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Abstract

Glutamine and glutamate are major bioenergy substrates for normal and cancer cell growth. Cancer cells need
more biofuel than normal tissues for energy supply, anti-oxidation activity and biomass production. Genes related
to metabolic chains in many cancers are somehow mutated, which makes cancer cells more glutamate dependent.
Meanwhile,  glutamate  is  an  excitatory  neurotransmitter  for  conducting  signals  through  binding  with  different
types  of  receptors  in  central  neuron  system.  Interestingly,  increasing  evidences  have  shown  involvement  of
glutamate  signaling,  guided  through  their  receptors,  in  human  malignancy.  Dysregulation  of  glutamate
transporters,  such  as  excitatory  amino  acid  transporter  and  cystine/glutamate  antiporter  system,  also  generates
excessive  extracellular  glutamate,  which  in  turn,  activates  glutamate  receptors  on  cancer  cells  and  results  in
malignant growth. These features make glutamate an attractive target for anti-cancer drug development with some
glutamate targeted but  blood brain barrier  impermeable anti-psychosis  drugs under consideration.  We discussed
the relevant progressions and drawbacks in this field herein.
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Introduction

Fast  growing  cancer  cells  have  a  high  demand  for
catabolites  to  produce  ATP,  maintain  a  reduction-
oxidation  balance  and  generate  biomass.  After  the
early finding of a metabolic difference between cancer
and normal tissue by Warburg and colleagues, people
started to notice that metabolism of cancer is not only
different  from  that  of  normal  tissue  but  also  among
different type of tumorous cells[1–2]. Rather a common
feature of cancer metabolism is that it needs a nutrient
that is not only a decent donor of carbon and nitrogen
for production of energy sugar,  lipids,  nucleotide and

amine  but  also  a  precursor  of  an  anti-oxidation  by-
product  that  can  protect  cancer  cells  from  oxidative
stress.  Thus,  glutamine  appears  to  be  a  candidate.
Glutamine is the most abundant amino acid precursor
in  circulation  and  the  main  vehicle  for  circulating
ammonia  in  a  nontoxic  form[3].  In  normal  tissues  and
cancer cells,  glutamine donates its  amide (γ nitrogen)
group  firstly  to  become  glutamic  acid.  Then  carbon
skeleton  of  glutamate  can  be  incorporated  into  α-
ketoacids  for  making  ATP  and  fatty  acids,  while  the
nitrogen  is  used  in  the  synthesis  of  purines  and
pyrimidines[4–5].  The  glutamic  acid  is  a  precursor  of
ornithine, arginine and proline, and its skeleton can be
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used  for  synthesis  of  another  non-essential  amino
acids  through  the  Kreb's  circle[4–5].  In  addition,
glutamate  is  a  precursor  of  glutathione  that  is  an
antioxidant  acting  as  a  free  radical  scavenger  and  a
detoxifying agent in cells[6–7]. It is known that reactive
oxygen  species  (ROS  like  H2O2,  O2• – ,  OH• , etc.)  are
significantly  increased  in  cancer  cells  because  of
mitochondrial  dysfunction  and  altered  metabolism,
which results in an accumulation of large amounts of
oxidized protein, DNA, and lipids[6–7]. Therefore, as an
adaptive  response,  cancer  cells  must  harbor  elevated
levels of ROS-scavengers such as glutathione[6–7].

Glutamate receptors and transporters

Apart from the roles that glutamine plays in cancer
cell  metabolism,  glutamic  acid  or  its  salt  glutamate
has been found to modulate cancer cell  development,
proliferation  and  metastasis  through  regulating  cell
signaling  pathways[8–9].  Until  recent  decades,  people
have  focused  on  studies  of  its  function  in  the  central
nervous system (CNS) since glutamate has been found
to  be  a  key  mediator  of  excitatory  signals  in  the
mammalian  CNS[10–11].  It  is  known  that  neurons  and
non-neuron  brain  cells  express  different  kinds  of
glutamate  receptors  that  are  classified  into  ionotropic
(iGluR)  and  metabotropic  glutamate  receptors
(mGluR)  in  the  CNS[12].  The  iGluRs  are  quaternary
ligand-gate ion channels that allow cation influx upon
glutamate  binding,  which  are  divided  into  3
subfamilies:  N-methyl-D-aspartate (NMDA) receptor,
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid  (AMPA)  receptor,  and  kainate  (KA)  receptor[13].
The  mGluRs  belong  to  the  superfamily  of  G-protein
coupled  receptors,  which  are  classified  into  three
subgroups:  group Ⅰ, Ⅱ and Ⅲ.  The  mGluR1  and
mGluR5  belong  to  group  I  mGluRs,  and  they  are
coupled  to  Gq/11 G-protein.  Upon  glutamate  binding,
G protein activates PLCβ to cause hydrolytic cleavage
of  phosphatidylinositol-4,5-bisphosphate  (PIP2)  and
then formation of inositol 1,4,5-triphosphate (IP3) and
diacylglycerol.  As  a  consequence,  the  secondary
messenger  leads  to  an  increment  of  calcium  release
from  endoplasmic  reticulum  stores  and  activation  of
protein  kinase  C,  resulting  in  a  downstream  effector
targeted  stimulation.  Group Ⅱ receptor  consists  of
mGluR2  and  mGluR3,  and  group Ⅲ comprises
mGluR4,  mGluR6,  mGluR7  and  mGluR8,  all  of
which are coupled with Gi/o G-protein that  negatively
regulates adenylate cyclase[12].

