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A B S T R A C T

Early life adversities during childhood (such as maltreatment, abuse, neglect, or parental deprivation) may in-
crease the vulnerability to cognitive disturbances and emotional disorders in both, adolescence and adulthood.
Maternal separation (MS) is a widely used model to study stress-related changes in brain and behavior in rodents.
In this study, we investigated the effect of MS (postnatal day 2–14, 3 h/day) in both, female and male adolescent
mice. Specifically, we evaluated (i) the spatial working memory, anxiety and depressive-like behavior, (ii) the
hippocampal synaptic gene expression, and (iii) the hippocampal neuroinflammatory response.

Our results show that MS significantly increased depressive-like behavior in adolescent female mice and altered
the spatial memory in adolescent male mice. In addition, MS led to decreased expression of genes related to
synaptic function (5ht6r, Synaptophysin, and Cox-2) and induced an exacerbated microglial activation in dentate
gyrus (DG), CA1, and CA3. However, while the levels of hippocampal inflammatory cytokines were not modified
by MS, they did follow a sex-specific expression in adolescent mice.

Taken together, our results suggest that MS induces long-term changes in hippocampal microglia and synaptic
gene expression, alters the spatial memory, and induces depressive-like behavior in the adolescent mice, in a sex-
specific manner.
1. Introduction

Adolescence is a critical period for brain development when the brain
undergoes different processes (including executive function develop-
ment, synaptic stabilization and synaptic pruning (Selemon, 2013)) that
induce profound emotional and cognitive changes. The hippocampus is a
key brain region that regulates memory processes and emotions. Owing
to its neuroanatomical connections and high expression of glucocorti-
coids and mineralocorticoids, the hippocampus is highly vulnerable to
early environmental factors, such as stress or immune activation
(Hoeijmakers et al., 2014). In fact, early life stress (ELS) exposure during
childhood alters hippocampal development and/or its activation, which
correlates with mood and memory disturbances found in human ado-
lescents (Chugani et al., 2001; Carrion et al., 2010; Herringa et al., 2013)
and animal models (Molet et al., 2014; Harrison et al., 2014).

Over recent years, neuroinflammation has emerged as a potential link
between ELS and the emergence of neuropsychiatric disorders in ado-
lescents. In the developing hippocampus, ELS alters microglia (prolifer-
ation, morphology and phagocytic activity (Johnson and Kaffman,
mmation Laboratory, S€olvegatan
hiller).
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2018)) and can prime them, which has been associated with behavioral
abnormalities later in life (Catale et al., 2020). Microglia also undergo
sex-dependent maturation processes that affect, among other factors,
cytokine release which might be linked to the differential response to ELS
in adolescence (Schwarz and Bilbo, 2012; Grassi-Oliveira et al., 2016).

In this study, we hypothesized that the previously observed behav-
ioral effects of ELS in adolescents (He et al., 2020) is mediated by
increased brain inflammatory responses in mice. We used an established
model of ELS, maternal separation (3 h/day, postnatal day 2–14). To
study the effect of MS on the brain, specifically the hippocampal in-
flammatory response during adolescence, we examined: (i) the anxiety-
and depressive-like behavior, and the spatial memory; (ii) the expression
of genes involved in inflammation-induced depression and synaptic
dysfunction in hippocampus (Cox-2 (Muller, 2019), 5ht6r (Rasenick,
2016) and Synaptophysin (Cui et al., 2020)); and (iii) the regional hip-
pocampal microglia activation (in DG, CA1 and CA3) and the hippo-
campal cytokine concentrations in both female and male mice at 6 weeks
of age.
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2. Materials and methods

2.1. Animals

All the experiments were performed following the international
guidelines on experimental animal research and approved by the Malm€o-
Lund Ethical Committee for Animal Research in Sweden (Dnr. 5.8. 18-
01107/2018).

