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Abstract 

Background: Dry eye syndrome is one of the most common ocular diseases, and 
meibomian gland dysfunction (MGD) is the leading cause of evaporative dry eye syn‑
drome. When the tear film lipid layer becomes thin due to obstructive or hyposecre‑
tory meibomian gland dysfunction, the excessive evaporation of the aqueous layer can 
occur, and this causes evaporative dry eye syndrome. Thus, measuring the lipid layer 
thickness (LLT) is essential for accurate diagnosis and proper treatment of evaporative 
dry eye syndrome.

Methods: We used a white LED panel with a slit lamp microscope to obtain videos 
of the lipid layer interference patterns on the cornea. To quantitatively analyze the 
LLT from interference colors, we developed a novel algorithm that can automatically 
perform the following processes on an image frame: determining the radius of the iris, 
locating the center of the pupil, defining region of interest (ROI), tracking the ROI, com‑
pensating for the color of iris and illumination, and producing comprehensive analy‑
sis output. A group of dry eye syndrome patients with hyposecretory MGD, dry eye 
syndrome without MGD, hypersecretory MGD, and healthy volunteers were recruited. 
Their LLTs were analyzed and statistical information—mean and standard deviation, 
the relative frequency of LLT at each time point, and graphical LLT visualization—were 
produced.

Results: Using our algorithm, we processed the lipid layer interference pattern and 
automatically analyzed the LLT distribution of images from patients. The LLT of hypose‑
cretory MGD was thinner (45.2 ± 11.6 nm) than that of dry eye syndrome without MGD 
(69.0 ± 9.4 nm) and healthy volunteers (68.3 ± 13.7 nm) while the LLT of hypersecre‑
tory MGD was thicker (93.5 ± 12.6 nm) than that of dry eye syndrome without MGD. 
Patients’ LLTs were statistically analyzed over time, visualized with 3D surface plots, and 
displayed using 3D scatter plots of image pixel data for comprehensive assessment.

Conclusions: We developed an image‑based algorithm for quantitative measurement 
as well as statistical analysis of the LLT despite fluctuation and eye movement. This pilot 
study demonstrates that the quantitative LLT analysis of patients is consistent with 
the functions of meibomian glands clinically evaluated by an ophthalmologist. This 
approach is a significant step forward in developing a fully automated instrument for 
evaluating dry eye syndrome and for providing proper guidance of treatment.
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Background
Dry eye syndrome (DES) is one of the most common ocular diseases affecting more than 
5% of the US adult population [1]. Dry eye syndrome is composed of aqueous deficiency 
DES and evaporative-type DES. The most common cause of the evaporative-type DES 
is the meibomian gland dysfunction (MGD) [1–3]. In the eye, the preocular tear film 
comprises of mucous, aqueous, and lipid layers. The lipid layer, formed by oil (meibum) 
secreted from meibomian glands, prevents excessive evaporation of the aqueous layer. 
In obstructive or hyposecretory meibomian gland dysfunction, thinning of the lipid 
layer leads to excessive evaporation and develops evaporative-type DES [4, 5]. Recently, 
numerous studies have been conducted on the correlation between DES and the lipid 
layer thickness (LLT) [6–10]. Therefore, accurate measurement of LLT has become more 
important.

In normal condition, the LLT has been estimated and reported to be approximately 
70 nm in the eye [11, 12]. The lipid layer thickness can be estimated by analyzing the 
color intensity patterns generated by the optical interference from multiple reflections 
at the interfaces of air-lipid and lipid-aqueous layers [13]. Various methods utilizing 
interference patterns have been used to characterize the lipid layer thickness: goose-
neck light [14], bio differential microscope [15], Polaroid filters [16], monochromatic 
light [17], spectral-discrimination [18], and a simple interferometer made of paper tool 
for lipid layer evaluation [19]. Several tear interference imaging devices have also been 
developed, such as the DR-1 tear interference camera (Kowa Co., Nagoya, Japan) [20, 
21], LipiView interferometer (TearScience Inc, Morrisville, NC) [9, 22] and Lipiscanner 
1.0 (Visual Optics, Chuncheon, Korea), a cost-effective add-on to an existing slit lamp 
biomicroscope. So far, only the LipiView device can provide quantitative values of the 
lipid layer thickness.

