 Receptor 1114 Vimentin 0.747
Desmin 0.00114 Antibodies 1016 Desmin 0.654
Olaratumab 0.00096 Cytokeratin 824 Melphalan 0.589
Melphalan 0.00092 Vimentin 703 Olaratumab 0.573
Cd34 Antigens 0.00054 Tumor Necrosis Factor-Alpha 543 Cd34 Antigens 0.495
Mucinous CA Antigen 0.00045 Actins 486 Proto-Oncogene C-Kit 0.448
Proto-Oncogene C-Kit 0.00042 Desmin 462 Mucinous CA Antigen 0.448
Protein Tyrosine Kinase 0.00032 Melphalan 396 Actins 0.444
Dactinomycin 0.00029 Protein Tyrosine Kinase 390 Protein Tyrosine Kinase 0.441
Actins 0.00028 Cd34 Antigens 390 Antibodies 0.428
Granulocyte Colony-Stimulating Factor 0.00023 Monoclonal Antibodies 389 Tumor Necrosis Factor-Alpha 0.427
Tumor Necrosis Factor-Alpha 0.00018 Cytokine 308 Dactinomycin 0.404
Tumor Antigens 0.00016 Enzymes 302 GM-CSF 0.398
GM-CSF 0.00014 Glycoproteins 296 Monoclonal Antibodies 0.39
Gamma-Enolase 0.00012 Growth Factor 276 Tumor Antigens 0.366
Pembrolizumab 0.00011 Proto-Oncogene C-Kit 270 Glycoproteins 0.364

(c) Disease or Syndrome

Concept KLD↓ Concept Freq.↓ Concept Re-rank↓

Fasciitis 0.00061 Inflammatory Disorder 599 Recurrent Disease 0.176
Recurrent Disease 0.00061 Local Disease 331 Fasciitis 0.173
Nodular Fasciitis 0.00054 Recurrent Disease 290 Nodular Fasciitis 0.163
Osteitis 0.00041 Nodular Fasciitis 216 Osteitis 0.145
Marfan Syndrome 0.00023 Gigantism 214 Marfan Syndrome 0.118
Febrile Neutropenia 0.00023 Absolute Anemia 208 Febrile Neutropenia 0.117
Li-Fraumeni Syndrome 0.00019 Osteitis Deformans 201 Li-Fraumeni Syndrome 0.11
Infection By Spirocerca 0.00017 Fasciitis 201 Gigantism 0.108
Leukopenia 0.00016 Marfan Syndrome 152 Leukopenia 0.107
Gigantism 0.00014 Febrile Neutropenia 132 Infection By Spirocerca 0.107
Pulmonary Thromboembolisms 0.00014 Pleural Effusion Disorder 126 Pulmonary Thromboembolisms 0.103
Myositis Ossificans 0.00012 Leukopenia 121 Lymphadenopathy 0.101
Lymphadenopathy 0.00011 Lymphadenopathy 115 Myositis Ossificans 0.1
Gross’ Disease 0.00011 Diabetes Mellitus 100 Pleural Effusion Disorder 0.1
Bone Lesion 0.00011 Primary Sclerosing Cholangitis 98 Primary Sclerosing Cholangitis 0.1
Myositis, Proliferative 0.00011 Uveoparotid Fever 87 Bone Lesion 0.099
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