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Thyroid tumors, one of the common tumors in the endocrine system, while

the discrimination between benign and malignant thyroid tumors remains

insu�cient. The aim of this study is to construct a diagnostic model of

benign andmalignant thyroid tumors, in order to provide an emerging auxiliary

diagnosticmethod for patients with thyroid tumors. The patients were selected

from the Chongqing General Hospital (Chongqing, China) from July 2020 to

September 2021. And peripheral blood, BRAFV600E gene, and demographic

indicators were selected, including sex, age, BRAFV600E gene, lymphocyte

count (Lymph#), neutrophil count (Neu#), neutrophil/lymphocyte ratio (NLR),

platelet/lymphocyte ratio (PLR), red blood cell distribution width (RDW),

platelets count (PLT), red blood cell distribution width—coe�cient of variation

(RDW–CV), alkaline phosphatase (ALP), and parathyroid hormone (PTH). First,

feature selection was executed by univariate analysis combined with least

absolute shrinkage and selection operator (LASSO) analysis. Afterward, we used

machine learning algorithms to establish three types ofmodels. The first model

contains all predictors, the second model contains indicators after feature

selection, and the third model contains patient peripheral blood indicators.

The four machine learning algorithms include extreme gradient boosting

(XGBoost), random forest (RF), light gradient boosting machine (LightGBM),

and adaptive boosting (AdaBoost) which were used to build predictive models.

A grid search algorithmwas used to find the optimal parameters of themachine

learning algorithms. A series of indicators, such as the area under the curve

(AUC), were intended to determine the model performance. A total of 2,042

patients met the criteria and were enrolled in this study, and 12 variables were

included. Sex, age, Lymph#, PLR, RDW, and BRAFV600E were identified as

statistically significant indicators by univariate and LASSO analysis. Among the

model we constructed, RF, XGBoost, LightGBM and AdaBoost with the AUC

of 0.874 (95% CI, 0.841–0.906), 0.868 (95% CI, 0.834–0.901), 0.861 (95% CI,

0.826–0.895), and 0.837 (95% CI, 0.802–0.873) in the first model. With the

AUC of 0.853 (95% CI, 0.818–0.888), 0.853 (95% CI, 0.818–0.889), 0.837 (95%

CI, 0.800–0.873), and 0.832 (95% CI, 0.797–0.867) in the second model. With

the AUC of 0.698 (95% CI, 0.651–0.745), 0.688 (95% CI, 0.639–0.736), 0.693
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(95% CI, 0.645–0.741), and 0.666 (95% CI, 0.618–0.714) in the third model.

Compared with the existingmodels, our study proposes amodel incorporating

novel biomarkers which could be a powerful and promising tool for predicting

benign and malignant thyroid tumors.

KEYWORDS

thyroid tumor, machine learning, predictive model, BRAFV600E gene mutation, risk-

factors

Introduction

The incidence of thyroid tumors has been increasing over

the past 20 years, and it was the eighth most commonly

diagnosed tumors in the world among endocrine tumors (1–

3). According to the National Cancer Registry, thyroid tumors

in China will continue to grow at an annual rate of 20% (4,

5). Therefore, identifying benign and malignant tumors owns

great significance for early clinical intervention and treatment.

Although ultrasonography and fine needle aspiration biopsy

(FNAB) cytology methods can diagnose most thyroid tumors,

there were still some patients who were misdiagnosed or

overtreated. In addition, the limitations of those examinations

included the need for a highly experienced cytopathologist for

accurate interpretation, and not suitable for early screening

of disease.