While the DR-1 can qualitatively visualize the interference pattern of lipid layer [23], 
the LipiView interferometer can quantitatively measure the average lipid layer thickness. 
The main proprietary algorithms and high-speed computers in these systems capture 
the reflected color from lipid layer at a rate of approximately 14 million pixels per second 
to complete the evaluation. The spatially modulated light source allows the elimination 
of unnecessary background images and stray light. The processed output is expressed as 
interference color that correlates with the thickness of the lipid layer [24].

However, complicated interferometry systems are costly (Lipiview) or may provide 
qualitative analysis (DR-1). By utilizing a recently developed low-cost custom-made 
Lipiscanner 1.0 system for quantitative measurements, we developed an image-based 
algorithm to automatically define the region of interest (ROI) on the iris and to evaluate 
the thickness of the lipid layer, even with irregular pupil movements during data acqui-
sition. (see Additional file  1: Movie, Additional file  2: Movie, Additional file  3: Movie, 
Additional file 4: Movie.) Also, we performed color compensation in our algorithm to 
obtain a precise measurement of the lipid layer thickness that is based on the Fresnel 
equation [25]. To validate our algorithm, we performed a feasibility analysis on the video 
data obtained from twenty patients and fourteen healthy volunteer who were affected by 
either hyposecretory MGD, dry eye syndrome without MGD, or hypersecretory MGD.
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Theory
A colorful interference pattern is caused when the light is reflected from the top and 
bottom boundaries of a thin film such as an oil film floating on a bubble or water. Inter-
ferences by thin films display different colors depending on the thickness of the film, 
from dark color caused by thinner film area to brighter color caused by thicker film area. 
Using Snell’s law,

where OPD means “optical path difference,” nm means “refractive index of meibum,” d 
means “lipid layer thicknesses” and β means “refraction angle.”

The phase difference (�) between the two interfering lights can be calculated using the 
wavelength of light (�) and OPD as follows:

Meanwhile, the intensity of light is calculated by the Fresnel equations. The Fresnel equa-
tions are a pair of equations that describe the reflectance and transmittance of a surface 
between two media having different refractive indices. The reflectance and the transmit-
tance are coefficient values representing the ratio of incident light that is reflected or 
transmitted. According to the Fresnel equations, the ratio of the reflected and transmit-
ted wave’s complex electric field amplitude to that of the incident wave (reflection and 
transmission coefficients) for s- and p-polarization are rs, rp, ts and tp:

where θ1 and θ2 mean incident angle and refractive angle, n1 and n2 indicate refractive 
index of air and meibum.

Then, the reflectance and transmittance are as follows:

where R and T represent the reflectance and the transmittance, respectively.

(1)OPD =
2nmd

cosβ

(

1− sin2 β
)

= 2nmd cosβ

(2)� = 2π
OPD

�
.

(3)rs =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2

(4)ts =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2

(5)rp =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2

(6)tp =
2n1 cos θ1

n1 cos θ2 + n2 cos θ1

(7)R = |r|2

(8)T =
n2 cos θ2

n1cosθ1
|t|2
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With these coefficients, all intensities of rays can be defined in a simple reflection-
transmission model. In this model, we defined Rm (m, a nonnegative integer) to be the 
ray’s wave function which is reflected m times between the lipid-tear interface and the 
air-lipid interface. R0 is the wave function of the ray which is reflected directly at the sur-
face of the lipid layer. Hence,

where IRn (nonnegative integer n) is the intensity of the light Rn, and Ri is the incident 
light’s wave function. Rij is the coefficient of the reflectance from i layer to j layer (1-air, 
2-lipid layer, 3-tear layer) and Tij corresponds the coefficient of the transmittance.

In this model, OPD is present at every new reflection-transmission process. Therefore, 
the phases of the rays are described as follows.

Now we have each ray’s phase and intensity. From these, the interference ray can be cal-
culated in the complex number plane as follows.

