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ABSTRACT: Multivalency is prevalent in various biological
systems and applications due to the superselectivity that arises
from the cooperativity of multivalent binding. Traditionally, it was
thought that weaker individual binding would improve the
selectivity in multivalent targeting. Here, using analytical mean
field theory and Monte Carlo simulations, we discover that, for
receptors that are highly uniformly distributed, the highest
selectivity occurs at an intermediate binding energy and can be
significantly greater than the weak binding limit. This is caused by
an exponential relationship between the bound fraction and
receptor concentration, which is influenced by both the strength
and combinatorial entropy of binding. Our findings not only
provide new guidelines for the rational design of biosensors using
multivalent nanoparticles but also introduce a new perspective in understanding biological processes involving multivalency.
KEYWORDS: multivalent nanoparticle binding, superselectivity, hyperuniformity, combinatorial entropy, Monte Carlo simulation

■ INTRODUCTION
Multivalent interactions play a crucial role in a variety of
biological processes.1−6 They provide an “on−off” binding at a
threshold receptor density, creating a biological barcode,
targeting surfaces that have a receptor density above the
threshold while leaving others untouched. As a result, the
multivalent binding strategy is also widely used in many bio-
related applications, particularly in drug delivery7−11 and
biosensing.12−14

The Martinez-Veracoecha and Frenkel (MF) model
provides a selectivity parameter α = d ln θ/d ln nR quantifying
the dependence of targeted adsorption θ on the receptor
density nR.

15 Generally, the maximum of the selectivity
parameter αmax, where the targeted adsorption grows fastest,
is defined as the selectivity employed to characterize the overall
selectivity, indicating the onset of guest nanoparticle binding
and clustering.15−17 If the selectivity αmax > 1, the binding of
nanoparticles is superselective, which is a signature of
multivalent binding. The MF model predicts that αmax
increases as the binding strength becomes weaker when
neglecting non-specific interactions,15,18 which was also
observed in recent experimental systems including DNA-
coated colloids,19−21 multivalent guest−host polymers,16,22−24
and influenza virus particles.25

All studies mentioned above assume that the receptors
grafted on the host substrate follow the Poisson distribution,
considering they are random and spatially uncorrelated.
However, due to the complex environment on cell membranes,
the receptors are heterogeneously distributed and correlated,26

the effect of which remains unknown. Additionally, recent

breakthroughs in DNA nanotechnology offer the possibility to
precisely design the spatial distribution of receptors on a
substrate.27 Here we investigate how the uniformity of receptor
distribution affects the selectivity in multivalent nanoparticle
binding by focusing on the hyperuniform, Poisson, and anti-
hyperuniform distributions.28 We find that the more uniformly
distributed receptors lead to higher selectivity αmax, and
intriguingly, the maximum selectivity appears at a certain
intermediate binding energy for hyperuniform distributions,
which is qualitatively different from the Poisson distribution
and anti-hyperuniform distributions, with αmax approaching the
upper bound at the infinitely weak binding energy limit.
Moreover, the highest selectivity obtained for receptors of
hyperuniform distributions can be significantly larger than the
upper bound in the Poisson and anti-hyperuniform distribu-
tions, where the relatively large number fluctuation of
receptors masks the effect and causes the selectivity to increase
monotonically with decreasing binding strength.

■ METHODOLOGY
As shown in Figure 1a, we consider that immobile receptors
are grafted on a host substrate. The nanoparticles are
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controlled by an activity z = v0 exp(βμ), with μ the chemical
potential of nanoparticles and β = 1/kB T, where v0 is the
volume that each particle can explore when bound on the
substrate, and kB and T are the Boltzmann constant and
temperature of the system, respectively. Each nanoparticle is
coated with κ mobile ligands, which can bind to the receptors
reversibly with the binding free energy f B. The binding free
energy f B is determined by both the equilibrium constant of
ligand−receptor binding in solvent Ka and the configurational
entropy penalty due to the constraint of tethering ΔSconf: βf B =
−log Ka − kB−1ΔSconf.29 Assuming that the adsorption of each
guest particle is independent, we divide the substrate into Nmax
sites, each of which can bind with one guest particle at most.
The fraction of sites that are occupied by particles with at least
one bond formed is

z n
zq n
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Using the unbound site as the reference state, the single-site
bound state partition function q(nR) with nR receptors can be
written as
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Then the fraction of bound sites or adsorption is
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where ⟨·⟩⟨ndR⟩ calculates the average over the receptor number
distribution with the mathematical estimate ⟨nR⟩. The
selectivity parameter is defined as

n
d ln

d ln R
=

(5)