In  addition  to  these  receptors,  there  are  a  group  of
glutamate  transporters,  termed  as  excitatory  amino
acid  transporters  (EAATs),  which transport  L-and D-

aspartate  along  with  glutamate  from  extracellular
environment  to  the  cells  and  maintain  low  level  of
extracellular  glutamate.  EAATs are  a  family  of  high-
affinity  Na+/K+-dependent  transporters  for  glutamate
and aspartate with five EAATs, the EAAT1–5 in this
family,  which  are  encoded  by  genes SLC1A3,
SLC1A2,  SLC1A1,  SLC1A,  and SLC1A7,  respectively
(https://en.wikipedia.org/wiki/Glutamate_transporter).
EAAT1  and  EAAT2  are  predominantly  expressed  in
astrocytes,  especially  within  their  processes
surrounding  glutamatergic  synapses,  where  they  are
responsible  for  the  immediate  uptake  of  synaptic
released  glutamate.  EAAT3  is  expressed  in  neurons,
but  in  the  kidney  and  the  intestinal  mucosa  as
well[14–15].  EAAT4  is  predominantly  expressed  in
cerebellar  Purkinje  cells,  and  EAAT5 is  expressed  in
rod  photoreceptor  and  bipolar  cells  of  the  retina.
Another  transporter,  termed  as  antiporter,  is  Na+-
independent  cystine/glutamate  exchanger, e.g. system
Xc− (SXC),  which  uptakes  extracellular  cysteine  and
exports  intracellular  glutamate  outside  of  the  cells.
However in recent decades, increasing evidences have
unveiled  that  specific  glutamate  receptors  and/or
glutamate  transporters  are  also  expressed  in  non-
neurological  tissues  and  even  in  immune  system,
which suggests that glutamate plays an important role
in  the  regulation  of  physiological  function  in  various
peripheral  organs[16].  Further,  a  large  amount  of  data
have  shown  that  glutamine  and  glutamate  has  been
extensively  involved  in  development  and
transformation of  tumors in  both CNS and peripheral
tissues[9,17].  This  is  the  subject  of  our  current  review
including the involvement of glutamine and glutamate
in  cancer  development  and  their  potential  therapeutic
significance.

Glutamine  and  glutamate  in  cancer
metabolism

Altered energy metabolism is acknowledged as one
of  the  emerging  hallmarks  of  cancer.  Initially,
Warburg  and  co-workers  showed  that  cancer  tissues
metabolize  approximately  10-fold  more  glucose  to
lactate  in  a  given  time than  normal  tissues  which  led
them  to  conclude  that  cellular  respiration  chain  was
damaged in cancer cells[1,18]. This proposal was argued
for decades[1,18] and has been well accepted until recent
years.  Recently,  people  identified  a  number  of
mutated  genes  that  encode  enzymes  functioning  in
cellular  bioenergetics  and biosynthesis  metabolism in
different  cancer  cells[19–21].  The  fact  that  proliferating
tumor  cells  are  highly  dependent  on  glutamine  was
firstly  highlighted  by  Eagle  in  1955[22],  who
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discovered  that  the  glutamine  consumption  rate  in
many  cell  lines  exceeded  the  consumption  of  any
other  amino  acid  by  10-fold.  Afterwards,  Kovacevic
and  colleagues  observed  glutamine  carbons  was
released  by  cells  at  the  form  of  carbon  dioxide,
providing  evidence  that  glutamine  could  serve  as  a
combustible  fuel[23].  Then,  Reitzer  and  co-workers
reported that Hela (derived from cervical cancer) cells
predominantly  consume  glutamine  as  a  biofuel[24].
These  studies  represented  the  earlier  findings  on
substitution  of  glucose  by  glutamine  in  cancer
bioenergetics  metabolism.  Of  note,  blood  glutamine
levels  were increased in patients  with advanced-stage
cancers  when  serum  compounds  were  being  traced
during cancer development[25]. Serum glutamate levels
in  prostate  cancer  patients  were  also  correlated  with
Gleason  score,  which  inferred  the  extent  of
progression  of  the  prostate  cancers[26].  An analysis  of
freshly  frozen  human samples  also  demonstrated  that
glutamate  level  is  strikingly  increased  in  chronic
pancreatitis  and  pancreatic  ductal  adenocarcinoma
tissues compared to that in normal pancreatic tissue[27].
Glutamate release was also found to be high in breast
cancers,  which  makes  it  a  new  biomarker  for  breast
cancer diagnosis[28].