IINT(�, d) can be obtained from the amplitude of the wave function RINT(�, d), which is 
used to obtain the RGB value as follows:

Here, IINT(�, d) is the intensity of interference light obtained with the wavelength (�) and 
lipid layer thickness (d), and the functions RSTDOBS, GSTDOBS, BSTDOBS of � represents 
the value of the color whose wavelength corresponds to � in the CIE1964 RGB standard 
observer. The wavelength range is from 360 to 830 nm in the visible light range provided 
by the CIE 1964 standard observer.

In this way, we can calculate the interference color as RGB values at different thick-
nesses of the meibum in the range of 0–240 nm.

(9)

IR0 = R12IRi
IR1 = T12R23T21IRi
IR2 = T12R23R21R23T21IRi

. . .

IRm = R21R23IR(m−1) (integerm > 1)

(10)θm = m�

(11)RINT =

∞
∑

m=0

√

∣

∣IRm
∣

∣eiθm

(12)Red(d) =
∑

�

IINT(�, d) · RSTDOBS(�),

(13)Green(d) =
∑

�

IINT(�, d) · GSTDOBS(�),

(14)Blue(d) =
∑

�

IINT(�, d) · BSTDOBS(�).
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Methods
We developed our algorithm to measure the lipid layer thickness quantitatively by ana-
lyzing the lipid layer interference patterns on tear film with the Lipiscanner 1.0 which 
consists of a LED panel (115 mm × 58 mm) covered with a polycarbonate diffuser for 
homogeneous illumination (Fig.  1). This simple device was used to observe the lipid 
layer of the tear film with a slit lamp microscope for ophthalmology and a scientific com-
plementary metal-oxide semiconductor (sCMOS) camera. A patient’s head is placed in 
a fixed position on the head-chin rest of the slit lamp microscope and white light from 
the LED is irradiated onto the lipid layer of the eye. The white LEDs provide a color 
temperature of ~ 6500 K. The color from the white light interference is used to assigning 
the LLTs to ROI image pixels. The measurements presented in this paper represent the 
LLT of the precorneal tear film in the inferior iris region which was illuminated by white 
light.

Instrument setup

We used the Lipiscanner 1.0 to visualize the lipid layer by white light interference, and 
the captured videos were used for measuring the lipid layer thickness (Fig.  1). In this 
setup, the LED light was illuminated onto the inferior cornea of the patients, which was 
then reflected onto the slit lamp microscope. The illuminating beam was not focused to 
a point but was spread over parts of the cornea by a diffuser. An sCMOS camera (Guppy 
Pro F-503, Allied Vision) was used to record the video of the interference pattern of lipid 
layer within the cornea region.

Patients with dry eye syndrome

This study followed the tenets of the Declaration of Helsinki and was approved by the 
Institutional Review Board of Chuncheon Sacred Heart Hospital. Twenty patients with 
dry eyes and fourteen healthy volunteers were included in this pilot study: six patients 
with hyposecretory MGD (low delivery of meibum) (patient group I), seven patients 
with dry eye syndrome without MGD (patient group II), seven patients with hypersecre-
tory MGD (high delivery of meibum) (patient group III), and fourteen healthy volun-
teers as a control group (patient group IV). An ophthalmologist who is also a meibomian 
gland expert (Dr. Ho Sik Hwang) categorized the patients into groups I, II and III after 

Fig. 1 Schematic diagram of the optical system for thin film interference measurement system
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evaluating their medical histories [26], slit lamp examinations to measure tear break-up 
time [27], corneal stain, lid margin abnormality, meibum volume and quantity, Schirm-
er’s test [28] for tear production measurement, and meibography for morphological 
evaluation of the meibomian gland.