Four breeding cages with two C57bl/6 female mice bred with one
C57bl/6 male mouse (9–12 weeks old) per cage were used in this study.
Pups were weaned at P30, and age- and sex-matched wild-type litter-
mates were group-housed (3-5 animals/cage) with bedding material, 12
h light/dark cycle, and water and food provided ad libitum.

2.2. Maternal separation

Maternal separation (MS) was performed as described by Teissier et al.
(2020). Briefly, 7 female and 9 male pups were daily separated from their
dams from postnatal days 2–14 (P2- P14), 3 h per day (09:00 a.m.-12:00
p.m.). MS pups were placed together into a clean cage with extra nesting
material (cotton pieces) to keep them warm and with enough distance to
avoid vocalized communication with their dams. After 3 h, pups were
returned to their dams and kept undisturbed until the following day.
Control litters (7 females and 7 males) were handled similarly to the MS
pups from P2 to P14. At the end of the separation, there were no significant
body weight differences between MS and control mice. At 6 weeks of age,
when the experiment was concluded, there were body weight differences
between sexes but not due to a MS effect.

2.3. Behavioral tests

2.3.1. Elevated plus maze (EPM)
EPM was done to evaluate anxiety-like behavior. The mouse was

gently placed in a closed arm facing the wall and it allowed to explore the
maze for 5 min. The number of entries into each arm and the time spent
in the open arms were recorded and used to calculate the anxiety index
(AI) (Cohen et al., 2008):

AI ¼ 1�
��

Time Open Arms
Total time of the test

�
þ
�

Entries Open Arms
Total number of entries

���
2

2.3.2. Tail suspension test (TST)
To assess depressive-like behavior, TST was performed. Mice were

suspended 50 cm above the floor by the tail using adhesive tape, and the
total time spent immobile during the 6 min of the test was quantified.
Immobility was considered to be when the mice hung passively, not
moving their limbs and body, and completely motionless.

2.3.3. Y-maze test
The Y-maze test was done as previously described (Hansson et al.,

2019). Mice were placed at the end of one arm facing the wall and
allowed to explore the maze for 5 min. The number of entries was
recorded, and the spontaneous alternation was defined as entries into the
3 arms on consecutive choices. The percentage of total alternations was
represented.

2.4. Tissue processing

6-weeks-old mice were anaesthetized using isofluorane (5%) in oxy-
gen (Virbac) and perfused transcardially with 0.9% saline solution. One
hemisphere of the brain was fixed in 4% paraformaldehyde solution
(Histolab) overnight (4 �C), and then stored in 30% sucrose solution for
48 h (4 �C). Coronal sections (40 μm) were obtained using a freezing
microtome (Leica SM2000DR) and preserved in cryoprotective solution
(30% sucrose [Sigma-Aldrich], 30% ethylene glycol [Sigma-Aldrich],
40% phosphate-buffered saline) at -20 �C.
2

Hippocampus was isolated from the other half of the brain and snap
frozen at -80 �C until further RNA or protein isolation.

2.5. Immunofluorescence, image acquisition and image analysis

Immunofluorescence was performed as previously described (Bachiller
et al., 2018). Free-floating coronal sections were permeabilized using
Triton X-100 (Sigma-Aldrich) 1% (v/v) in PBS (PBS-T1%) for 1 h, incu-
bated in the blocking solution (5% Normal Donkey Serum, PBS-T1%) for 1
h and then in primary antibody, anti-Iba1 (Wako, 1:500) at 4 �C overnight.
Then, sections were rinsed for 1 h with PBS-T0.1% and incubated with the
corresponding secondary antibody (1:500, donkey anti-rabbit 647, Invi-
trogen) for 1 h and finally mounted using ProLong Diamond Antifade
Mountant (Invitrogen). Images were taken with a Nikon confocal A1RHD
laser-scanning microscope using an 20X air objective with the same laser
acquisition parameters and the same researcher, blinded to the groups.
Analysis of the images was done using Fiji ImageJ software (W. Rasband,
National Institutes of Health). Soma size analyses were performed as
described by Hadar et al. (Hadar et al., 2017) in DG, CA1 and CA3. The
image background was subtracted and then a threshold was manually set
for microglial soma visualization and measurement. At least 2-3 brain
sections (bregma -2.0 to -2.5 mm)/region/animal were analyzed.