Since the higher selectivity usually appears at small
activity,15,30,31 the time for the substrate to exchange
nanoparticles with the reservoir to reach equilibrium is very
long, which makes the direct Monte Carlo (MC) simulations
in 3D systems expensive and inefficient. Here we propose a κ-
μVTMC simulation method with implicit ligands and bonds in
2D, which enables us to efficiently sample in the additional
bond number dimension (see simulation methods in the
Supporting Information (SI)). As shown in Figure 1b, we
model the multivalent nanoparticles as hard disks of diameter σ
and volume shd = πσ2/4 controlled by the chemical potential μ.
We assume that one receptor can only bind with the particle
covering it; i.e., the center-to-center distance between the
receptor and ligand is less than σ/2. The total number of sites
Nmax = L2/shd, and the average number of receptors per site
⟨nR⟩ = NRshd/L2. The activity z = shd exp(βμ)/Λ2, with Λ the
de Broglie wavelength. The distribution p(nR) is numerically
sampled by the number of receptors within a 2D spherical
window of radius σ/2. One can see that the κ-μVT MC
simulation essentially simulates a monolayer of nanoparticles
near the host substrate, where nanoparticles can bind with
receptors on the substrate, and the system exchanges
nanoparticles with a bulk (3D) reservoir of chemical potential
μ above. The advantage of the κ-μVT model is that one does
not need to explicitly simulate the exchange of nanoparticles
between the host substrate and bulk reservoir through
diffusion, which could be very computationally expensive at
small activity.

■ RESULTS

Receptor Uniformity Enhances Selectivity

We consider four different types of receptor distributions: anti-
hyperuniform (Anti-HU) distributions,32 the Poisson distribu-
tion, stealthy hyperuniform (SHU) distributions33,34 and a
square lattice (Figure S1). In equilibrium, Anti-HU can
describe systems close to a critical point, and SHU describes
the disordered systems with long-range correlations.32 All
those distributions are statistically homogeneous point
processes and follow the central limit theorem, i.e., they can
be approximated by Gaussian distributions at the large ⟨nR⟩
limit.28 The spatial uniformity of a receptor distribution at
given ⟨nR⟩ can be characterized by the relative local number
variance σn dR

2 /⟨nR⟩. For the Poisson distribution in 2D, σn dR

2 /⟨nR⟩
= 1. For a perfect square lattice, σndR

2 /⟨nR⟩ ∼ ⟨nR⟩−1/2, which
essentially implies that the square lattice is more uniform than
the Poisson distribution.
SHU distributions follow the same scaling with the square

lattice. The configurations are generated by minimizing Φ(rN)
= ∑|k|<KS(k) using the limited-memory BFGS algorithm,

35

starting from a Poisson configuration with number density ρ =
1. Here K = 4 34 and χ = M(K)/[D(NR − 1)] denotes the
relative fraction of constrained degrees of freedom compared
to the total degrees of freedom D(NR − 1) with M(K) the
number of independently constrained wave vectors.32 The
prefactor of the distributions depends on the parameter χ with
the larger χ being more uniform or with smaller density
fluctuations.

Figure 1. Multivalent nanoparticle binding. (a) Schematic
representation of the prototypical multivalent adsorption model, in
which the ligands (blue) on the particles (white) can bind with the
immobile receptors (pink) on the substrate (gray) reversibly. (b)
Illustration of the κ-μVT Monte Carlo simulation, in which some
receptors (red) are bound with implicit ligands on the nanoparticles
(blue) while the others (black) are unbound. In the simulation, the
bonds are implicit. (c) Part of typical snapshots of receptors following
various distributions. The global typical snapshots of receptors can be
found in the SI.
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On the contrary, in Anti-HU structures, σndR

2 increases faster
than ⟨nR⟩, and here we choose configurations that exhibit σn dR

2 /
⟨nR⟩ ∼ ⟨nR⟩1/2. The Anti-HU configurations are generated
using the algorithm detailed in ref 36. Specifically, we use the
limited-memory BFGS algorithm to minimize ∑|k|<K[⟨S(k)⟩ −
S0(k)]2, in which K = 10, ⟨S(k)⟩ is the average structure factor
S(k) = |∑j=1