Image processing

One of the main challenges in the processing of the eye images in our setup was that the 
pupil often moves suddenly during the image acquisition. To address this, we developed 
an algorithm that was robust even when the pupil location changed. For each patient, 
our algorithm processed an image sequence of 2.5  s duration (a subset of the original 
sequence, i.e. 75 images), and we discarded images where the pupil was not visible or 
was partially occluded (e.g. caused by blinking). Afterward, we started with the darkest 
spot in the image (which is a point in the pupil) and performed a region-growing process 
to extract the pupil region. We repeated this process with a different starting point to 
extract the iris region, from which we could extract our region of interest (ROI) of where 
the interferometry colors existed. Finally, we compensated colors that could be altered 
by the illumination light or the ambient room light so that accurate measurements of the 
lipid layer thickness could be achieved.

The entire image processing part of the algorithm to measure the thickness of the lipid 
layer runs through six phases, as shown in Fig. 2.

The Additional file 1: Movie S1 shows the procedure of image processing algorithm.

Phase 1: Exclude unnecessary frames

First, we have to select the image frames in the raw video for analysis and discard frames 
that are not suitable for use. The resulting extracted video must satisfy the following 
conditions: The center of the pupil in each frame must be near the center of the screen 
(to increase recognition accuracy), and there should be no change in image brightness 
and zoom level between image frames.

We achieve this by filtering out frames that have no ROI, including cases when the eye 
closes. When eye blinking occurs, the light from the LED is strongly reflected from the 
eyelid, and the entire image becomes brighter. We define Bopened as the brightness when 
the ROI is visible, and Bclosed as the brightness when the eye closes. Then the relationship 
of the values is Bopened < Bclosed, where Bopened is set to the mode of full frame bright-
ness data, and Bclosed is set to the highest value of all brightness data. The threshold value 
to filter out frames including eye blinking is Bopened + 0.33

(

Bclosed − Bopened

)

. The 
coefficient of 0.33 helps to filter out the unnecessary frames and prevents false positive 
frames from being included in the ROI data (see Additional file 5: Image S1).

Phase 2: Find the pupil and iris regions

Under our current image acquisition conditions, the darkest region (21 × 21 pixels) of 
an image in our sequence is located inside the pupil that can be used to demarcate the 
pupil region. Starting with the centroid of the darkest region in the image, we apply the 
flood-fill algorithm with 8-directions to select all pixels that belong to the pupil [29]. 
The Flood-fill algorithm is an algorithm that starts at a point and selects a connected 
group of pixels where the color (or brightness) difference between the examined pixel 
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and the starting pixel is smaller than some selected threshold value (see Additional file 6: 
Image S2). Applying the flood-fill algorithm for extracting the pupil, the boundaries of 
the region may not be smooth and contain a portion of the iris. Thus, it is necessary to 
remove unwanted iris region as it affects the centroid by blurring the image followed 
by re-applying flood-fill algorithm with different threshold value (see Additional file 7: 
Image S3).

Once the image has been blurred, additional flood-fill algorithm with a lower thresh-
old value can be used to capture the shape of the pupil with smooth boundaries without 
including the iris. After the pupil region is successfully extracted, the centroid of this 
region can be calculated which gives an approximation to the location of the center of 
the eye. If the location of the center of the eye obtained after correction using blurring 
image and the flood-fill algorithm is far from the darkest region in the pupil, we take the 
centroid of the darkest region as the center of the eye instead while we may partially lose 
the ROI.

To extract the iris region, we apply the same flood-fill algorithm again with a starting 
point outside the pupil (i.e. a point in the iris). We then perform the Canny edge detec-
tion [30] on the resulting region to extract the boundary pixels. However, as the iris is 
partially covered by the eyelid most of the time, the resulting boundary consists of many 
false boundaries of the iris. To overcome this, we examine only the boundary pixels that 
have almost vertical edge orientations and are within an empirically pre-defined distance 
from the detected center of the eye (in our data, the diameter of iris was approximately 
480 pixels. However, this number depends on the camera zoom state and patient’s eye 
trait. Thus, in practice this iris size has to be determined using the iris from image.) It 
is because in order to get as much ROI as possible, we need the exact radius of the iris 
but already know the approximate value. From these boundary pixels, we can take their 
average distances from the center of the eye and estimate the radius of the iris.