For  better  understanding  the  glutamate  associated
metabolism, the major reactions involved are listed as
the following[29]:  Aspartate  aminotransferase reaction:
Glutamate  +  oxaloacetate  ↔  α-ketoglutarate  +
aspartate;  Glutamate  dehydrogenase  reaction:  α-
ketoglutarate  +  NH3  +NADH  +  H+ ↔  glutamate  +
NAD+;  Glutamic  acid  decarboxylase  reaction:
Glutamate  →  GABA  +  CO2;  Glutaminase  reaction:
Glutamine  +  H2O  →  glutamate  +  NH4+;  GABA
transaminase  reaction:  GABA  +  α-ketoglutarate  ↔
glutamate  +  succinic  semialdehyde;  Glutamine

synthetase  reaction:  Glutamate  +  NH3 +  ATP  ↔
glutamine + ADP + Pi; γ-glutamylcysteine synthetase
reaction:  Glutamate  +  L-cysteine  +  ATP  →  γ-
glutamylcysteine + ADP + Pi;  N-acetylated-α-linked-
amino  dipeptidase  reaction:  N-acetylaspartatyl-
glutamate  ↔  N-acetylaspartate  +  glutamate;  Alanine
aminotransferase  reaction:  Glutamate  +  pyruvate  ↔
alanine  +  α-ketoglutarate;  Ornithine  aminotransferase
reaction:  Ornithine  +  α-ketoglutarate  ↔  glutamate  +
glutamic  acid  semialdehyde;  Branched-chain  amino
acid  aminotransferase  reaction:  α-ketoisocaproate  +
glutamate  ↔  leucine  +  α-ketoglutarate.  Those  are
combined in Fig. 1.

The  dependence  of  cancer  cells  on  glutamine
metabolism  has  made  it  an  attractive  anticancer
therapeutic  target[2,30–31].  Many  glutamine  mimetic
antimetabolites  (including  acivicin,  DON  and
azaserine)  were  developed  and  intended  to  become
anti-cancer  medicine  before  1990s[5].  However,  these
substances  deprive  glutamine  from  both  tumor  and
normal  cells,  which  made  them  more  toxic  than
therapeutic[31]. The pre-clinic trial for those substances
generally  failed,  and  then  clinical  development
stopped.  One  exception  was  phenylacetate  that  can
conjugate  with  glutamine  in  the  blood  plasma  and
form  phenylacetylglutamine[32].  Long-term  admini-
stration of phenylacetate was shown to reduce plasma
glutamine  levels  and  was  well-tolerated[31–33].
Development  of  phenylacetate  to  be  an  anti-cancer
reagent was stepped into phase Ⅰ and Ⅱ clinical trials
in  2000s[34].  However,  no  promising  report  followed.
Meanwhile,  the  mechanism  on  "glutamine-addiction"
has  been  studied  in  efforts  to  find  any  key  steps  in
mutant  cancer  metabolic  pathways  that  differ  from
that  of  normal  cells  in  host[2,31].  The  findings  from
those  works  enlightened  some  new  interest  in  the

 

 

Fig. 1   Glutamine and glutamate metabolic reactions and key enzymes in cells. ALT: alanine aminotransferase; AST: aspartate amino-
transferase; BCAT: branched-chain amino acid aminotransferase; GABAT: GABA transaminase; GAD: glutamic acid decarboxylase; GCS: γ-
glutamylcysteine  synthetase;  GLDH:  glutamate  dehydrogenase;  GLS:  glutaminase;  GS:  glutamine  synthetase;  NAALAD:  N-acetylated-α-
linked-amino dipeptidase; OAT: ornithine aminotransferase.
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development  of  glutamine/glutamate  associated  anti-
cancer  therapeutic  approaches.  Among  them,
allosteric  inhibitors  of  (kidney-type)  glutaminase[35]

have  shown  promise  in  preclinical  models  of  cancer,
such as CB839 that has shown efficacy against triple-
negative  breast  cancer  and  haematological
malignancies  in  preclinical  studies[36],  and  bis-2-(5-
phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl  sulfide
that  has  been  shown  to  block  the  growth  of  cancer
cells in vitro and xenografts in vivo[37–38].