NR exp(−ik·rj)|2/N over Nc = 100 configurations, and
the targeted structure factor for various a is S0(k) = 1 +
a exp(−|k|)/|k|. The prefactor of the distributions depends on
the parameter a, with the larger a being less uniform or with
the larger density fluctuations. For each structure, we
individually generate 10 snapshots of 104 receptors to sample
the spatial distribution and to be used in MC simulations.
In Figure 2, we plot the average bound fraction ⟨θ⟩ and the

selectivity parameter α as functions of ⟨nR⟩ for various receptor

distributions. One can see that eqs 4 and 5 agree quantitatively
with computer simulations when ⟨θ⟩ < 0.5 (indicated by the
dotted horizontal line), and at very large ⟨nR⟩, the theoretically
predicted ⟨θ⟩ is larger. This discrepancy is due to the fact that
the excluded volume effect between nanoparticles is not
considered in the mean field theory, which overestimates the

adsorption at high density. When ⟨nR⟩ is small, with increasing
⟨nR⟩, less uniform distributions lead to larger value of ⟨θ⟩. This
is because that ⟨θ⟩ ≈ z⟨q⟩ according to eq 4, where the average
bound state partition function over the receptor distribution
⟨q⟩ is a convex function (see SI); hence, ⟨q⟩ increases with
increasing the variance of the distribution σn dR

2 . As shown in
Figure 2, with increasing the uniformity, i.e., from Anti-HU to
the Poisson, SHU structures, and square lattice, the selectivity
αmax increases monotonically, and for SHU structures and
square lattice, αmax is even larger than κ = 4. This is intriguing
as it has been accepted that weaker binding energy enhances
selectivity, of which the upper bound of αmax is κ.15

Achieving the Highest Selectivity by Tuning Binding
Energy

In Figure 3, we plot ⟨θ⟩ and α as functions of ⟨nR⟩ for binding
energy from strong (βf B = −6) to weak (βf B = 4) of various
receptor distributions. For the receptor structures of the
Poisson and Anti-HU distributions, αmax increases monotoni-
cally with increasing βf B, namely weaker binding enhances
selectivity, while for SHU structures with χ = 0.48 and square
lattice, αmax reaches the maximum at about βf B = −4. To
understand this, we start with the selectivity parameter αzv =
d ln θ/d ln nR in the zero variance scenario, which is the
uniform limit of receptors with σndR

2 = 0. As the superselective
adsorption of nanoparticles of interest mostly occurs at low
activity, according to eq 1, when zq→0, θ(nR) ≈ zq(nR) and
αzv ≈ d ln q/d ln nR. We define the selectivity parameter at the
low activity limit as αzv,0 = d ln q/d ln nR.

37 We plot the
probability of forming λ bonds on the guest nanoparticle in the
bound state in Figure 4a. For weak binding βf B = 4 and small
nR, one can see q(nR) ≈ Q(⟨λ⟩bound,nR), with the most probable
bond number ⟨λ⟩bound ≈ 1 (yellow region in upper panel of
Figure 4a). This implies that there is only one bond formed for
the particle bound on the substrate, and the ligands on each
particle cannot bind cooperatively. As shown in Figure 4b, this
leads to a linear dependence q ≈ nRκ e−βf B and αzv,0 ≈ 1 with
no superselectivity. With increasing nR, ⟨λ⟩bound approaches κ at
the large nR limit due to the restriction from the number of

Figure 2. Receptor uniformity enhances selectivity. Average bound
fraction ⟨θ⟩ (a) and selectivity parameter α (b) as a function of ⟨nR⟩
with κ = 4, βf B = −2, and βμ = −10 for various receptors
distributions. The solid curves are the theoretical predictions of eqs 4
and 5, and the symbols are obtained from simulations.

Figure 3. Achieving the highest selectivity by tuning binding free energy. ⟨θ⟩ and α as a function of ⟨nR⟩ for various binding free energy βf B for
typical receptors structures: Anti-HU a = 10, Poisson, SHU χ = 0.48, and square lattice. The solid curves are the theoretical predictions of eqs 4 and
5, and the symbols are obtained from simulations. In all simulations, κ = 4 and βμ = −10.
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ligands available on nanoparticles, and this leads to a power-
law dependence of q on nR (see SI):

q Q n
n

n
n( , ) e

( )
( e )f f

R
R

R
RB B= = !

! (6)

and αzv,0 ≈ κ. Here, κ ligands on each particle bind with
crowded receptors together, and the emergent combinatorial
entropy induces the power-law dependence.
Differently, at the strong binding βf B = −4, although the

power-law dependence also appears at the large nR limit, in the
small nR regime, i.e., 1 < nR < κ, as shown in the lower panel in
Figure 4a, the most probable bond number ⟨λ⟩bound ≈ nR. It is
because that the most probable bond number is limited by the
number of receptors on each site of the host substrate, rather
than the number of ligands on the nanoparticles, which implies
an exponential dependence of q on nR (see SI):
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( e )n f f n
R R