Fig. 2 Flowchart showing the algorithm for the measurement of the lipid layer thickness
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Phase 3: Extract the region of interest

The ROI should be the region within the iris that shows interference colors that should 
appear in the bottom half of the iris image. Thus, we choose our ROI to the area within 
80% of the measured iris to prevent the lower eyelid from being included in the ROI and 
to exclude the sclera as part of ROI in case the centroid of pupil is inaccurate. We then 
crop away the regions above the center of the circle, the regions outside of the circle, and 
for the region within the circle, we also crop away small regions on the left and right that 
are farther than 80% of the radius of the new inner circle. This is to prevent the appear-
ance of saturated pixels from the white sclera of the eye. After that, pixels that have a 
brightness less than the average brightness of the region are also removed. The resulting 
region is our ROI. Figure 3 shows some of the intermediate images in phases 2 and 3 and 
the final ROI.

Phase 4: Subtract iris color from region of interest

The colors in the ROI originate from a combination of the white light interference and 
the iris color. We need to subtract the iris color component from the ROI, or otherwise, 
it can affect the subsequent color analysis. We achieve this by finding the color of the iris 
in the phase 3 circle outside of the ROI, and then subtract it from the ROI.

Phase 5: Correct for illumination colors

Depending on the color and brightness of the room lighting or camera exposure value 
at the time of image acquisition, the colors in the image may appear to be different from 
the actual ones. Also, the color temperature of the white light that we used to calculate 
the theoretical color corresponding to the thickness is different from that of the LED 
light of the Lipiscanner. To compensate for this, we estimated how much the RGB values 
were biased from the white color of the sclera of the patient’s eye captured under the 
same conditions and applied the corresponding correction to the ROI.

Fig. 3 Detailed image processing steps for automatic ROI tracking and background subtraction (Phase 
2–3). a–e Finding the pupil (Phase 2). f–j Finding the iris (Phase 2). k–o Extracting the ROI (Phase 3) (see 
Additional file 1: Movie S1)
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Phase 6: Assign thickness to all ROI pixels

We map each pixel’s color to a thickness value of the lipid layer using a lookup table 
represented by the three-dimensional solid curve in the RGB space (Fig. 6). The lookup 
table is obtained by applying the Fresnel equations to the reflection-transmission model 
and then plotting the color output against a different lipid film thickness input. Color 
values that do not match any values in the lookup table are approximated by the color in 
the lookup table that has the closest Euclidean distance from it. In this way, the distribu-
tion of LLT variation within each frame and across image frames can be assessed, and 
the mean and standard deviation of LLT can be calculated.

Results
Region of interest tracking

The automated ROI tracking technique and some intermediate results from Phase 2 and 
3 of our algorithm are shown in Fig. 3 with one exemplary image frame.

  • Preparing original images from a video clip (Fig. 3a).
  • Searching for the darkest point in the image (the white dot inside the pupil) (Fig. 3b).
  • Identifying of the pupil region of the eye (white color) (Fig. 3c).
  • Blurring of the image (Fig. 3d).
  • Determining the pupil of the eye (marked with red boundary) (Fig. 3e).
  • Locating the centroid of the pupil (the red dot) (Fig. 3f ).
  • Calculating the centroid (the white dot) (Fig. 3g).
  • Searching for the iris region (white area) (Fig. 3h).
  • Finding the boundary of the iris region (Fig. 3i).
  • Determining the radius of the iris and drawing a circle (Fig. 3j).
  • Defining a smaller subset region of the iris (Fig. 3k).
  • Setting the radius of a smaller circle (Fig. 3l).
  • Cropping the area above the center (Fig. 3m).
  • Selecting the area inside of the small circle (Fig. 3n).

Setting the region of interest (Fig. 3o).