2.6. RNA extraction and RT-qPCR analysis

Total hippocampal RNA was extracted using the TRI-reagent (Sigma-
Aldrich) following the manufacturer’s instructions. Quantitative RT-qPCR
analysis (CFX96™ Real-Time System-C1000™ Thermal Cycler, BioRad)
were performed for the following genes (50-30): 5ht6r (Forward:
CTTCCTGCTATGCTTGGTGGT; Reverse: TGTTAGGGTTGAGGTT-
CAGTCT); Synaptophysin (Syp) (Forward: TCTTTGTCACCGTGGCTGTGTT;
Reverse: TCCCTCAGTTCCTTGCATGTGT); and Cox-2 (Forward: CCAG-
CACTTCACCCATCAGTT; Reverse: ACCCAGGTCCTCGCTTATGA). Rela-
tive gene expression was represented as ΔCt method, normalized to the
expression of Actin as the housekeeping gene.

2.7. Protein extraction and Meso scale

To measure the cytokine concentrations in the hippocampus, a Meso
Scale Discovery V-Plex Plus Kit (MSD Mesoscale Discovery, USA) for
proinflammatory mouse markers was performed as previously described
(Boza-Serrano et al., 2019). The detection ranges were the following:
IL1β (1670–0.408 pg/mL), IL10 (3410–0.833 pg/mL), IL5 (967–0.236
pg/mL). The concentrations for TNF-α, IFN-γ, IL12, IL2, IL4, IL6 and
KC/GRO, were below the detection range and excluded from the study.

2.8. Statistical analysis

All statistical analyses were performed using GraphPad Prism 8.0
Software for Macintosh (GraphPad Software, San Diego, CA, USA). For
the behavioral experiments, at least 7 animals/group were included.
Otherwise, at least 4 animals/group were analyzed. We used different
unpaired statistical analysis based on the results of the normality and
lognormality test (Shapiro-Wilk test). If data was normally distributed,
two-way ANOVA followed by Tukey’s test for multiple comparisons was
performed. For non-parametrically distributed data, Kruskal-Wallis fol-
lowed by Dunn’s test for multiple comparisons was used. Data is reported
as mean � SD. P values � 0.05 were considered statistically significant
and are stated in the figure legends.

3. Results

3.1. MS mice display depressive-like behavior and spatial memory
impairment in a sex-specific manner

Anxiety-like behavior was evaluated using EPM. Our results did not
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show an effect from MS in the AI (F (1,26) ¼ 1.14; p ¼ 0.2947) (Fig. 1A)
between the MS mice and controls (females: p ¼ 0.6162; males: p ¼
0.9938) [time/entries in open arms (Average � SD): Females: Ctrl (0/0);
MS (2.17� 3.52/1.14� 1.34); Males: Ctrl (7.78� 9.18/2.28 � 2.75); MS
(3.43 � 4.05/2.44 � 1.79)]. However, females presented a significantly
higher AI compared to males (Sex effect: F (1,26) ¼ 5.47; p ¼ 0.0273).

Using TST, we assessed depressive-like behavior (MS effect: F (1,26)
¼ 4.69; p ¼ 0.0397). Compared to controls, MS females had a significant
increase in the percentage of immobility time (p¼ 0.0249). However, no
differences were found between MS males and controls (p ¼ 0.999)
(Fig. 1B).