Glutamate receptors and cancers

Association of iGluRs with cancers

The  iGluRs  family  includes  NMDA,  AMPA,  and
KA receptors in the CNS[13]. The NMDA receptors are
composed  of  two  GluN1  subunits  and  two  GluN2
subunits  or  a  combination  of  a  GluN2  and  a  GluN3
subunit[13] and activated upon binding to the glutamate
and  glycine  on  the  cell  membrane[39].  Activation  of
NMDA  receptors  allows  calcium  flux  into  the  cells,
which  is  thought  to  be  critical  in  synaptic  plasticity
but  not  engaged  in  depolarizing  membrane  potential
and  initiation  of  action  potential[40].  In  recent  years,
both  iGlutRs  and  mGluRs  have  been  found  in  the
peripheral tissues outside of CNS, such as the kidney,
lung,  liver,  heart,  stomach,  bone,  and  skin[9,16,41].  The
roles they might play in tumor or cancer development
are  also  broadly  studied[9,42].  For  example,  NMDA
receptor  activation  affects  some  cell-proliferation
signaling  activity,  such  as  mTOR  pathway  that
controls  cell  growth[43–44],  either  through  a  Ca2+

dependent  regulation  of  p-ERK,  which  in  turn
modulates  mTOR,  or via inhibition  of  membrane
cationic  amino  acid  transporters[43–44].  This  role  of
NMDA  receptor  in  peripheral  tissues  may  be  an
important contributor for human malignancies[45].

Reasonably  in  the  CNS,  most  of  glutamate
receptors  and  transporters  including  all  EAATs  are
involved  in  the  development  of  different  types  of
glioma  or  neuroblastoma.  The  presence  or  lack  of
GluR2  subunits  of  the  AMPA receptor  appears  to  be
crucial  for  glioma  cell  invasive  potential.  Previous
studies  have  shown  that  the  majority  of  invasive
gliomas  are  either  lack  of  GluR2  expression[46] or
significantly  lower  level  of  its  expression.  Clinically,
it was observed that GluR2 expression was lacking in
highly malignant  glioblastomas like ependymomas or
medulloblastomas  (all  WHO Ⅲ or Ⅳ),  and  a  higher
level  of  GluR2  was  expressed  in  low-grade
astrocytomas (WHO Ⅰ or Ⅱ)[47]. In addition, an RNA
intervention  study  on  a  low-grade  glioma  cell  line

revealed  that  down-regulation  of  GluR2  expression
induced a significant increment of cell proliferation[48].
Nonetheless,  absence  of  GlutR2  in  highly  malignant
pediatric glioblastomas had been verified clinically[47].
It  is  known  that  in  neurons,  GlutR2  negative  AMPA
receptor is calcium permeable but a GlutR2 composed
one  with  a  positive  charged  amino  acid  facing  the
channel is not permeable to divalent cation[49]. This is
consistent  with  an  observation  that  intracellular
calcium oscillation plays a crucial  role in growth and
motility of a patient derived glioma cell line probably
due  to  disassembly  of  focal  adhesions  triggered  by
this oscillation[50]; meanwhile, both PCR and Western
blot  test  exhibited  those  cells  lack  of  GluR2  in  their
AMPA receptors[46].

In  recent  decades,  iGlutRs  have  been  identified  in
many  types  of  cancers  outside  the  CNS  where
glutamate signaling stimulates tumor cell proliferation
via iGlutR  activation[42,51].  The  mRNA  of  iGluR
subunits  has  been  detected  upregulated  in  thyroid,
lung and breast carcinomas, multiple myeloma, colon
adenocarcinoma,  and  T  cell  leukemia[52],  in  larynx[53]

and  gastric  cancer  cells[54],  as  well  as  in
osteosarcoma[55].  The  iGluR  subunit  proteins  are  also
found  elevated  in  prostate[56],  breast[57],  and  lung[58]

cancers, as well as in melanoma[59] and hepatocellular
carcinoma  cell  lines[60].  Accordingly,  iGlutRs
antagonists are applied in treatment of many kinds of
cancers.  For  example,  an  NMDA  receptor  antagonist
GYKI52466,  showed  anti-tumor  effect  in  colon
adenocarcinoma,  astrocytoma,  and  breast  and  lung
carcinoma  cells[51].  NMDA  receptor  antagonists,
memantine  and  MK-801,  can  reduce  viability  of  the
cells derived from a recurrent and drug-resistant small
cell  lung  cancer[58].  An  AMPA  receptor  antagonist
CFM-2 is able to inhibit cancer cell growth by down-
regulating the expression of survivin[61]. Talampanel is
a  newly  developed  non-competitive  antagonist  of  the
AMPA  receptor  that  has  shown  some  promising
results  for  clinical  use  in  cancer  therapy[62–63];
encouragingly,  a  phase Ⅱ clinic  trial  study  of
talampanel  combined  with  radiation  therapy  plus  the
DNA  methylation  agent  temozolomide  has  been
performed  for  treatment  of  newly  diagnosed
glioblastoma patients[62–63].