At present, many biomarkers of thyroid tumors have been

discovered by researchers. Ozmen found that higher NLR

and PLR were associated with worse survival in differential

thyroid tumors (6). Another study from Turkey suggested

that mean platelet volume (MPV) levels can be used as an

easily available biomarker for monitoring the risk of papillary

thyroid carcinoma (PTC) in patients with thyroid nodules,

enabling early diagnosis of PTC (7). And Liu found that lower

pretreatment platelet count (PLT) levels may indicate a poor

prognosis for PTC (8). In particular, the BRAFV600E gene is

also an important biomarker for the occurrence and progression

of papillary thyroid tumors (9). In addition, the review by

Qian and Iryani mentions that many genetic biomarkers

can differentiate benign from malignant thyroid tumors (10,

11). However, most studies just investigated the diagnostic

performance of individual biomarkers, and few studies have

integrated these biomarkers to construct models that can be used

to diagnose benign and malignant thyroid tumors in clinical

practice. Previous studies have the shortcomings of small sample

size and large differences in diagnostic performance between

different biomarkers.

Machine learning (ML) is an emerging artificial intelligence

discipline that analyzes multiple data types and uses them to

explore disease risk factors, accurate diagnosis, and prognosis

(12). Moreover, it can integrate multiple clinical indicators,

explore the nonlinear relationship between predictors and

clinical outcomes, and solve problems such as poor performance

of logistic methods in traditional clinical modeling. Sui

developed a deep-learning AI model (ThyNet) using ultrasound

images to differentiate between malignant tumors and benign

thyroid nodules with an AUC of 0.875 (95% CI, 0.871–

0.880) (13). Although there have been some studies using ML

algorithms to diagnose benign and malignant thyroid tumors,

the data selected are mostly image data, which makes data

collection more complicated.

Therefore, this study aims to apply ML algorithms to

build a predictive model of thyroid tumors with demographic,

peripheral blood laboratory, and genetic biomarkers to provide

an accurate and reliable prediction method for the early

discrimination of benign and malignant thyroid tumors.

Methods

Study participants

Patients with thyroid tumor included in the current

study, were selected from the Chongqing General Hospital

(Chongqing, China) from July 2020 to September 2021.

According to WHO 2017 classification and the eighth edition

of the AJCC/TNM classification (TNM-8) (14), operating

records and final pathologic reports were reviewed to ascertain

tumor categories, they were divided into benign groups and

malignant groups. Benign groups are defined as thyroid

follicular nodular disease, follicular adenoma, follicular

adenoma with papillary architecture, oncocytic adenoma of

the thyroid, and benign thyroid nodules. While, malignant

groups are defined as follicular thyroid carcinoma, invasive

encapsulated follicular variant papillary carcinoma, papillary

thyroid carcinoma, oncocytic carcinoma of the thyroid,

follicular-derived carcinomas, high-grade, and anaplastic

follicular cell-derived thyroid carcinoma (15).

This study was exempt from ethical review by the

Institutional Review of the Chongqing General Hospital. The

study methods were carried out in accordance with the relevant

guidelines and regulations.
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TABLE 1 Clinical characteristics and variables of patients in all cohorts.

Predictors Benign

(N = 561)

Malignant

(N = 1,481)

P-value

Sex (%)

Male 105 (18.7) 357 (24.1) 0.011

Female 456 (81.3) 1,124 (75.9)

BRAFV600E (%)

Mutation 76 (13.5) 1,170 (79.0) <0.001

Wild 485 (86.5) 311 (21.0)