We also evaluated the spatial memory using the Y-maze test (Fig. 1C).
Our data showed an overall effect of MS (F (1,26) ¼ 8.75; p ¼ 0.0065)
and a significant decrease in spontaneous alternation in the MS male
group compared to controls (p ¼ 0.0204) but no differences in MS fe-
males (p ¼ 0.1751).
3.2. MS alters hippocampal expression of synaptic plasticity genes

The relative hippocampal gene expression of Cox-2 (F (1,15) ¼ 66.5;
p< 0.0001) (Fig. 1D), 5ht6r (H¼ 9.562; p¼ 0.0227) (Fig. 1E), and Syp (F
(1,15) ¼ 31.3; p < 0.0001) (Fig. 1F) was significantly reduced in the MS
mice. Compared with their controls, significant statistical differences at
the gene expression level were found for Cox-2 (females: p < 0.0001;
males: p ¼ 0.0028) and Syp (females: p ¼ 0.0169; males: p ¼ 0.0024).
While no significant differences were found for 5ht6r gene expression
levels (females: p ¼ 0.1475; males: p ¼ 0.2998), there was an evident
trend towards decreased expression in the MS groups.
Fig. 1. Maternal separation (MS) alters behavioral outcomes and hippocampal
(A) Anxiety-like behavior was not induced by MS. However, females presented a high
revealed by the tail suspension test. This effect was not observed in MS males. Contra
decrease in spontaneous alternation in the Y-maze compared to controls (C). MS mice
2 (D), and Synaptophysin (F). While not significant differences were not found for the e
MS mice compared to controls. Behavioral tests: Controls (Females, n ¼ 7; Males, n ¼
Males, n ¼ 5); MS (Females, n ¼ 5; Males, n ¼ 4). * statistical differences between MS
are shown as mean � SD. *p < 0.05; **p < 0.01; ***p < 0.001.
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3.3. MS enhances microglial activation in DG, CA1 and CA3 following a
sex-specific pattern but does not alter the hippocampal cytokine
concentrations

Iba1 soma size measurements were performed in DG, CA1 and CA3 to
evaluate the regional hippocampal microglial activation (Fig. 2A). Our
results showed that MS induces microglial activation in DG (F (1,17) ¼
15.9; p¼ 0.001), CA1 (F (1,17)¼ 15.3; p¼ 0.0011), and CA3 (F (1,17)¼
30.0; p < 0.0001). Regional activation also differed by sex in DG (F
(1,17)¼ 6.46; p¼ 0.0211) and CA1 (F (1,17)¼ 4.93; p¼ 0.0403) but not
CA3 (F (1,17)¼ 0.987; p¼ 0.3345). In DG, MS females showed increased
microglial soma size (p ¼ 0.0159) compared to controls. However, no
such difference was found in males (p ¼ 0.1453). In CA1, we observed
the opposite effect of MS as soma size was significantly increased in the
male group (p ¼ 0.0077) and no differences was seen in the female
groups (p ¼ 0.3514). On the other hand, CA3 seems to be the most
affected hippocampal region by MS in all the groups compared to con-
trols (females: p ¼ 0.0019; males: p ¼ 0.0183).

Cytokines were measured in hippocampus using a Meso Scale Dis-
covery assay (Fig. 2C). At 6 weeks of age, we did not find a significant
effect of MS on IL-10 (F (1,16) ¼ 0.0234; p ¼ 0.8802), IL-1β (F (1,16) ¼
0.129; p ¼ 0.7239), and IL-5 (F (1,16) ¼ 0.180; p ¼ 0.6768) levels.
However, the cytokine concentrations significantly differed between
sexes, with an overall higher levels in males of IL-10 (F (1,16) ¼ 12.0; p
¼ 0.0032), IL-1β (F (1,16) ¼ 4.63; p ¼ 0.0471); and, IL-5 (F (1,16) ¼
12.6; p ¼ 0.0027).
gene expression in the adolescents (6 weeks old) in a sex-specific manner.
er AI than male mice. (B) Depressive-like behavior was elevated in MS females as
rily, MS males presented a spatial working memory impairment as shown by the
presented a significant decrease in hippocampal relative gene expression of Cox-
xpression of 5ht6r (E), a trend towards decreased expression was also observed in
7); MS (Females, n ¼ 7; Males, n ¼ 9); Gene expression: Controls (Females, n ¼ 5;
and their controls; # statistical differences between female and male mice. Data