R

R B B R= = !
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and αzv,0 ≈ nR(ln κ − βf B) ∼ nR. These are the major results of
this work. The derivation of eqs 6 and 7 based on the saddle-
point approximation method17,38,39 can be found in the SI. As
shown in Figure 4c, αzv,0 peaks around nR = κ, which is
independent of the binding energy, and the selectivity αzv,0max ≈
κ(ln κ − βf B) can be larger than κ when βf B < ln κ − 1. Hence,
in the zero variance binding scenario, ln κ − 1 is a threshold of
binding energy, lower than which αzv,0max > κ, otherwise αzv,0max has
an upper bound κ at nR→+∞.
As shown in Figure 4d, the rescaled bound fractions θ/z at

various activity z collapse at small nR, while they reach plateaus
of different heights at high nR. The behavior is qualitatively the
same when considering receptor distributions (Figure S3).
This indicates that z does not affect the selectivity parameter
when nR < nRs , where q(nRs ) ≈ 1/z is the bound fraction
saturation threshold. Therefore, the zero variance selectivity
parameter αzv ≈ αzv,0 at nR is lower than the threshold, and
drops to 0 with further increasing nR. Moreover, when zq(nR =

1) > 1, i.e., βf B < ln(zκ), the bound fraction saturates even if
only one nanoparticle binds to one receptor, and no
superselectivity occurs. To sum up, an exponential dependence
occurs at ln(zκ) < βf B < ln κ − 1 and 1 < nR < κ in the zero
variance scenario.
For the highly uniformly distributed receptors, e.g., SHU χ =

0.48 and the square lattice in Figure 3, the situation is
qualitatively the same to the zero variance scenario since the
variance of the receptor distribution is small. The largest αmax
occurs at an intermediate binding energy with a larger value
than κ. Additionally, the critical ⟨nR⟩ with αmax appears
independent of the binding energy βf B = −6 and −4, which is a
distinct feature of the exponential dependence.
For the Poisson and less uniform receptor distributions, i.e.,

Anti-HU, our numerical evidence shows that αmax increases
monotonically with increasing βf B and approaches κ at βf B→
+∞ (Figure 3). We believe that this is due to the relatively
large receptor number fluctuations masking the exponential
dependence in the intermediate binding energy. As shown in
Figure S4, in the weak binding limit, receptor uniformity has
little effect on ⟨θ⟩, and αmax→κ holds as long as the receptor
distribution obeys the central limit theorem and satisfies σn dR

2 <
⟨nR⟩2 at large ⟨nR⟩ (see SI). Therefore, weaker binding
enhances the selectivity with an upper bound limit κ for those
less uniform distributions.15

Next we investigate the binding of multivalent nanoparticles
to receptors with tunable local uniformity. We use the
configurations of receptors obtained from equilibrium fluids
of hard disks (HD) of various packing fraction ϕ. When ϕ→0,
the HD system recovers an ideal gas of the Poisson
distribution, i.e., σn dR

2 /⟨nR⟩ = 1, and with increasing ϕ, at
certain length scale, σn dR

2 /⟨nR⟩ ∼ ⟨nR⟩ξ, with ξ < 0, which is the
local uniformity induced by the increased short-range
correlation because of the excluded volume effect (Figure
S5). The local uniformity of the configuration increases with
increasing ϕ of HD systems, while at large enough length scale
σn dR

2 /⟨nR⟩ ∼ ⟨nR⟩0 (Figure S5). The measured αmax as functions

Figure 4. Multivalent binding of nanoparticles in the zero variance scenario. (a) The probability for λ bonds formed on bound guest
nanoparticles Q(λ)/q as a function of nR for βf B = 4 (upper) and − 4 (lower). (b, c) The zero variance bound state partition function q and zero
variance selectivity at low activity limit αzv,0 as a function of nR. Open symbols are the analytical results from eq 2. Colored dotted lines are from eq
6. Colored dashed lines are (b) q = nR e−βf B and (c) eq 7, respectively. Black dashed and dotted lines indicate αzv,0 = 1 and κ, respectively. (d) θ/z
(upper colored solid curves), q (upper black curve), αzv (lower colored curves), and αzv,0 (lower black curve) as a function of nR with βf B = 4 for
various activity z. Symbols indicate the position of nRs , which is the crosspoint of θ/z and 1/z (upper colored dashed curves). In all calculations, κ =
10.
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of binding strength βf B for different ϕ are shown in Figure 5.
One can see that, with small local uniformity, e.g., ϕ = 0.01,

