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Abstract

Anthocyanins are the polyphenolic phytochemicals which have been shown to scavenge

free radicals. In this study, we investigated the effects of anthocyanins extracted from red-

fleshed apples (Malus sieversii) on reducing oxidative damage by Rosup in porcine granu-

losa cells (GCs) by measuring intracellular reactive oxygen species (ROS), content of gluta-

thione (GSH), activities of superoxide dismutase (SOD1), catalase (CAT) and glutathione

peroxidase (GPX1) and the gene expression of SOD1, CAT, GPX1. Apoptosis was deter-

mined with TdT-mediated dUTP-biotin nick end labeling (TUNEL) and apoptosis-related

proteins were quantified with Western blotting. The results indicate that Rosup increases

oxidative stress by inducing reactive oxygen species production in porcine GCs and the

oxidative stress could be reduced by anthocyanins. The gene expression of SOD1, CAT,

GPX1 and the activities of these enzymes were increased when GCs were treated with

anthocyanins and Rosup for 6 hours. Anthocyanins inhibit Rosup-induced apoptosis by

increasing expression of antiapoptotic protein Bcl-2 and suppressing the expression of pro-

apoptotic protein Bax. Collectively, anthocyanins from red-fleshed apples reduce oxidative

stress and inhibit apoptosis in porcine GCs in vitro. This approach indicates that antioxidants

might be developed from red-fleshed apples.

Introduction

Apple is one of the most important fruits and a very significant part of human diet. The red

coloration of the apple fruit is one of major determinants for its market value as well as its

nutritional value [1]. The amount and distribution of anthocyanin determines the color char-

acteristics of the apple peel and flesh [2]. Anthocyanins are a class of water-soluble natural pig-

ments which belong to a subgroup of flavonoids and are ubiquitous in plant flowers and fruits
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[3]. Anthocyanin is found in plant cell vacuoles of flowers and fruits but also leaves, stems, and

roots [4]. Generally, anthocyanin is restricted to the peel of most apple varieties, but it is also

enriched in the flesh of red-fleshed apple [5]. The higher level of anthocyanin in red-fleshed

apple is thought to provide a rich source of antioxidant for improving health of seed dispersers

and to attract them more likely to revisit and disperse more seeds [6]. Anthocyanin has been

recognized to have potential health benefits. Increasing evidences suggest that health benefits

of anthocyanin are related to their antioxidant activity [7]. As a putative antioxidant, anthocya-

nin has been reported to effectively scavenge free radicals to protect cells from oxidative stress

[8].

The oxidative stress is often caused by redox homeostasis breakdown between ROS

particularly free radicals and enzymatic or non-enzymatic antioxidants [9]. The homeostatic

imbalance due to overproduction of reactive oxygen species (ROS) and/or a deficiency in anti-

oxidants, particularly under abiotic stress generally induces and exacerbates oxidative stress

[10]. Normally, cells produce reactive oxygen species in a balanced manner, however, once the

redox balance is disturbed, a chain of peroxidation reactions is triggered to cause functional

obstacles in the cytoplasm membrane and to inactivate the normal protein functions [9]. In

addition, high level of ROS induces mutations and DNA damage, which may result in muta-

genesis and carcinogenesis. For example, ROS leads to the accumulation of 8-oxo-dexoygua-

nine, a biomarker of cancer in the lung and urine of smokers [11].

Recently the beneficial effects of anthocyanins have been intensively studied [12–16], and

its antioxidant properties have been suggested to have potentials for prevention of carcinogene-

sis [17], reducing mutagens and inhibiting inflammation and allergies [18]. Anthocyanins

extracted from purple sweet potato have been reported to maintain the intracellular redox bal-

ance of heat-shocked bovine embryos by reducing intracellular ROS and increasing glutathione

(GSH) content [19]. You et al reported that immature pig oocytes treated with anthocyanins

during in vitromaturation stimulated in vitro development of cloned pig embryos through

increasing intracellular GSH and inhibiting ROS [20]. In addition, anthocyanins from fruit of

Nitraria tangutorun Bobr are able to scavenge free radicals like 1,1-diphenyl-2-picrylhydrazyl

(DPPH) and hydroxyl free radical (OH) in vitro, and could inhibit lipid peroxidation through

improving the activity of superoxide dismutase in rat serum [21].