Statistical analysis of lipid layer thickness over time

The quantitative measurements of the lipid layer thickness from three representative 
patients in each group are summarized in Fig.  4. Patient I has hyposecretory MGD, 
patient II has dry eye without MGD, and patient III has hypersecretory MGD. The rel-
ative frequency distributions of the lipid layer thickness at selected time points in the 
three patients are shown in Fig. 4a–c. The average lipid layer thickness and the stand-
ard deviation per frame are also computed and plotted for the entire image sequence. 
The mean lipid layer thicknesses for patient I, II and III were measured as 35.6 ± 14.3, 
75.2 ± 27.8, 120.3 ± 54.2 nm (average ± standard deviation), respectively from the data 
in Fig. 4d–f. A real-time display of the analysis of the lipid layer thickness for the three 
patients including means, standard deviations, and a relative frequency graph for each 
frame are included in the Additional files (see Additional file 2: Movies S2, Additional 
file 3: Movie S3, Additional file 4: Movie S4).
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Visualization of lipid layer thickness information in space

We constructed a three-dimensional (3D) visualization of the structure of each patient’s 
lipid layer for individual assessment of the lipid layer thickness of the patients’ data 
shown in Fig. 5. This visualization with color coding for the lipid layer thickness can help 
us to examine overall LLT distribution and parts that are exceptionally thin or thick. 
The closer the ROI is to the lower eyelid, the thicker the LLT (the direction in which y 
increases). Due to the eyelash shadows on the ROI, we have a pixel that does not show a 
uniform LLT on the 3D surface plots. The LLT value in eyelash shadows is close to zero 
and is not included in the analysis.

LLT assignment of image pixel values in RGB 3D space

Figure 6 shows plots of the compensated image pixel’s color data from the three patients. 
The color scale curve—3D representation of color bar on the right side—represents 
theoretical LLT values in three-dimensional RGB space. The individual dots of scatter 
plot represent the image pixel’s RGB color data, and the color of each data represents 
the assignment of LLT based on the closest Euclidean distance from the color lookup 
table. Patient I image pixel data is distributed around the low LLT, Patient II data is 
near 100 nm, and Patient III data is distributed near the high LLT graph. The number of 
image data pixels in a graph is about 3000–5000. Data were obtained from three image 
frames, including the front and back frames of the image frame used to draw the 3D sur-
face plots (Fig. 5). We downsized the number of data in the graph to one-third and used 
a scatter plot.

Comparison of the LLT and clinical data of patients with dry eye syndrome

As a proof-of-principle, we used a total of thirty-four patients with dry eye syndrome 
for this feasibility study. Their data were blindly analyzed with our image processing 

Fig. 4 Statistical information of lipid layer thickness over time. a–c relative frequency distribution of each 
patient’s LLT at selected time points of 0.63, 0.66, and 1.4 s, respectively. d–f per‑frame average LLT and 
standard deviation over the entire image sequence. Selected time points for (a–c) are marked with vertical 
lines. Patient I has hyposecretory MGD (a, d), patient II has dry eye without MGD (b, e), and patient III has 
hypersecretory MGD (c, f) (see Additional files 5, 6, 7)
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algorithm without any clinical information of the patients. Based on routine clinical 
examinations, an ophthalmologist categorized the patients into four groups: hypose-
cretory MGD (low delivery of meibum, the patient group I), dry eye syndrome with-
out MGD (patient group II), hypersecretory MGD (high delivery of meibum, patient 
group III), and Group IV (healthy volunteers as a control group). The results of the LLT 
measurements for each category is compared in Fig. 7. Because changes in the LLT as 
captured in the patient images are slow and continuous, using a camera system at 30 
fps was sufficient to obtain the results. With the limited data set, the LLT of hyposecre-
tory MGD was thinner (45.2 ± 11.6 nm) than that of dry eye syndrome without MGD 
(69.0 ±  9.43  nm), and the LLT of hypersecretory MGD was thicker (93.5 ±  12.4  nm) 
than that of dry eye syndrome without MGD and healthy volunteers (68.3 ± 13.7 nm). 
There were statistical differences between the three groups (a one-way ANOVA).