Age (years) 45.00 [35.00, 52.00] 39.00 [32.00, 50.00] <0.001

Lymph# (×109/L) 1.64 [1.37, 2.01] 1.58 [1.29, 1.94] <0.001

Neu# (×109/L) 3.64 [2.85, 4.65] 3.60 [2.84, 4.57] 0.991

NLR 2.13 [1.69, 2.85] 2.20 [1.70, 2.96] 0.061

PLR 130.06 [103.38, 157.24] 140.00 [110.36, 172.27] <0.001

RDW (%) 42.30 [40.60, 43.90] 41.90 [40.50, 43.40] 0.002

PLT (×109/L) 215.00 [184.00, 251.00] 222.00 [187.00, 260.00] 0.061

RDW-CV 12.90 [12.50, 13.40] 12.80 [12.50, 13.30] 0.594

ALP (U/L) 67.00 [59.00, 78.14] 67.00 [56.00, 81.00] 0.395

PTH (ng/ml) 49.20 [43.90, 53.75] 48.50 [37.80, 58.90] 0.786

Candidate predictors

The data was collected from the electronic medical

record (EMR) system of the Chongqing General Hospital,

which contains laboratory examination records, diagnosis

and treatment process records, doctor orders, etc. Patient’s

peripheral blood indicators, BRAFV600E gene, and

demographic indicators were selected, including age, sex,

lymphocyte count (Lymph#), neutrophil count (Neu#), red

blood cell distribution width (RDW), red blood cell distribution

width - coefficient of variation (RDW–CV), platelets count

(PLT), neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte

ratio (PLR), alkaline phosphatase (ALP), parathyroid hormone

(PTH), and BRAFV600E gene mutation as predictors to build

a ML model to identify benign and malignant thyroid tumors.

All the peripheral blood tests and BRAFV600E gene results were

obtained at the first examination after the patient was admitted

to the hospital.

The BRAFV600E gene mutation was detected by real-

time PCR using the ABI QuantStudio R©5 Real-Time PCR

System, according to the manufacturer’s instructions

(Human BRAFV600E Mutation assay Kit, YZY MED,

Wuhan, China) The DNA from FNAB specimen was

extracted using a companion kit, which was provided

by the same manufacturer. The DNA concentration

was quantified in a Nano-300 Micro Spectrophotometer

(ALLSHENG Instrument Co., Ltd. Hangzhou, China)

as per the manufacturer’s instructions. The DNA was

immediately used to carry out the test of BRAFV600E

gene mutation.

Statistical analysis

All the statistical analyses and model building were

conducted in R for windows (version 4.0.1, https://www.r-

project.org/). For information on hardware devices in the

development environment, please see Supplementary Table 1.

The data were presented as count with percentage for

categorical variables, median with interquartile range (IQR),

or mean with SD for continuous variables. For the variables

with miss rate <30%, missforest algorithm was used to fill.

First, the Mann–Whitney U-test or t-test was performed for

the continuous variables, and the chi-square test for categorical

variables was carried out used for univariate analysis. The

variables after univariate analysis were analyzed by the least

absolute shrinkage and selection operator (LASSO). Afterward,

random forest (RF), extreme gradient boosting (XGBoost), light

gradient boosting machine (LightGBM) and adaptive boosting

(AdaBoost) were used to establish prediction models. We used

the grid search algorithm to find the optimal parameters of

each algorithm to optimize the performance of the model.

Sensitivity (SEN), specificity (SPE), precision, recall, F1, and the

area under the curve (AUC) were intended to determine the

model performance.

Result

Sample collection

A total of 2,423 patients met the inclusion criteria and were

enrolled in the study. In total, 381 patients were excluded due
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FIGURE 1

Flowchart of research object.

to missing clinical data. At last, a total of 2,042 patients with

12 predictors were included in the final study. Table 1 shows

the information of the whole cohort. In the whole cohort, 1,481

malignant patients and 561 benign patients were included. The

average age of patients was 42.03± 11.30 years, ranging from 14

to 76 years, women accounted for 77.34% (1,580 cases) and men
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TABLE 2 Clinical characteristics and variables of patients in training cohort and test cohort.

Predictors Training cohort Test cohort

Benign (N = 395) Malignant (N = 1,034) P-value Benign (N = 166) Malignant (N = 447) P-value

Sex (%)

Male 70 (17.7) 247 (23.9) 0.015 35 (21.1) 110 (24.6) 0.421

Female 325 (82.3) 787 (76.1) 131 (78.9) 337 (75.4)

BRAFV600E (%)

Mutation 55 (13.9) 822 (79.5) <0.001 21 (12.7) 348 (77.9) <0.001

Wild 340 (86.1) 212 (20.5) 145 (87.3) 99 (22.1)

Age (years) 45.00 [36.00, 52.00] 39.00 [33.00, 50.00] <0.001 44.00 [34.00, 52.00] 38.00 [32.00, 49.00] 0.008