Apple is a very commonly consumed fruit and is a profound contributor of the phenolic

compounds which are very good antioxidants in human body. The apple anthocyanins have

been demonstrated to have potential antioxidant activity [22]. However, the anthocyanins

used in these studies have been mainly extracted from apple peels, since most apple varieties

do not produce anthocyanins in apple flesh compared to apple peels. However, peel is usually

removed due to the concerns of pesticide residues on it. In addition, the process for making

the apple sauce also requires the removal of apple peel. Therefore, the putative anthocyanins in

the apple peel are not consumed by human. However, the red-fleshed apple as indicated by its

name contains rich pigments, i.e., anthocyanins, in its flesh. Unlike the anthocyanins from

apple peel, little is known about the antioxidant activity of anthocyanins from red-fleshed

apple mesocarp.

Ovarian granulosa cells (GCs) play essential roles in the development and maturation of fol-

licles and support oocyte development by producing steroid hormones, estradiol, progesterone

and others essential nutrients to the oocytes. Our previous studies suggested that porcine GCs

are sensitive to oxidative stress and oxidative stress imposes an adverse effect on GCs. Zhu,

et al. demonstrated that exposure to zearalenone greatly results in high level of ROS which

inhibits the proliferation of porcine GCs [23], while this inhibition could be alleviated by appli-

cation of the antioxidant curcumin [9]. Therefore, GCs is a good model for studying cell dam-

age by oxidative stress. Given the potent antioxidant properties of anthocyanins, this study was
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conducted to investigate whether the anthocyanins extracted from mesocarp of red-fleshed

apple could reduce the oxidative stress and the underlying mechanisms.

Materials and methods

Anthocyanins extraction

Fruits from five different red-fleshed apple varieties (XJ-1, XJ-2, XJ-3, XJ-4 and XJ-5) (Malus
sieversii f. neidzwetzkyana (Dieck) Langenf) with various levels of anthocyanin (Fig 1A) were

collected from Experimental Farm of Qingdao Agricultural University (Qingdao, China) and

preserved at –80˚C in the laboratory. For anthocyanin extraction, samples were ground in liq-

uid nitrogen, and one hundred grams of fruit powder was extracted using 1 L acetone and agi-

tated in an ultrasonic bath (40 kHz/81 W) at 35˚C for 30 min. Next, samples were incubated

under continuous ultrasonic agitation in the dark at room temperature for 10 h. Then the

extract was evaporated to remove acetone at 30˚C and filtered through a 0.22 μm micron filter.

The purified extract was stored at –20˚C for further analysis. Anthocyanins extracted from five

different varieties of red-fleshed apples were first tested on their capacity of scavenging free

radicals according to the method of Sari et al [24] prior to their further analysis. The anthocya-

nins with the best capacity of scavenging free radicals were selected for further analysis.

Determination of total anthocyanin content

Total anthocyanins were determined using a pH differential spectroscopic method [25].

One milliliter of anthocyanin extract was added into 9 ml of potassium chloride buffer

(0.025 mmol/L, pH 1.0) or 9 ml of sodium acetate buffer (0.4 mmol/L, pH 4.5). The solutions

were measured for their absorbance at 510 and 700 nm. Absorbance of each sample (A) was

calculated as follows: A = (A510–A700)pH 1.0–(A510–A700)pH 4.5; Total anthocyanin content

(mg/L) = (A × MW × DF × 1 000) / (ε × L) where MW (449.2) is the molecular weight of cya-

nidin-3-glucoside (predominant anthocyanin in sample); DF is the dilution factor; ε (26,900)

was the molar absorptivity; L is the volume of the extraction liquid (n>3).

Porcine ovaries collection

All animal experimental procedures were conducted in accordance with guidelines and

approval of the Ethical Committee of Qingdao Agricultural University. Porcine ovaries were

collected from prepubertal gilts at a local slaughterhouse in Qingdao (Shandong, China) and

Fig 1. The fruit image and the anthocyanin content in XJ-1~XJ-5 of red-fleshed apple.

https://doi.org/10.1371/journal.pone.0184033.g001
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transported to the laboratory within 2 h in 0.9% saline solution containing 100 IU/mL penicil-

lin and 100 μg/mL streptomycin at room temperature.