αmax increases monotonically with increasing βf B, which is the
same as receptors of the Poisson distribution (Figure S6).
However, with increasing ϕ, the non-monotonic dependence
of αmax on βf B appears when ϕ > 0.15 (Figure S6). This
implies that the local uniformity induced by the excluded
volume effect can trigger the non-monotonic dependence of
selectivity on the binding free energy.
Here we consider the binding of multivalent nanoparticles

on a rigid flat substrate, while on a cell membrane, as more
bonds form with the nanoparticles, the membrane roughness
decreases. Because the bonds suppress membrane shape
fluctuations, which promotes the formation of additional
bonds cooperatively.40,41 In our model, we can consider the
thermal roughness of flexible substrates by rewriting the
partition function of λ bonds forming in eq 3 to include an
entropy cost, ΔSmem(λ), that originates from the suppression of
membrane shape fluctuations upon λ bonds formation. This
term depends on the relative roughness of the membranes, ξ⊥
∼ λ1/2, and a characteristic length ξRL that represents the
extension of the receptor−ligand complex perpendicular to the
membranes.42 When ξ⊥ ≫ ξRL, we have ekBd

−1
ΔSmem(λ) ∼ ξ⊥

−1 ∼
λ0.5.43 At the large nR limit, where q ≈ Q(λ = κ,nR), the entropy
cost term ΔSmem is a constant because of the constant number
of bonds, and eq 6 remains valid. At this limit, the suppression
of membrane shape fluctuation has no qualitative effect on
αzv,0. However, an additional term should be added to αzv,0 to
account for the contribution of ΔSmem. This term is
d log ekBd

−1
ΔSmem(ndR)/d log nR, which is round 0.5 at the strong

binding limit when 1 < nR ≪ κ. This suggests that the
suppression of membrane shape fluctuations can enhance the
superselectivity.

■ DISCUSSION
In conclusion, we have investigated the impact of receptor
uniformity on the superselective binding of multivalent
nanoparticles, for which we devised a κ-μVT MC simulation

method to compare with the analytical theory without any
fitting parameter. We find that receptors that are more
uniformly distributed lead to stronger superselective binding of
multivalent particles. Specifically, for receptors with SHU
structures and square lattice arrangements, the selectivity, αmax,
can be significantly larger than the valence of the nanoparticle,
κ, which is the highest level of selectivity that receptors with
Poisson and Anti-HU distributions can achieve. Furthermore,
for receptors with SHU distributions and square lattice
arrangements, the largest αmax occurs at an intermediate
strength of binding energy, which is due to the exponential
dependence of the bound fraction on the receptor density. The
exponential dependence arises from the restriction of available
receptors and is affected by both the binding energy and
combinatorial entropy. This is different from the binding on
receptors with Poisson or Anti-HU distributions, where weaker
binding always enhances the selectivity. These results suggest
that, for receptors that are highly uniformly distributed, one
does not have to use very weak binding energy to achieve high
selectivity, and the largest αmax occurs at a certain relatively
strong binding that is less affected by non-specific attraction.
Our findings are relevant for designing superselective sensors

using multivalent nanoparticles, a possible design of which is
shown in Figure 6. Based on our results, one can use arrays of

orderly arranged receptors of different density using DNA
origami to enhance the superselectivity using strongly binding
multivalent nanoparticles to avoid the influence of non-specific
attraction.27 This also suggests the possibility of designing
superselective assembly of receptor-patterned colloidal sys-
tems.44,45 Additionally, our findings emphasize the significance
of receptor distribution in biological systems. Although in
principle many receptors on cell membranes are mobile, the
receptor diffusion time scale on cell membranes, tdiff, could be
much longer than the time it takes to form/break a bond with
ligands on nanoparticles, ton/off. This suggests that these
receptors can be considered as effectively immobile.
Furthermore, there are also many immobile receptors on cell
membranes that are restricted and compartmentalized due to
interactions with the cytoskeleton.46 Moreover, we also show
that the local uniformity induced by excluded volume effects
can trigger the non-monotonic dependence of selectivity on
the binding free energy, which suggests that our finding can be

Figure 5. Superselectivity of multivalent nanoparticle binding on
receptors of tunable local uniformity. Selectivity αmax as a function
of binding strength βf B for structures obtained from equilibrium hard-
disk fluids at various packing fraction ϕ. In all simulations, κ = 4 and
βμ = −10.

Figure 6. Possible design of a superselective sensor for multivalent
nanoparticles. The design consists of arrays of orderly arranged
receptors of density nR increasing from left to right, which can be
realized by using DNA origami.27 The inset shows typical adsorption
curves θ of multivalent nanoparticles on the bands of receptors of
different nR grafted on the substrate.
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expected in systems of relatively densely packed receptors, like
the situation in many biological membranes.
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