Lymph# (×109/L) 1.64 [1.39, 2.00] 1.56 [1.28, 1.92] 0.001 1.65 [1.35, 2.05] 1.61 [1.31, 1.96] 0.189

Neu# (×109/L) 3.62 [2.83, 4.65] 3.58 [2.83, 4.54] 0.925 3.66 [2.93, 4.66] 3.64 [2.88, 4.63] 0.877

NLR 2.14 [1.69, 2.91] 2.21 [1.71, 2.98] 0.074 2.11 [1.70, 2.73] 2.18 [1.70, 2.95] 0.48

PLR 131.40 [103.99, 160.30] 140.70 [110.93, 173.62] <0.001 127.47 [101.35, 155.48] 138.33 [109.73, 170.43] 0.013

RDW (%) 42.40 [40.90, 44.00] 41.90 [40.40, 43.48] <0.001 41.95 [40.30, 43.58] 41.90 [40.50, 43.20] 0.816

PLT (×109/L) 215.00 [185.00, 253.00] 221.00 [186.00, 259.00] 0.222 215.00 [183.00, 248.75] 225.00 [190.00, 261.00] 0.121

RDW-CV 12.90 [12.50, 13.40] 12.80 [12.50, 13.30] 0.387 12.80 [12.40, 13.20] 12.80 [12.50, 13.30] 0.709

ALP (U/L) 67.00 [59.26, 78.28] 66.80 [56.00, 80.89] 0.23 66.44 [58.77, 78.00] 68.00 [56.00, 82.00] 0.791

PTH (ng/ml) 49.03 [43.50, 53.73] 48.70 [37.80, 58.80] 0.925 49.44 [44.19, 53.82] 47.68 [37.90, 59.45] 0.498

FIGURE 2

LASSO analysis of indicators after univariate analysis.

22.66% (463 cases). The specific screening process and study

protocol are shown in Figure 1.

Model building

The data were split into a training cohort (70%, N = 1,429)

and a test cohort (30%, N = 613) by random number table. In

the training cohort, there were 395 cases of the benign group and

1,034 cases of the malignant group. In the test cohort, there were

166 cases of the benign group and 447 cases of the malignant

group. The predictors we collected were used as input variables

of ML algorithms. Whether malignancy or benign was regarded

as the outcome event (yes = 1, no = 0) to establish prediction

model by using training cohort, and the test cohort was used to

verify the ability of the established prediction model previously.
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TABLE 3 The optimal parameters of the three models.

Categories Algorithm Parameter

The first

model

RF mtry= 1, ntree= 60,

nodesize= 8

XGBoost max_depth= 3, eta= 0.6,

nrounds= 5

LightGBM nrounds= 20, min_data= 1,

learning_rate= 0.1

AdaBoost mfinal= 170

The second

model

RF mtry= 6, ntree= 140,

nodesize= 12

XGBoost max_depth= 4, eta= 0.3,

nrounds= 3

LightGBM nrounds= 10, min_data= 3,

learning_rate= 0.1

AdaBoost mfinal= 20

The third

model

RF mtry= 1, ntree= 90,

nodesize= 10

XGBoost max_depth= 6, eta= 0.7,

nrounds= 3

LightGBM nrounds= 10, min_data= 3,

learning_rate= 0.4

AdaBoost mfinal= 5

According to Table 2, univariate analysis results indicated that

6 predictors were statistically significant between the malignant

group and benign group in training cohort. We performed the

LASSO analysis on the 6 indicators with statistically significant,

and the results showed that these 6 indicators were all selected

by LASSO (Figure 2). Therefore, our final diagnostic model

included the 6 indicators of sex, age, Lymph#, PLR, RDW,

and BRAFV600E.

We built 3ML models with different predictors, the first

model included all the predictors we included, the second

model included predictors after feature selection, and the

third model included patient peripheral blood predictors.

For the specific construction steps of the model, please

see Supplementary Figure 1, and the detailed description of

the three models can be found in Supplementary Table 2.