Isolation and culture of porcine GCs

Follicular fluid was aspirated from antral follicles (3–6 mm in diameter) using a 20 mL dispos-

able syringe with 18-gauge needle [23]. The fluid was transferred to a conical tube and incu-

bated for 15 min at 37˚C before centrifuging at 300 g for 5 min [23], The fluid was transferred

to a conical tube and incubated for 15 min at 37˚C before centrifugation at 300 g for 5 min

[26], and the precipitated pellets (GCs) were aspirated and washed with phosphate buffer

saline (PBS) three times. Then GCs were cultured in M199 medium (Hyclone, USA) supple-

mented with 10% fetal bovine serum (FBS), 100 IU/mL penicillin, 100 μg/mL streptomycin,

and 100 IU/mL gentamicin in an incubator at 37˚C, 5% CO2, at 100% relative humidity [26].

Treatment of porcine GCs with anthocyanins and Rosup

Porcine GCs at the logarithmic growth phase were plated in 24-well plates with a density of

1×105 cells per well (1 mL) and cultured for 12 h at room temperature. Cells were treated with

various concentrations of anthocyanins (0, 20, 60 and 200 μM) for 5.5 h and then Rosup was

added into the plate with a final concentration (250 μg/mL) for another 30 min.

Flow cytometry analysis of ROS

After anthocyanin and/or Rosup treatment, the medium was removed and the cells were incu-

bated with 10 μM 2’,7’-dichlorofluorescein diacetate (DCFH-DA) (in M199 fresh blank

medium) in dark at 37˚C for 30 min. Fluorescence was measured using a FACSCalibur flow

cytometer (Becton Dickinson, New York, USA) at an excitation wavelength of 488 nm and an

emission wavelength of 525 nm. Fluorescent signal intensity was recorded and analyzed using

CellQuest software (Becton Dickinson, New York, USA). For each sample, 10 000 events were

recorded.

Fluorescent microscopy evaluation of ROS

To further confirm the flow cytometry analysis of ROS, two different probes (Beyotime,

Jiangsu, China): DCFH-DA and dihydroethidium (DHE) were used to determine ROS by

fluorescent microscopy. Briefly, after anthocyanin and/or Rosup treatments as stated early, the

medium were removed and the cells were incubated with 10 μM DCFH-DA or 10 μM DHE

(in M199 fresh blank medium) in dark at 37˚C for 30 min. Fluorescent intensity was observed

and recorded using a fluorescent microscope (Olympus IX-71, Japan), and ROS were mea-

sured by mean fluorescent intensity of DCFH-DA or DHE. Image-Pro plus software was used

to analyze average fluorescent intensity.

Gene expression analysis using qRT-PCR

After anthocyanin and/or Rosup treatments, the cells were collected with trypsinization. The

mRNA expression of superoxide dismutase (SOD1), catalase (CAT) and glutathione peroxidase

(GPX1) in the cells was analyzed by qRT-PCR. Primer3 was used for primers design in this

study (Table 1). Total RNA of GCs was extracted using an RNA extraction kit (Aidlab, Beijing,

China) according to the manufacturer’s protocols. Total RNA was reverse transcribed to

cDNA (Takara, Dalian, China) and gene expression was quantified by real time RT-PCR

(LightCycler 480 Real-time PCR System, Germany) using a Light Cycler SYBR Green I Master

(Roche, Dalian, China). The reaction system contained 2 μL cDNA, 10 μL SYBR green master
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mix, 0.4 μL each of primers (10 μM) and 7.2 μL RNase free dH2O. Gene expression is pre-

sented as 2−ΔΔCt. Relative fold changes were calculated and compared to controls (n�3).

Enzyme activity measurement

After anthocyanin and/or Rosup treatments as stated early, the cells were collected. The activi-

ties of SOD1, CAT, GPX1 and the content of GSH in the cells were measured using kits made

form Nanjing Jiancheng Bioengineering Institute (Nanjing, China) according to the manufac-

turer’s instruction. Absorbance of all reactions was measured using a spectrophotometer at

A450. Protein concentration was measured using a Thermo Scientific NanoDrop 2000 spectro-

photometer at A280 (New York, USA) (n�3).