Association of mGluRs with cancers

Similarly,  ample  evidences  have  shown  the
involvement  of  mGluRs  in  cancer  development.
Group Ⅰ mGluRs are coupled to Gq/11 G-protein, and
group Ⅱ and Ⅲ mGluRs are coupled to Gi/o G-protein.
All  mGluRs  share  a  basic  structure  that  includes  a
large extracellular N-terminus, a cysteine-rich domain,
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a  seven-alpha-helical  transmembrane  domain  and  an
intracellular  C-terminal.  The  mGluRs  function  when
two glutamate molecules bind the N-terminus and the
cysteine-rich domains are dimerized[64]. In recent years,
high-throughput  cancer  genome  deep  sequencing
analyses have revealed that approximately 20% of all
cancers  harbor  mutated  G-protein  coupled  receptors,
with  mGluRs  highly  mutated  in  many  types  of
cancers,  and that  specific  mutations  in  Gαs,  Gαq and
Gα11 sites  lead  to  constitutive  and  persistent  aberrant
signaling that may drive tumor progression[65].

The function of mGluRs in human malignancy was
first  discovered in CNS tumors.  In normal brain glial
cells,  mGlu1, mGlu3, and mGlu5 receptors are found
in  astrocytes,  mGlu2,  mGlu3,  and  mGlu5  receptors
are  expressed  in  microglial  cells,  and  mGlu1  and
mGlu4 are highly expressed in oligodendrocytes[66–67].
In  brain  tumors,  over  expression  of  mGluR1,
mGluR2,  and  mGluR6  are  observed  in  malignant
medulloblastomas,  ependymomas,  and  glioblas-
tomas[47].  Expression  or  predominant  expression  of
different  groups  and/or  subunits  of  the  mGluRs  in
different  glioma  cell  lines  and  patient  derived  tumor
cells  has  been  reviewed  in  super  detail  by  a  large
research  group  recently[68].  Noteworthy,  a
comprehensive  study  of  pediatric  brain  tumors
showed  mGluR1,  mGluR2  and  mGluR6  expression
levels  are  elevated  in  malignant  medulloblastomas,
ependymomas  and  glioblastomas,  compared  to  those
in  low-grade  astrocytomas[47].  This  over  expression
pattern  is  similar  among  tumor  cells  of  different
histological  origins,  indicating  that  a  common
glutamatergic  signaling  cascade  plays  a  key  role  in
these  cancers  and  could  have  potentials  to  be  a
therapeutic  target  in pediatric  brain tumors[47].  On the
other  hand,  pharmacological  blockade  of  mGlu3
receptors  by  its  antagonist  LY341495  guided
differentiation  of  highly  malignant  cultured
glioblastoma  cells  into  astrocyte  lineage[69].
Consistently,  clinical  data  suggest  that  transcript
levels  of  mGluR3  may  be  a  potential  predictor  for
survival  of  glioblastoma  patients  and  that  mGluR3
antagonists  could be recommended as  adjuvant  drugs
for treatment of glioblastoma[70]. In a clinical study of
87 glioblastoma cases, the group of patients with low
tumoral mGluR3 mRNA levels showed a significantly
higher  survival  rate  than  high  tumoral  mGluR3
mRNA cases. Five patients who survived longer than
36  months  had  tumoral  mGluR3  mRNA  expression
far below normal range[70].

In  addition  to  CNS  neoplasms,  mGluRs  are
expressed  broadly  in  peripheral  organs,  such  as  the
gastrointestinal  tract,  kidney,  liver  and  immune  cells,