In addition, we also used the grid search algorithm to

find the optimal parameters of the ML algorithm. The

grid search algorithm permutes and combines each possible

parameter value, and then substitutes the results of all possible

combinations into the algorithm for model training. The

optimal parameter combination was selected from all possible

parameter combinations. In our research, we selected the

optimal parameters of four ML algorithms: RF, XGBoost,

LightGBM, and Adaboost through the grid search algorithm.

Please see Table 3 for the optimal parameters of each algorithm.

Performance evaluated in di�erent
models

In Table 4, the metrics of three models were compared in

terms of SEN, SPE, AUC, etc., in the test cohort. The SEN

and precision are indicators to measure the positive predictive

performance of the model. In the first and second models, the

SEN indicator exceeds 0.7, and the precision indicator reaches

0.9, suggesting that the model we established can well identify

malignant patients from thyroid tumor patients. The SPE is an

indicator of the model’s negative predictive performance, and

in our study, the highest SPE was 0.892, indicating that our

model could also predict patients with benign thyroid tumor

well. The AUC is a comprehensive indicator for comparing

prediction performance. Among the three models constructed

with different predictors, the first model including all predictors

performed best with the highest AUC of 0.874 (95% CI, 0.841,

0.906). The secondmodel had the highest AUC of 0.853 (95%CI,

0.818, 0.889; Figure 3). However, we performed the Delong test

on the optimal AUC of the first and second models (z = 1.65,

P = 0.099), and the results showed that the difference was not

statistically significant. The third model selects peripheral blood

predictors, and the best AUC is 0.698 (95% confidence interval,

0.651, 0.745). In the third model, we selected biomarkers in

patients’ peripheral blood to establish a prediction model, and

the performance of the model is inferior to the first and second

models. Biomarkers in peripheral blood are easy to obtain, and

the AUC of the model is close to 0.7, suggesting that it also has a

certain predictive value.

To balance the diagnostic performance and simplicity of

the model, according to the comprehensive evaluation of the

performance indicators of the model and the Delong test

analysis, the second model, using the RF algorithm, was

the best at predicting benign and malignant thyroid tumors.

The importance ranking of predictors in the RF algorithm

is as follows: BRAFV600E, age, PLR, RDW, Lymph#, and

sex (Figure 4).

Discussion

In this study, we developed the ML-based predictive

models to identify benign and malignant thyroid nodules. The

current gold diagnostic standard for thyroid tumors meeting

appropriate criteria is a cyto-pathologic assessment of FNAB.

However, high operator requirements were needed in FNAB,

and the accuracy of diagnosis largely depends on the operator’s

personal level of experience. Therefore, it is crucial to provide

more objective and direct parameters that can help with the

identification of benign and malignant thyroid lesions. Thus,

predictors including BRAFV600E gene mutation, Lymph#,

Neu#, RDW, PLT, NLR, PLR, ALP, PTH, and clinical characters
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TABLE 4 Performance evaluation table of three models.

Categories Algorithm SEN SPE Precision Recall F1 AUC (95%CI)

The first model RF 0.790 0.886 0.949 0.790 0.862 0.874 (0.841–0.906)

XGBoost 0.790 0.873 0.944 0.790 0.860 0.868 (0.834–0.901)

LightGBM 0.734 0.892 0.948 0.734 0.827 0.861 (0.826–0.895)

AdaBoost 0.723 0.855 0.931 0.720 0.812 0.837 (0.802–0.873)

The second model RF 0.781 0.873 0.943 0.781 0.854 0.853 (0.818–0.888)

XGBoost 0.754 0.873 0.941 0.754 0.837 0.853 (0.818–0.889)

LightGBM 0.765 0.873 0.942 0.765 0.844 0.837 (0.800–0.873)

AdaBoost 0.779 0.880 0.946 0.779 0.854 0.832 (0.797–0.867)

The third model RF 0.671 0.645 0.836 0.671 0.744 0.698 (0.651–0.745)

XGBoost 0.781 0.548 0.823 0.781 0.801 0.688 (0.639–0.736)

LightGBM 0.624 0.705 0.849 0.626 0.721 0.693 (0.645–0.741)

AdaBoost 0.626 0.651 0.828 0.626 0.713 0.666 (0.618–0.714)

FIGURE 3

ROC curve of four models in di�erent categories.

of patients were enrolled and the ML algorithm was used to

predict benign and malignant thyroid tumors in our study.