TUNEL assay of apoptosis in porcine GCs

Apoptosis was measured by using a TdT-mediated dUTP-biotin nick end labeling (TUNEL)

BrightRed apoptosis detection kit (Vazyme Biotech Co., Ltd, Nanjing, China). Briefly, after

anthocyanin and/or Rosup treatments as stated early, the medium were removed and GCs

were collected and washed in PBS twice, followed by fixation using 4% paraformaldehyde (4%

PFA). Then the cells were plated on the pretreated glass slides and dried on a 37˚C heating

block. Then the slides were washed in PBS three times (5 min each), and incubated with

100 μL proteinase K solution (20 μg/mL) at room temperature for 5 min, and then washed

with PBS three times. Then the slides were incubated with 100 μl 1× equilibration buffer sam-

ple at room temperature for 30 min, followed by an incubation in a moist chamber with 50 μL

terminal deoxynucleotidyl transferase (TdT) incubation buffer (containing 34 μL ddH2O,

10 μL 5× equilibration buffer, 5 μL BrightRed labeling mix and 1 μL recombinant TdT en-

zyme) in dark at 37˚C for 60 min. Slides were washed with PBS containing 0.1% Triton X-100

and 5 mg/mL BSA three times and then stained with 10 μg/mL Hochest33342 (Beyotime, Nan-

tong, China) for 5 min, and washed with fresh water three times. Cell samples were examined

using a fluorescence microscope equipped with a filter set (620 nm).

Western blotting

After anthocyanin and/or Rosup treatments as stated early, the medium were removed and the

cells were collected and lysed with 20 μl of Radio-Immunoprecipitation Assay (RIPA) for 30

min. The samples were centrifuged at 12,000 rpm for 15 min, and protein concentration was

measured using a NanoDrop 2000 spectrophotometer at A280 (Thermo scientific, New York,

USA). Then the sample was mixed with 5× SDS loading buffer and boiled for 5 min. Forty

microgram of protein for each sample was separated using 10% SDS-PAGE and transferred

onto the polyvinylidene fluoride membranes. Membranes were washed with 1×TBST (Tris-

Table 1. Primers sets for qRT-PCR.

Genes Sequences (5’-3’) Accession No. Fragment size (bp)

SOD1 F: ATCAAGAGAGGCACGTTGGA NM_001190422.1 158

R: TCTGCCCAAGTCATCTGGTT

GPX1 F: CACCCAGATGAATGAGCTGC NM_214201.1 163

R: CATGAAGTTGGGCTCGAACC

CAT F: AGATGGACACAGGCACATGA NM_214301.2 172

R: CCGGATGCCATAGTCAGGAT

GAPDH F: TCGGAGTGAACGGATTTGGC NM_001206359.1 147

R: TGCCGTGGGTGGAATCATAC

https://doi.org/10.1371/journal.pone.0184033.t001
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buffered saline and with 0.1% tween 20) three times for 5 min, then incubated with blocking

solution on a shaker at room temperature for 4 h. Then the membrane was washed with

1×TBST five times, followed by incubation overnight at 4˚C with Anti-Bcl-2 (1:500), Anti-Bax

(1:500) on the shaker. Then the membrane was washed with 1×TBST five times followed by

incubation with secondary antibody (1:1,000) for 1 h at room temperature, and developing

solution was added prior to visualization.

Statistical analysis

Each experiment was repeated at least three times. The data are presented as means ± SE.

Significant differences among groups were calculated using a Student’s t test or one-way

ANOVA. Graph-Pad Prism5 analysis software (San Diego, CA) was used to test multiple com-

parisons and plot charts.

Results

Anthocyanins decreases intracellular ROS in porcine GCs and reduces

oxidation induced by Rosup

Five different red-fleshed varieties XJ-1, XJ-2, XJ-3, XJ-4 and XJ-5 with different levels of pig-

ments were used in this study (Fig 1A). The content of anthocyanins in these five varieties

were then determined using a pH differential method. The anthocyanin level in these varieties

is correlated with their coloration. XJ-5 has strongest red color and highest level of anthocya-

nins with 286.11 mg/kgFW. By contrast, XJ-1 has a lowest level of anthocyanins (58.45 mg/

kgFW), and least red color (Fig 1B). The anthocyanin extract from XJ-5 was then used for the

further analysis in this study unless noted.