and they play a role of commanding cell proliferation,
differentiation  and  transformation[64].  In  non-neuronal
cancers,  mGluRs  are  found  elevated  in  melanoma,
breast,  prostate,  renal  and  colorectal  cancers,  and
osteosarcoma  as  well[71–73];  and  over  expression  or
activation of them promotes these cancers' growth. In
contrast,  activation  of  group Ⅲ mGluR4  in  bladder
cancer has been reported to promote cell apoptosis and
inhibit  proliferation[74].  Notably,  expression  of
mGluR1  in  breast  cancer  has  been  broadly  explored
and  mGluR1  is  up-regulated  in  five  triple-negative
breast  cancer  cell  lines  compared with that  in  normal
mammary epithelial cells[75]. Silencing mGluR1 results
in  reduction  of  tumor  cell  proliferation  and
progression,  and  induction  of  tumor  cell  apoptosis in
vitro and in  vivo[75].  Furthermore,  over  expression  of
mGluR1  in  another  breast  cancer  cell  line, e.g.,
MCF10AT1  cells,  was  reported  to  significantly
increase  the  proliferation  and  facilitate  cell  migration
and  invasion[76].  Expression  of  mGluR1  is  a  specific
feature  of  melanoma  since  approximately  80% of
melanoma  tissue  samples  express  mGluR1,  whereas
normal  melanocytes  are  mGluR1  negative[77].  Using
an  inducible  mouse  model,  the  authors  found  that
induction  of  mGluR1  expression  led  melanocytes
growth  into  melanoma,  while  silencing  mGluR1
resulted  in  tumor  abrogation[77].  Another  group  also
showed  downregulation  of  mGluR1  by  shRNA
decreased  cell  viability  of  human  melanoma  cells in
vitro and  tumor  growth in  vivo in  a  xenograft
model[78].  Contrarily,  stimulation  of  mGluR1  resulted
in  activation  of  MAPK  and  PI3K-AKT  pathways,
which  enhanced  cell  proliferation  but  prevented
apoptosis[79].  Accordingly,  mGluR1 has  been targeted
for  development  of  anti-cancer  agents  especially  in
treatment  of  breast  cancer  and  melanoma[75,80–81].
However,  clinical  mGluR  antagonist  is  still  lacking,
although mGluR1 antagonist LY367385 and BAY36-
7620 or a potential  antagonist  riluzole have exhibited
some  anti-cancer  effects in  vitro and  in  mice
xenograft[75,80,82].

The  mGluR2  and  mGluR3  of  Group Ⅱ receptors
are  coupled  to  Gαi/o  and  linked  to  the  regulation  of
cyclic adenosine[64]. In malignant melanoma, mGluR3
was shown to be highly mutated and mutations in the
seven  transmembrane  domain  resulted  in  increased
activation  of  MEK1/2  kinase  with  more  aggressive
migration  and  anchorage  independence  of  melanoma
cells in vitro and in vivo[83]. In a recent study from our
lab, we unveiled that the mGluR3 was up-regulated in
colon  cancer  cell  lines in  vitro and  colon  cancer
tissues in  vivo[84].  Further,  inhibition  of  mGluR3
expression  by  shRNA  or  with  antagonist  LY341495
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reduced anchorage dependent growth of colon cancer
cells,  and  attenuated  tumor  growth  in  a  xenograft
model[84].  In  the  following  study,  we  attempted  to
explore  the  possibility  of  using  different  mGluR3
antagonists  and/or  its  signaling  pathway  inhibitor,
combined  with  other  anti-cancer  reagents  for  the
treatment of colon cancer and other malignancies[84].

Significantly, in a clinical study on a large cohort of
renal  cell  carcinoma  samples  with  none-cancer
controls,  the  authors  detected  gene  expression  of
mGluR3,  mGluR4  and  mGluR5  on  cancers  of  all
participated  patients[85].  Analysis  of  different  risk
factors implied associations of mGluR3, mGluR4 and
mGluR5  with  tumorigenesis  and  overall  survivals[85].
Specifically,  the  mGluR4  and  mGluR5  gene
expression  showed  an  increasing  trend  in
carcinogenetic  tissues,  compared  to  that  in  normal
tissue;  whereas  mGluR3 gene  was  down regulated  in
renal  cancer  cells[85].  The  increased  expression  of
mGluR4  gene  and  decreased  expression  of  mGluR3
gene were associated with poorer  survival  of  patients
with renal cell carcinoma. Although there was a slight
trend  towards  higher  mGluR5  expression  levels  in
cancer tissues than in adjacent normal tissues, GRM5
expression  was  not  associated  with  survival  of
patients.

EAATs and cancers

In  the  CNS,  different  glutamate  transporters  work
together  and  maintain  a  low  extracellular  glutamate
concentration  at  0.3 –1  μmol/L,  ten  to  several  ten
thousands  fold  lower  than  intracellular  concentration
which, for example, is 3–10 mmol/L in neurons[86–87].
This  gradient  of  glutamate  is  probably  driven  by  the
ionic  gradients  generated  by  ion-exchanging  pumps
such as  Na+/K+-ATPase[86–87].  In  general,  glutamate  is
not  able  to  diffuse  across  the  cell  membrane[14].
EAATs  are  also  found  in  peripheral  tissues;  for
instance,  EAAT3,  originally  known  as  EAAC1,  was
reported  to  have  mRNA  expressed  in  the  liver,  the
intestine, the kidney and the heart of rabbits[14]. Lately,
a  low  level  of  EAAT1  mRNA  was  identified  in  the
mouse  liver,  kidney  and  intestine,  with  relatively  a
little higher EAAT2 in the liver, much higher EAAT3
at  intestine  and  highest  EAAT3  in  the  kidney[88].
Moreover,  broad  expression  of  EAAT5  in  the  liver,
kidney,  intestine,  heart,  lung  and  skeletal  muscle  of
rats  has  been  identified  at  both  mRNA  and  protein
levels[89].  The  similar  data  on  humans  is  still  lacking.
Meanwhile  cystine/glutamate  exchanger  SXC  is
known  to  express  widely  in  many  human  tissues,
including  the  brain,  the  pancreatic  islets,  and  the