Recent advances in understanding the molecular

pathogenesis of thyroid tumors have enabled the application of

molecular tests to provide more objective information and play

a role in making more personalized clinical treatments (16). A

large number of biomarkers such as BRAFV600E, RAS, EIF1AX,

PIK3CA, PTEN and AKT1, SWI/SNF, ALK, and CDKN2A,

have been excavated, demonstrating the potential of molecular

diagnostic detection(17). Nevertheless, the BRAFV600E is the

most prevalent mutation detected in PTC, with an average

frequency of 60%−70%, and the tests for BRAFV600E mutation

are commonly available in the current clinical practice (18). The

BRAFV600E protein kinase has received extensive attention

because of its function in promoting cell proliferation, growth,

and division, and numerous studies have investigated the

relationship between the BRAFV600E mutations and various

clinicopathological features. In vitro tests have shown a high

concordance between the BRAFV600E mutations and the

aggressive characteristics of PTC, while clinical trials have

shown contrasting results, making it controversial whether

the BRAFV600E mutations can be used as an aggressive

marker for PTC. Most studies suggest that the BRAFV600E

mutations are associated with worse clinical pathology, such as

lymph node metastasis, distant metastasis, worse tumor stage,

aggressive subtype, tumor size, male, and old age, and therefore,

recommend the central lymph node dissection based on total

thyroidectomy with more stringent radioiodine therapy and

a close follow-up after surgery (19). However, some studies

did not find such an association (20). The differences in these

studies may be due to the different sample sizes included in the

studies, epidemiological characteristics of the patients, papillary

carcinoma subtypes, types of specimens used for molecular

testing, and testing methods. In this study, the BRAFV600E
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FIGURE 4

Importance ranking of prediction indicators after feature selection.

gene mutation status was important for all algorithms, which

is consistent with a recent study. The BRAFV600E mutation

has both high specificity and sensitivity to predict thyroid

malignancy in the Chinese population. It can accurately

complete cytopathology in the guidance of thyroid surgery

(21). In our study, the diagnostic performance accuracy of the

BRAFV600E gene was 0.810, and the AUC was 0.827, which had

a high-diagnostic value.

The peripheral blood routine test and the blood biochemical

test have major advantages over the traditional pathological

test of tumor lesions in terms of quick and simple sample

acquisition, low collection cost, minimal trauma, and

preoperative detection, which should be paid more attention

to in research (22). Lymph#, Neu#, RDW-CV, PLT, NLR,

PLR, ALP, PTH, and other related indicators can quickly and

accurately detect the values of blood, in order to effectively

indicate abnormalities of infection, anemia, and cruor. In

recent years, a wide variety of blood indicators with different

changes were concerned and discussed in the study of malignant

tumor diseases. The preoperative NLR and RDW–CV are

convenient, practical, and easily measured biomarkers for

clinical diagnosis and prognostic assessment of patients with

esophageal cancer. Moreover, the NLR was more effective than

RDW–CV, acting as an independent prognostic biomarker for

esophageal cancer (23). On the contrary, the RDW–CV has

attracted more attention in cervical, ovarian, and endometrial

cancer as studies have shown the hierarchical independent

relationship between the RDW and these kinds of cancers

(24). The preoperative blood count from peripheral blood

may provide prognostic value in patients with pathologic stage

I NSCLC undergoing surgical resection. Of significance in

patients with pT1 N0 NSCLC, the high lymphocyte count and

high platelet count were associated with higher recurrence (25).

Even the NLR, PLR, and LMR, which are the derived indexes

of peripheral whole blood cell counts, were developed into

new indexes, and have fairly good values of prognostic(26–28).

However, the values of NLR and PLR to distinguish between

benign and malignant of thyroid nodules is still controversial.