First, we examined the antioxidant activity of anthocyanins from XJ-5 at different concen-

trations (20, 60 and 200 μM) through testing the capacity of scavenging free radicals by a non-

fluorescent dye DCFH-DA by flow cytometry analysis. The level of fluorescent signal is associ-

ated with the level of ROS within cells. As shown in Fig 2A, few cells (1.36%) have fluorescent

signal which indicates that there is very low signal background in the absence of DCFH-DA

probe (Fig 2A). The ROS level in the porcine GCs is relatively low, only 11.61% of cells display

signals above the base line (Fig 2B). However, Rosup significantly increases the level of ROS,

46% of cells have a strong fluorescent signal (Fig 2C). Pretreating the cells with 20, 60 and

200 μM of anthocyanins reduce the percentage of cells to 21.55%, 11.31% and 3.75% cells with

fluorescent signals (Fig 2D, 2E and 2F) which suggests that anthocyanins from XJ-5 signifi-

cantly reduce the ROS level induced by Rosup within porcine GCs.

Next, fluorescent microscope was used to confirm the flow cytometry results. Unlike

DCFH-DA that is converted to a green fluorescent DCF via oxidation by multiple species of

ROS such as hydroxyl radical, carbonate radical and nitrogen dioxide, DHE specifically inter-

acts with superoxide anion to form a red fluorescent product 2-hydroxyethidium which can be

detected by a fluorescent microscope with maximum excitation and emission peaks at 518 and

605 nm, respectively.

Interestingly, anthocyanin treatment does not reduce ROS in porcine GCs without Rosup

treatment (Fig 3A and 3A’; Fig 3B and 3B’). Rosup induces all types of ROS as revealed by the

enhanced fluorescent signals with probe DCFH-DA in Fig 3C and DHE in Fig 3C’. Pretreat-

ment with anthocyanins can significantly alleviate the ROS induction by Rosup in porcine GCs

(Fig 3C, 3C’, 3D and 3D’). The quantitative data in Fig 3E (DCF) and Fig 3E’ (DHE) indicate

that the fluorescent intensity is reduced by 2.94 and 6.86 a.u. respectively, compared with Rosup

treatment only. The data is consistent with the result from flow cytometry analysis (Fig 2F).
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Gene expression of antioxidant enzymes in porcine GCs

Given that the potential ROS scavenging capacity by anthocyanins shown above, we next

examined the effect of Rosup and/or anthocyanins on gene expression of the antioxidant

enzymes in porcine GCs treated with anthocyanins from XJ-5 and/or Rosup for different

times. As shown in the Fig 4, gene expression of SOD1, CAT and GPX1 are significantly up-

regulated in cells treated with anthocyanins and Rosup for six hours (Fig 4B and 4C), although

some changes are also observed in cells treated for three hours. Significant increase in expres-

sion of SOD1 and GPX1 are also observed in the cells treated with Rosup alone for six and nine

hours (Fig 4C). However, the gene expression of all tested genes in cells treated with anthocya-

nin or/and Rosup for twelve hours are not increased as significantly as the ones in cells treated

for six and nine hours. These results suggest that the increase in the gene levels of SOD1, CAT
and GPX1may be associated with ROS generation.

Activity of antioxidant enzymes and GSH in porcine GCs

The antioxidant enzymes SOD1, CAT, GPX1 and small peptide GSH are essential for alleviat-

ing oxidative stress. To further understand the mechanism underlying the scavenging of ROS

by anthocyanins from XJ-5 apples, the activities of these essential antioxidant enzymes were

examined. Although anthocyanins have potential antioxidant features, supplementation with

anthocyanins alone did not cause great change in the activity of all tested enzymes (Fig 5).

Intracellular GSH is decreased by Rosup while it was increased by anthocyanins. Surprisingly,

Rosup treatment significantly suppresses the activity of all tested enzymes (Fig 5), however,

anthocyanins remarkably rescue the activity of all tested enzymes (Fig 5) which indicates that

anthocyanins may exert its action under oxidative stress.