Fig. 2. Maternal separation (MS) induces regional hippocampal microglial activation in DG, CA1 and CA3 in adolescents but does not alter the cytokine concentration.
(A) Microphotographs of different hippocampal sections: dentate gyrus, 22 CA1 and CA3 (Bregma - 23 2.00 to -2.5 mm, 20X magnification). Inserts in the upper right
of the merge images show different microglial cells at higher magnification. (B) MS induced a significant microglial activation in dentate gyrus, CA1 and CA3,
measured as an increase in Iba1 soma area. Specifically, females’ dentate gyrus (left), males’ CA1 (middle) and both sexes’ CA3 (right) were activated by MS compared
to controls. Furthermore, in DG and CA1 we observed a sex dependent activation, that was higher in male compared to female mice. (C) MesoScale assay for hip-
pocampal cytokine quantifications revealed significantly increased cytokine levels in males but no differences between groups due to MS. Scale bars: 100 μm. Scale bar
inserts: 50 μm. Image analysis: Controls (Females, n ¼ 6; Males, n ¼ 5); MS (Females, n ¼ 6; Males, n ¼ 4); Cytokine quantifications: Controls (Females, n ¼ 4; Males, n
¼ 4); MS (Females, n ¼ 6; Males, n ¼ 6). * statistical differences between MS and their controls; # statistical differences between female and male mice. Data are
shown as mean � SD. *p < 0.05; **p < 0.01.
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4. Discussion

Adolescence is a particularly important period when cognitive func-
tions undergo final development and disturbances in the emotional
regulation processes potentially predispose the individual to psychiatric
disorders.

Our results showed no MS effect on anxiety, whereas depressive-like
behavior was increased in MS females but not MS males. Similar results
have been described in adolescent female rats but not male rats exposed
to chronic social stress (McCormick et al., 2008). However, inconsistent
data has been published regarding MS and anxiety- and depressive-like
behavior in adolescents (Shin et al., 2016; Banqueri et al., 2017). This
can be explained by (i) the use of different MS protocols, which can affect
different stages of the brain development; (ii) the lack of comparisons
between sexes; (iii) the strain of rodents; and (iv) the context-dependent
variability in these behavioral tests.

Nevertheless, our spatial memory results showed an impairment in
MS males but not MS females, which is consistent with previous reports
(do Prado et al., 2016; Brenhouse and Andersen, 2011). Moreover, it has
been demonstrated that the exposure to MS in male juvenile rats but not
female juvenile rats alters hippocampal-prefrontal cortex networks,
which correlates with spatial memory dysfunction (Reincke and
Hanganu-Opatz, 2017). Altogether, our behavioral results reveal a
sex-dependent effect. Similar sex-dependent results have also appeared
in adolescent human studies where the exposure to ELS contributes to
hippocampal dysfunction with deficits in episodic memory and the
development of depression (Barch et al., 2019; Colle et al., 2017).

In hippocampus, ELS alters dendritic branching and synaptic plas-
ticity, and decreases hippocampal volume in both adolescents and adults
(Vythilingam et al., 2002; McEwen, 2000; van der Kooij et al., 2015). Syp
expression is closely related to synaptic plasticity in hippocampus, and
downregulation of this protein has been found to be associated with
stress-induced depressive-like behavior in rodent models (Reines et al.,
2008; Thome et al., 2001) independently of sex (Cui et al., 2020). Like-
wise, 5ht6r is a widely and highly expressed gene in cognitive regions
(Woolley et al., 2004), and its pharmacological inhibition enhances
glutamatergic neurotransmission in hippocampus (Dawson et al., 2001),
suggesting a role in memory processes. On the other hand, Cox-2 is
localized to glutamatergic neurons, and its inhibition alters spatial
memory as measured by the Water Morris Maze Test in rats (Teather
et al., 2002). Hence, we speculate that the downregulation of 5ht6r, Syp
and Cox-2 found in this study might be due to postnatal MS exposition
and, in the long-term, alters the spatial memory in adolescent male mice.
However, the effects of MS on hippocampal neurobiology in females
remain to be determined.