Our study found that the Lymph#, RDW–CV, and PLR were

statistically different between benign and malignant thyroid

nodules (P < 0.05).

Recently, the ML algorithms have been extensively used

in the medical field, emerging as a powerful tool in dealing

with many health care problems. In our study, the ML-based

model for diagnosing benign and malignant thyroid tumors

showed the highest AUC of 0.874 (95% CI, 0.841, 0.906), which

suggests that our model has a high value in diagnosing benign

and malignant thyroid tumors. To evaluate the accuracy and

simplicity of the model, feature selection is often used to screen

indicators with predictive value. We screened out six predictors

from 12 predictors by the univariate analysis method. Compared

with the inclusion of 12 predictors, the model established by

these six predictors also has good predictive performance and

was identified as the optimal model. From the perspective of

algorithm selection, when the indicators contained in the model

are consistent, the performance of the four algorithms is not

significantly different. One of the reasons is that if there is

a clear correlation between the independent and dependent
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TABLE 5 Comparison of the newly created model with the existing model.

Title Authors Algorithms Parameters AUC

Machine Learning for Identifying

Benign and Malignant of Thyroid

Tumors: A Retrospective Study of 2,423

Patients (final model)

Yuan-yuan Guo.et

al

Machine learning

(Random forest)

Sex, age, Lymph#,

PLR, RDW,

BRAFV600E

0.853 (95% CI,

0.818,0.888)

Deep learning-based artificial

intelligence model to assist thyroid

nodule diagnosis and management: a

multicentre diagnostic study(13)

Sui, Peng. et al Deep learning

(ResNet, ResNeXt,

DenseNet)

Ultrasound images 0.875 (95% CI,

0.871–0.880)

Machine learning to identify lymph

node metastasis from thyroid cancer in

patients undergoing contrast-enhanced

CT studies (29)

Masuda et al machine learning

(Support Vector

Machines)

CT images 0.86

Deep convolutional neural network for

classification of thyroid nodules on

ultrasound: Comparison of the

diagnostic performance with that of

radiologists (30)

Yeonjae et al. Deep learning Images of

underwent

US-guided

fine-needle

aspiration biopsy

0.83–0.86

Deep convolutional neural network for

the diagnosis of thyroid nodules on

ultrasound (31)

Yeon et al. Deep learning

(Convolutional

Neural Network)

Ultrasound image 0.845, 0.835, and

0.850

A comparison between deep learning

convolutional neural networks and

radiologists in the differentiation of

benign and malignant thyroid nodules

on CT images (32)

Hong-Bo Zhao et al. Deep learning

(Convolutional

Neural Network)

CT images 0.901–0.947

variables, then most ML algorithms can handle this nonlinear

relationship and have good predictive performance. At present,

many scholars have studied the use of artificial intelligence

algorithms to accurately identify benign and malignant thyroid

tumors (Table 5). The performance of our model is inferior

to that of Hong-Bo Zhao, Sui, Peng et al., and similar to

that of Masuda, Kim, Su Yeon Ko et al. Current researches

mainly use ultrasound or CT images combined with intelligent

algorithms to accurately diagnose benign and malignant thyroid

tumors, and has excellent performance. In general, CT and

ultrasound images have better predictive performance because

they contain more information about benign and malignant

tumors. However, from the perspective of patient’s genetic

markers and peripheral bloodmarkers, our predictors are easy to

obtain and has good value in identifying benign and malignant

thyroid tumors.

In conclusion, the prediction model established in this study

can distinguish benign with the risk of identifying malignant

thyroid nodules, which could be further developed into a clinical

decision support system. Our study also had some limitations.

First, all of the data come from southwest China, so there may

be a selection bias. Second, only four algorithms were selected

to establish the prediction model, therefore it is still necessary to

try whether there are other better predictive algorithms. Third,

the missing rate ≥30% of the variables were not included in

the study. Therefore, further analysis is required to identify

these factors related to identifying benign and malignant of

thyroid nodules.
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