Fig. 5 Spatial visualization of lipid layer thickness distribution. a–c The ROI region for each patient at a 
selected frame d–f 3D plots displaying each patient’s lipid layer thickness in a 50 × 50‑pixel grid (i.e. 2500 pix‑
els). The entire ROI contains approximately 5000–7000 pixels. Patient I has hyposecretory MGD (a, d), patient II 
has dry eye without MGD (b, e), and patient III has hypersecretory MGD (c, f)

Fig. 6 Scatter plot of LLT data distribution in RGB 3D space from representative patients. a Patient with 
hyposecretory MGD (b) Patient without MGD (c) Patient with hypersecretory MGD. The color scale curve rep‑
resents theoretical LLT matching curve in the RGB space while each dot represents the real pixel data’s RGB 
value. All of the dots are assigned corresponding colors within LLT lookup table. The black dots overlaying the 
solid line mark an interval of 10 nm
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Discussion
The purpose of this study was to develop an image-based algorithm for quantitative 
analysis of tear film lipid layer thickness (see Additional file 8: Image S8). Our algorithm 
was robust enough to work despite fluctuations and eye movements during the video 
recording. For example, the ambient room light did not affect our measurement as the 
illumination was relatively bright. In addition, we used a low-grade scientific camera 
with relatively high noise that has not been problematic.

We created a video clip to explain our algorithm involving the steps and results (see 
Additional file 1: Movie S1). We analyzed the ROI on the dark iris in Fig. 3o of phase 2 
because we performed the image processing with Asian patients with dark irises. When 
the same algorithm was used on a bright-colored iris, the algorithm might have limita-
tion identifying ROI.

We subtracted the RGB average value of iris from the ROI to remove the iris color 
within the ROI region. However, this approach may not eliminate the noise generated by 
the iris pattern. To effectively remove iris background, we may obtain the iris data under 
the ROI separately and subtract the iris value for each pixel (Fig. 2 Phase 4). We used the 
sclera of the patient’s eye for the white color reference. In future analysis, this color vari-
ation may be adjusted by using an image or video taken under the same recording condi-
tions using a white paper (i.e., the fiducial marker for color) under the LED light. As an 
additional method, HSV color space can be adopted to iris color detection phase, which 
is considered a more effective color space than RGB color space for iris authentication 
[31]. This approaches would produce more consistent results than using potentially non-
identical sclera color from each patient (Fig. 2 Phase 5).

So far, algorithms have been serialized using only a single core from a quadcore CPU 
(Intel i7-6700), so it is relatively slow and currently takes approximately 3  min (1.5  s/
frame) to determine the radius and compensate image color with a video clip. We expect 
to achieve comparable results in less than a minute by using a graphic processing unit 
(GPU) with parallel processing for executing the algorithm shown in Fig. 2.

Fig. 7 A Comparison of lipid layer thickness (LLT) between four different groups. Group I (Hyposecretory 
MGD patients), Group II (dry eye syndrome without MGD), Group III (hypersecretory MGD patients), and 
Group IV (healthy volunteers as a control group). (n = 6, 7, 7, 14 patients for Group I, II, III, IV respectively), 
**indicates p < 0.01, ns indicates p > 0.5 and ***indicates p < 0.001
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Color bar values from the theoretical calculation are similar to the patient’s LLT val-
ues derived by the newly developed algorithm. While only limited number of patients’ 
data were available for our pilot study, the results were reasonable based on the previous 
study that demonstrated the correlation between the lipid layer thickness and two fre-
quently used dry eye tests by comparing results of tear break-up time and Schirmer’s test 
[32]. Therefore, our approach can be useful in providing objective information to evalu-
ate the lipid layer thickness for patients with dry eye syndrome. For further verification, 
we are currently analyzing more patients with our algorithm along with their clinical 
manifestation.

Conclusion
In this study, we utilized white light interference from the lipid layer and implemented 
a novel algorithm to analyze the thickness of the lipid layer by examining interference 
color distribution. Our proposed algorithm provides a quantitative measure of the lipid 
layer thickness even in the presence of eye movement by tracking ROI for each frame. 
With a small number of patient data set as a feasibility study, our experimental results 
demonstrate that the lipid layer thickness was different in the subcategories of dry eye 
patients evaluated by an ophthalmologist. This approach provides a significant step for-
ward in developing a fully automated instrument for evaluation of dry eye category and 
thus guiding optimal treatment for patients.
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