Microglia are central in shaping/pruning neural networks during
development. In the adult mouse hippocampus, microglia follow a
regional distribution (Choi andWon, 2011; Long et al., 1998), suggesting
a role in the regional-specific vulnerability of this area (Jinno et al.,
2007). Therefore, we evaluated if the microglial activation followed a
region- and sex-specific pattern in the hippocampus of MS adolescent
mice. Our results revealed higher microglial activation in the MS mice in
DG, CA1 and CA3. Moreover, our analysis showed a sex-dependent dif-
ference in microglial activation in DG and CA1 but not in CA3.
Anatomically, the hippocampus is affected differentially by ELS; for
example, in DG, ELS alters neurogenesis, decreases the number of granule
cells (Kozareva et al., 2019), and induces an exacerbated glial activation
(Diz-Chaves et al., 2012, 2013; Reus et al., 2017), whereas in CA1 and
CA3, it alters the LTP and the dendritic branching of pyramidal neurons
(Shin et al., 2016; Heydari et al., 2019). In our study, the largest effect of
MS on microglia activation was found in CA3, a hippocampal region that
is crucial to the stress response and that acts as a link to stress-induced
neuronal plasticity and memory function (Lisman, 1999). These
changes suggest that microglia could be participate in the synaptic
remodeling even during adolescence.

On the other hand, the hippocampal cytokine levels were not affected
5

by MS, but sex-differences were observed with overall higher concen-
trations in male mice. Growing evidence suggests that MS produces long-
term effects on the immune system (Wieck et al., 2013; Danese et al.,
2007), but only few studies address the importance of sex (Grass-
i-Oliveira et al., 2016; Avitsur et al., 2013). In adolescent rats, maternal
deprivation induced an increase of TNF-α and IL6 in the hippocampus in
both sexes, but those authors did not find differences in the IL10 (Stroher
et al., 2020), consistent with our results. Contrarily to our results,
Grassi-Oliviera et al. (Grassi-Oliveira et al., 2016) described a
sex-dependent increase of inflammation in adolescent MS rats. However,
they analyzed peripheral cytokines instead of hippocampal ones, and
additionally, they looked at different ages compared to our study. Still,
unpublished results from our lab show that, in adult mice, MS induces
differential cytokine release both peripherally and in the hippocampus,
suggesting that age might be an important factor to consider in these
approaches.

The developing male brain has more microglia and mast cells and
higher levels of inflammatory molecules (Lenz et al., 2018), which may
contribute to the sex-related differences observed in the stress response
of adolescents and adults (Meagher et al., 2010; Rana et al., 2012).
Recently, Speirs and Tronson (2018) have shown sex differences in
hippocampal cytokines after LPS administration in adult mice (bioRxiv,
non-peer reviewed). They describe a differential cytokine response to LPS
with a faster response in females than in males. We speculate that the lack
of differences in the hippocampal cytokines between our MS mice and
controls might be explained by the age of analysis as the cytokine acti-
vation may already have been resolved. Likewise, since the resolution
may be faster in females than in males, this could explain the reduction of
cytokines in females compared to the overall increase in males.

In summary, this study found that MS long-term strongly impacts
changes in hippocampal microglia activation and synaptic gene expres-
sion in the adolescence. Also, sex plays a crucial role in the ELS-induced
behavioral variations highlighting the significance of including males
and females in the analyses to achieve better translational results. Further
studies are needed to understand how ELS can affect the male and female
brain differently and how this pathogenesis contribute to psychiatric
diseases.
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