stromal and immune cells, and involvement of SXC in
human carcinogenesis has been documented[90–91]. The
uptake  of  cystine  is  significant  for  cells  to  maintain
the intracellular levels of glutathione especially for the
tissues that generate high levels of oxidative stress as
in tumors[91].  However,  the more cystine that  is  taken
up through SXC, the more intracellular glutamate will
be exchanged into extracellular spaces, which may be
toxic  to  excitable  cells.  Consistently,  overexpression
and/or  over  activity  of  SXC  transporter  play  pivotal
roles  in  the  growth  and  invasion  of  glioma  cells  by
markedly  enhancing  extracellular  glutamate
concentration[46,90].

Aberrant  expression  or  activity  of  glutamate
transporters  is  usually  attributed  to  an  imbalance  of
glutamate homeostasis in the CNS[92]. In brain tumors,
EAAT2  is  found  down  regulated  in  high-grade  glial
tumors  compared  with  that  in  low-grade  astrocytoma
and normal brain[93].  Accordingly, EAAT2 expression
is inversely correlated with tumor grade; re-expression
of  EAAT2  significantly  prevents  cell  proliferation  in
several  glioma  cell  lines[93].  In  addition,  lacking  of
EAAT1  is  found  in  rat  C6  glioma  cell  line,  which
increases  releasing  of  glutamate  to  the  medium[94].  In
animal models, C6 clone cells release more glutamate
and  ensure  more  robust tumorigenesis  comparing  to
cells that do not release glutamate[94]. In addition, SXC
mutation is  also involved in  glioma development  and
migration[46,90–91].  Gliomas  are  aggressive  cancers,
whose  growth  is  restricted  by  the  bony  cavity  of  the
skull  or  spinal  canal.  Overexpression  of  SXC  and/or
deficiency  of  EAATs  is  able  to  help  gliomas  to
overcome  this  physical  limitation  by  secreting  or
gathering  more  glutamate,  which  kills  neurons  and
vacates  space  for  the  growth  of  tumor  cells[46,91].
Meanwhile,  cystine  uptake  through  this  process
sustains  the  synthesis  of  glutathione,  and  promotes
glioma  cells  survival  and  growth[91].  In  addition,
choroid  plexus  tumors  are  rare  neoplasms  of
neuroectodermal  origin  and  their  distinction  from
metastatic  or  secondary  carcinomas  is  often  difficult
in  adult  cases[95].  A  clinical  study  comparing  patient
primary tumor biopsies with metastatic samples found
that  EAAT1  expression  in  primary  tumors  was
positively  correlated  to  patient  age  but  EAAT1
immunostaining  in  metastatic  tumors  was  absent[96].
This  finding  indicates  that  EAAT1  immunohisto-
chemistry  may  be  useful  in  distinguishing  original
choroid plexus tumors from metastatic carcinomas.

Potential  roles  of  EAATs  and/or  SXC  have  been
suggested  in  some  cancer  types  outside  of  the  CNS,
such  as  in  pancreatic  and  gastric  cancers,  leukemias
and  lymphomas[15,91].  In  a  large  clinical  study  of
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primary  gastric  cancers  plus  most  established  cancer
cell  lines, CD44-EAAT-2 gene  fusions  were  detected
in 1%–2% of primary tumors with zero expression in
adjacent  matched  normal  gastric  tissues[97].  Further,
silence  of  this  fusion  gene  led  to  reduction  of
intracellular  glutamate  level  and  sensitized  cells  to
chemotherapy[97].  The  role  of  SXC  in  leukemias  and
lymphomas seems peculiar since these tumor cells are
incapable  of  synthesizing  cysteine,  which  makes
cystine/cysteine taken up from the micro-environment
become  essential  amino  acid  for  the  viability  and
progression  of  such  cancers[98].  However,  clinically
available  specific  activator  or  inhibitor  for  EAATs
and/or  SXC,  especially  for  those  mutated  up-  or
down-regulated  expression  in  cancers  is  still  lacking.
The  drugs  that  can  block  glutamate  release,  such  as
riluzole[99–100],  has  been  used  in  therapeutic  approach
for many types of cancers.