Fig 2. Intracellular reactive oxygen species (ROS) levels assayed with 2’,7’-dichlorofluorescein diacetate (DCFH-DA)

fluorescent probe in porcine granulose cells (GCs) treated with Rosup and/or anthocyanins. A. Blank control (untreated

with DCFH-DA probe; untreated with Rosup or anthocyanins); B. Negative control (treated with DCFH-DA probe; untreated with

Rosup or anthocyanins); C. Positive control and 0 μM anthocyanins (just treated with 250 μg/mL Rosup); D. 20 μM anthocyanins

and Rosup (250 μg/mL); E. 60 μM anthocyanins and Rosup (250 μg/mL); F, 200 μM anthocyanins and Rosup (250 μg/mL).

https://doi.org/10.1371/journal.pone.0184033.g002
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Effect of anthocyanins on apoptosis of porcine GCs

TUNEL staining is widely used for detecting DNA fragmentation by labeling the 3’-OH ter-

mini in the dsDNA damage during the programmed cell death or apoptosis. To determine

whether ROS induced by Rosup causes apoptosis, TUNEL was applied to detect the DNA frag-

mentation under Rosup and/or anthocyanin treatments. After treated with Rosup and/or

anthocyanins, porcine GCs were stained with TUNEL reagent and counterstained with

Hoechst 33342. Unlike TUNEL that only stains apoptotic or dead cells, Hoechst 33342 stains

the nuclei of all cells. As shown in Fig 6A, in the absent of oxidative stress the TUNEL positive

cells (apoptotic cells) are rarely observed. Rosup induces a remarkable increase of the apoptotic

Fig 3. Effect of anthocyanin treatment on intracellular ROS levels assayed with 2’,7’-dichlorofluorescein diacetate (DCFH-DA) and

dihydroethidium (DHE) fluorescent probe in porcine granulose cells (GCs). A (A’). Control (untreated with 250 μg/mL Rosup); B (B’). 200 μM

anthocyanins; C (C’). 250 μg/mL Rosup; D (D’). 200 μM anthocyanins and 250 μg/mL Rosup; E (E’). Quantitative data for DCFH-DA and DHE. R-A-: no

Rosup or anthocyanin treatment (control); R-A+: anthocyanin treatment while no Rosup treatment; R+A-: Rosup treatment while no anthocyanin

treatment; R+A+: both Rosup and anthocyanin treatment. The results are expressed as averages ± SE, * indicates P < 0.05, ** indicates P < 0.01.

https://doi.org/10.1371/journal.pone.0184033.g003
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Fig 4. The mRNA levels of superoxide dismutase (SOD1), catalase (CAT) and glutathione peroxidase (GPX1) in

porcine granulose cells (GCs) treated with anthocyanins and/or Rosup for different times (0–12 h). A-E. Gene

expression in treated cells at 0 h, 3 h, 6 h, 9 h and 12 h. The expression level of β-actin was used as control. R-A-: no Rosup

or anthocyanin treatment (control); R-A+: anthocyanin treatment while no Rosup treatment; R+A-: Rosup treatment while no

anthocyanin treatment; R+A+: both Rosup and anthocyanin treatment. The relative fold-changes were presented as

mean ± SD. Compared to control (R-A-), * indicates P < 0.05, ** indicates P < 0.01.

https://doi.org/10.1371/journal.pone.0184033.g004
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cells (Fig 6C). The TUNEL positive cells (apoptotic cells) are decreased by pretreatment with

anthocyanins (Fig 6D). The quantitative data are present in Fig 6E, Rosup dramatically in-

creases the number of apoptotic cells. However, anthocyanins significantly decreased the num-

ber of apoptotic cells compared to Rosup. Rosup also alters the morphology of the porcine

GCs to cause the cell shrunk, however, anthocyanins can reverse the shrunk morphology

caused by Rosup.

The proteins Bcl-2 (B cell lymphoma/leukemia-2 gene) and Bax are two important mem-

bers of Bcl-2 family. However, they have different roles in apoptosis. Bcl-2 is considered an

important antiapoptotic protein while Bax is believed to be an important pro-apoptotic pro-

tein. In order to investigate how anthocyanins decrease the number of apoptotic cells caused

Fig 5. The activity of enzymes superoxide dismutase (SOD1), catalase (CAT) and glutathione peroxidase (GPX1) and the content of

glutathione (GSH) in porcine granulose cells (GCs). A. The activity of SOD1; B. The activity of CAT; C. The activity of GPX1; D. GSH

content. All values were normalized to protein level and presented as relative fold changes in comparison to untreated control. Data are

present as mean ± SE. R-A-: no Rosup or anthocyanin treatment (control); R-A+: anthocyanin treatment while no Rosup treatment; R+A-:

Rosup treatment while no anthocyanin treatment; R+A+: both Rosup and anthocyanin treatment. * indicates P < 0.05, ** indicates P < 0.01.

https://doi.org/10.1371/journal.pone.0184033.g005
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by Rosup, the expression of antiapoptotic protein Bcl-2 and proapoptotic protein Bax were

determined using Western blotting. Remarkably, Bcl-2 is decreased and Bax is increased by

Rosup, while the expression of Bcl-2 is elevated in the pretreatment with anthocyanins (Fig

7A). The relative level of Bcl-2/Bax [27] is a very good indicator of cell survival, in control

treatment or anthocyanin treatment the ratio is about 1.50 and it is decreased to 0.76 in Rosup

treatment. However, it is increased to 0.94 in anthocyanin and Rosup treatment (Fig 7B)

which indicates that anthocyanins could decrease apoptosis induced by Rosup.

Discussion

ROS contain one or more unpaired electrons in their outermost electronic shell which are very

unstable and tended to react with other molecules [28]. ROS at low concentrations acts as sec-

ond messengers to modulate transcription factors such as NF-κB, p53 and Ap-1 in the signal

transduction pathways [29]. On the contrary, overproduction of ROS would lead to oxidative

stress [30]. The toxicity of oxidative stress has attracted intensive attention because it could

damage cellular proteins and DNA to interrupt their normal functions and to decrease the

activity of antioxidant enzymes [31]. Previous studies have reported that oxidative stress can

Fig 6. Data for TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay. A. Untreated cells (No Rosup or anthocyanin treatment); B. 200 μM

anthocyanin-treated cells; C. 250 μg/mL Rosup-treated cells; D. 200 μM anthocyanin and 250 μg/mL Rosup-treated cells; E. The quantitative data.

R-A-: no Rosup or anthocyanin treatment (control); R-A+: anthocyanin treatment while no Rosup treatment; R+A-: Rosup treatment while no

anthocyanin treatment; R+A+: both Rosup and anthocyanin treatment. * indicates P < 0.05, ** indicates P < 0.01.

https://doi.org/10.1371/journal.pone.0184033.g006
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harm human and animal health by causing cell death through DNA breakdown, apoptosis,

necrosis and/or protein and lipid degradation [32].

GCs play essential roles in the development and maturation of follicles while these cells are

very sensitive to oxidative stress. Our previous study shows that oxidative stress in porcine

GCs can be alleviated by curcumin which is the active ingredient of the natural spice curcuma

obtained from the root of the plant Curcuma longa L. Therefore, porcine GCs were used as a

model to explore the role of anthocyanin from red-fleshed apples in alleviation of oxidative

stress induced by ROS. However, detailed information regarding ROS induced by Rosup in

porcine GCs is limited and it is not clear on the antioxidant effects of anthocyanin extracted

from red-fleshed apples.

It has been reported that anthocyanins possess antioxidant properties to reduce ROS in vivo
[33]. In addition, anthocyanin treatment during in vitromaturation (IVM) improves develop-

ment competence of somatic cell nuclear transfer (SCNT) embryos [20]. However, the amelio-

rative effects of anthocyanins are largely depended on the concentration [34].

Rosup elevates the oxidative stress by increasing in intracellular ROS level in porcine GCs,

and also Rosup results in apoptosis. Surprisingly, anthocyanins, as antioxidants, could scav-

enge free radicals [24]. Anthocyanins from XJ-5 apple also could reverse Rosup-induced ROS

in cultured porcine GCs.