Riluzole is a US FDA approved drug originally for
treatment of amyotrophic lateral sclerosis and it has a
low toxicity in normal condition.  Riluzole has shown
promising  anti-tumor  effect  in  glioma,  melanoma,
breast  and  prostate  cancers,  and  osteosarcoma  as
well[72,80–81,101].  Combination of  riluzole  with  the other
glutamate  antagonistic  drugs,  such  as  memantine  or
valproate, is reported to have better effects for glioma
treatment[101–102].

Apart  from  it,  a  series  of  amino  acid  transporters,
belonging  to  4  distinct  gene  families: SLC1, SLC6,

SLC7,  and SLC38 have  been  reported  to  be  involved
in carcinogenesis of many different organs[103]. Bhutia
and  Ganapathy[103] has  comprehensively  reviewed the
distribution  of  these  transporters  with  their  links  to
glutamate  metabolism  in  different  tissues,  the
involvement  of  their  gene  modification  in
carcinogenesis,  and  the  potential  roles  of  their  gene
and/or proteins therein.

Conclusions

As  aforementioned,  the  metabolic  phenotype  of
cells  within and around cancers  is  heterogeneous and
distinct from their normal counterparts[2,30]. In order to
target the glutamate metabolic chain in cancer but not
severely  disturb  their  normal  counterparts,  further
study to find a tumor specific step in a metabolic chain
is  indispensable.  Various  kinds  of  mutations  may
occur  in  the  cancer  metabolic  network[19–21,104] and
these mutations may create specific therapeutic target
for  cancer  treatment.  The  involvement  of  glutamate
receptor-guided  cell  signaling  and/or  transporters  in
cancer development are well documented (Fig. 2) but
clinically available antagonists for treatment of cancer
still  remain  unclear.  Actually,  a  set  of  glutamatergic
signaling  inhibitors  or  glutamate  transmembrane
traveling blocker, like LY341495, Riluzole and so on,
were  developed  for  therapy  of  neuropsychiatric
disorders.  Paradoxically,  many  of  those  antagonists
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Fig. 2   Glutamate signaling involved in tumorigenesis. Extracellular glutamate binds to glutamate receptors (AMPA, mGluRs and NM-
DA) and activates signal pathways, such as MAPK, PI3K, to promote cell proliferation, survival and migration. Of note, EAATs transport
extracellular glutamate into cells. Contrarily, Xc--glutamate antiporter exporting intracellular glutamate and importing extracellular cystine.
Anabolism of cystine, L-glutamic acid and glycine produces glutathione that is a critical anti-oxidative element in cancer cells. AMPA: α-
amino-3-hydroxy-5-methylisoxazole-4-proprionate; mGluR:  metabotropic  glutamate  receptors;  NMDA:  N-methyl-D-aspartate;  EAAT:  ex-
citatory amino acid transporters; SXc−: system Xc−.
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and/or  inhibitors  lack  the  ability  to  penetrate  blood
brain  barriers,  which  makes  them  fairly  problematic
for treatment of neuropsychiatric disorders. However,
this  defect  may make them a  promising medicine  for
peripheral  cancer  treatment  as  there  is  no  concern  of
the effects beyond the blood brain barrier.  Notably,  a
metabolic  imaging  guided  identification  for
"glutamine  addicted"  cancer  cells  has  been suggested
to  distinguish  glutamine  dependent  tumor  cells  from
those less dependent ones. Since not all of cancers or
all of cells in a diagnosed cancer are exactly glutamine
dependent,  more  detailed  identification  for  the  extent
of  glutamine  addiction  is  undoubtedly  beneficial[105].
As 18fluoro-dexoyglucose  could  indicate  glucose
metabolic  level,  using  UDP-linked  nacetylglu-
cosamine  as  positron  could  reflect  the  glutamine
metabolic  level  in  cancers  or  cancer  cells[105].  As  we
discussed  above,  as  a  consequence  of  glutamine
addition,  glutamate  metabolism  might  be  elevated  in
some  types  of  cancers,  for  example,  enzalutamide-
resistant  prostate  cancers  and  triple  negative  or
heavily  treated  breast  cancers[105].  However,  there  is
still  lack  of  evidence  to  show whether  those  types  of
cancers are more dependent on glutamate signaling for
survival.  But  recent  discoveries  on  glutamate
signaling  in  brain  as  well  as  peripheral  cancers  shed
light  on  the  importance  of  glutamate  in  tumor
development.  Future  research  might  help  to  build  a
clear  connection  between  glutamate  addiction  and
glutamate  signaling  in  cancer.  Consequently,  anti-
glutamate  treatment  for  cancers  would  reach  its
maximum efficacy in cancers that are more glutamine
dependent.
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