To our knowledge, this is the first study to examine the antioxidant effects of anthocyanin

extracted from red-fleshed apple in porcine GCs. Findings of this study are critical to develop-

ing possible ways of alleviating the damage caused by oxidative stress in vitro.
Free radicals consist of ROS and reactive nitrogen species (RNS). ROS is comprised of not

only oxygen-centered radicals such as superoxide anions (O2
-) and hydroxyl radical (�OH),

but also non-radical oxygen derivatives such as hydrogen peroxide (H2O2) and hypochlorous

acid (HOCl) [35]. With an overabundance of ROS production and accumulation, oxidative

stress occurs and the equilibrated system that keep the balance of oxygen species generation

and degradation is compromised which results in oxidative damage to the cells [36, 37]. A

favorable environment of the cells should be maintained for providing a complex system to

combat with the oxidative stress based on the combination of the various antioxidants and a

multitude of enzymes. The expression of genes and the activities of key antioxidant enzymes

are increased in the porcine GCs treated with anthocyanins. SOD1 makes O2
- to H2O2 and

Fig 7. Protein levels of Bcl-2 and Bax in porcine granulose cells (GCs) by Western blotting. A. Images for Bcl-2 and Bax in porcine GCs in

different treatments. Actin was used as the loading control. B. The relative protein level (Bcl-2/Bax). R-A-: no Rosup or anthocyanin treatment

(control); R-A+: anthocyanin treatment while no Rosup treatment; R+A-: Rosup treatment while no anthocyanin treatment; R+A+: both Rosup and

anthocyanin treatment. Compared to the control group, * indicates P < 0.05, ** indicates P < 0.01.

https://doi.org/10.1371/journal.pone.0184033.g007
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water, CAT and GPX1 also convert H2O2 to water. Glutathione exits in the forms of a GSH

and a disulfide (GSSG) in all living cells [38]. Conversion of GSSG to GSH is catalyzed by GSH

reductase, allowing GSH to act as a major intracellular reductant [39, 40]. Studies also sug-

gested that elevated levels of GSH in cells might reduce the occurrence of apoptosis and cell

degeneration [41]. The intensity of the reactive oxygen species fluorescence probes DCFH-DA

and DHE which have been widely used as indicators to detect the level of intracellular ROS,

can freely penetrate cell membrane and be oxidized by intracellular ROS (especially superoxide

anion, O2
-) to show green and red signals. The content and variations of ROS can be deter-

mined according to how much green and red fluorescence living cells emit. The relative num-

ber of apoptotic cells and the pro-apoptotic protein level of Bax are increased in porcine GCs

by Rosup, however, the activity of the antioxidant enzymes (SOD1, CAT, GPX1) and the antia-

poptotic protein level of Bcl-2 are decreased. While the activity of the antioxidant enzymes and

the protein level of Bcl-2 are elevated and the level of ROS, the relative number of apoptotic

cells and the protein level of Bax are decreased by anthocyanins.

In current study, Rosup can induce oxidative stress in porcine GCs while anthocya-

nins from red-fleshed apple could reduce the ROS induced by Rosup and effectively scav-

enge free radicals such as DPPH, �OH and O2
-, etc., as described in our previous study

[42]. When ROS is enriched, oxidative stress occurs and the cellular redox balance is

upset. When GCs were pretreated with anthocyanins, the activities of multiple antioxi-

dant enzyme systems were enhanced to defense oxidative stress. In these processes, the

anthocyanins execute good protection to the damage by ROS. The severity of the oxida-

tive stress and damage in GCs inhibit nuclear and cytoplasmic maturation and result in

apoptosis [43]. Anthocyanins prevent the process by up-regulating the antiapoptosis pro-

tein Bcl-2 and down-regulating the pro-apoptosis protein Bax. In summary, our study

confirms that anthocyanins could decrease oxidative stress induced by Rosup and inhibit

apoptosis in porcine GCs via a pathway of scavenging ROS free radicals and promoting

the activities of multiple enzymes systems and gene expression.

Conclusion

In conclusion, the results of this study suggest that oxidative stress could be induced by Rosup

in porcine GCs and the increased oxidative stress could be reduced by anthocyanins extracted

from red-fleshed apple, which would expand our understanding of how anthocyanins could

alleviate the oxidative stress and provide a theoretical basis for the development of natural anti-

oxidants from red-fleshed apple.
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