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Abstract: The Industrial Internet of Things (IIoT) refers to the use of smart sensors, actuators, fast
communication protocols, and efficient cybersecurity mechanisms to improve industrial processes
and applications. In large industrial networks, smart devices generate large amounts of data, and thus
IIoT frameworks require intelligent, robust techniques for big data analysis. Artificial intelligence
(AI) and deep learning (DL) techniques produce promising results in IIoT networks due to their
intelligent learning and processing capabilities. This survey article assesses the potential of DL in
IIoT applications and presents a brief architecture of IIoT with key enabling technologies. Several
well-known DL algorithms are then discussed along with their theoretical backgrounds and several
software and hardware frameworks for DL implementations. Potential deployments of DL techniques
in IIoT applications are briefly discussed. Finally, this survey highlights significant challenges and
future directions for future research endeavors.

Keywords: artificial intelligence; deep learning; internet of things; industrial internet of things;
smart industry

1. Introduction

The Internet of Things (IoT) describes a ubiquitous connection between common
objects and the Internet. IoT functions by deploying thousands of smart devices in living
or industrial environments. These devices collect the information from surrounding en-
vironments, perform desired processing activities on the data acquired and transmit that
processed data through secure, reliable communication channels. Recent advancements
in software, hardware, and communication systems have significantly improved human
lifestyles in terms of time, energy, and cost savings [1,2]. The term Industrial Internet of
Things (IIoT) refers to the use of conventional IoT concepts in industrial applications. The
IIoT improves manufacturing procedures by enabling sustainable and efficient technolo-
gies in an industrial environment [3,4]. The IIoT market is currently undergoing rapid
growth as well as increasing adaptations in the digital transformations of many industries.
Strong alliances and concurrences of interests between IIoT stakeholders and emerging
applications has attracted major companies worldwide to invest in this emerging market.
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According to the latest Statistica report, the size of the IIoT market is expected to increase
up to $110.6B USD by 2025 [5]. A comparative analysis of the IIoT market and its increase
in size from 2017 to projections for 2025 is presented in Figure 1.

Figure 1. The worldwide market size of the IIoT from 2017 to 2025 [5].

In the fourth industrial revolution, a rapid increase in the number of interconnected
devices in the IIoT systems has been recorded. In the IIoT, the performance of smart
applications is heavily associated with the intelligent processing of big data. Therefore, IIoT
networks require intelligent information processing frameworks for big data analysis. In
this context, artificial intelligence (AI), and particularly DL, techniques can be very useful
as a means of producing effective, usable results from big data in an IIoT system [4,6,7].
For instance, DL techniques enable the system’s capacities to learn from experience. The
efficiency and effectiveness of a DL solution depend upon the characteristics and nature of
the data in question as well as the performance of the learning algorithm [8]. The selection
of a suitable DL algorithm for a specific application can be a challenging task. Therefore, it
is essential to understand the workflow of various DL algorithms and their deployment in
real-world applications such as smart homes, smart cities, cybersecurity services, smart
healthcare, smart transportation, sustainable agriculture, business enterprises, and many
others [9]. The significance of DL in IoT/IIoT applications can be determined by analyzing
the emerging and cutting-edge research in this area. The bar chart in Figure 2 presents
a comparative analysis of relevant publications records by the top publishers from 2016
to 2020.

1.1. Existing Surveys on DL for IoT and IIoT Applications

In recent literature, multiple DL-based solutions for IoT and IIoT applications have been
proposed by both academia and industry. In the following section, some of the latest survey
articles are briefly described to demonstrate the depth and scope of existing literature.

Mohammadi et al. [10] have presented a detailed overview of DL techniques and
their importance to big data analysis for IoT applications. They also discuss some of
the most-used DL algorithms as well as their backgrounds and architectures. They also
summarized the deployment of DL techniques in fog and cloud-based IoT environments.
They conclude this work by presenting some potential challenges and directions for future
research. Meanwhile Ma et al. [11] presented a comprehensive examination of how
leveraging DL techniques in IoT applications could be possible. The main goal of this
survey is to present the applicability of DL techniques to empower multiple applications in
fields including smart healthcare, robotics, home monitoring, traffic control, autonomous
driving, and manufacturing. In another survey, Sengupta et al. [12] explored the potential
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of DL approaches for multiple applications including perspective and predictive analysis,
financial time series forecasting, power systems, medical image processing, etc.

Figure 2. A comparison of publication records for DL-based IoT/IIoT applications.

Ambika et al. [13] presented a comprehensive survey about ML and DL techniques
along with their architectures and impact on IIoT. This survey also discussed some use cases
of ML and DL approaches in the IoT and IIoT domains. Saleem et al. [14] then presented
a concise discussion on the potential benefits of DL algorithms for IoT applications. This
survey formulated DL-based human activity recognition systems and presented a brief
comparison of different DL models before discussing advanced research options in the
realm of DL-driven IoT applications. As these authors pointed out, with the development
of the IoT, several real-time apps collect data about people and their surroundings using
IoT sensors and input it into DL models to improve an application’s intelligence and
capabilities, allowing it to provide better suggestions and services. In this regard, Deepan
and Sudha [15] presented a self-contained review of several DL models for real-time IoT
applications. Additionally, the authors provided a better understanding of DL models and
their efficiency by adding different DL tools and frameworks. In one of the most recent and
best survey articles, Khalil et al. [6] discussed the key potential of DL techniques in IIoT
applications. Here the authors reviewed different DL algorithms and their use in different
industries. They outlined numerous use cases of DL for IIoT, including smart agriculture,
smart manufacturing, smart metering, etc. Moreover, several key challenges and future
research directions were discussed.

1.2. Limitations of Existing Surveys

A detailed comparison of the aforementioned surveys is presented in Table 1, demon-
strating how researchers have done well in providing a perspective on DL-based IoT and
IIoT applications. However, the existing literature has a few notable limitations. First,
most of these researchers discussed only the theoretical aspects of DL for IIoT, but not
real-time deployment. Second, there is a need for reference architecture of IIoT with key
enabling technologies. Third, most of the surveys discussed the mathematical and theo-
retical background of DL algorithms, but the implementation frameworks and hardware
platforms for real-time deployments are not considered or discussed adequately. Finally,
these studies used only a limited description of the use cases of DL algorithms in the IIoT
sector. Therefore, to overcome these various limitations, we present a comprehensive study
on DL technologies for IIoT applications.
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Table 1. A comparison of latest survey articles.

Authors Year
Contributions of Survey Articles

IIoT Architecture Algorithms Frameworks Hardware Applications Future Directions

Mohammadi et al. [10] 2018 ×
Ma et al. [11] 2019 × × ×
Sengupta et al. [12] 2020 × × ×
Ambika et al. [13] 2020 × × ×
Saleem et al. [14] 2020 × × × ×
Deepan et al. [15] 2021 × × ×
Khalil et al. [6] 2021 × ×
Our Study 2021

1.3. Major Contributions

This study presents a comprehensive deliberation on recent advancements in the inte-
gration of DL technologies with IIoT. The major contributions of this survey are as follows.

1. Discussing the great potential of DL schemes for IIoT.
2. Providing a detailed reference architecture of the IIoT with key enabling technologies.
3. Presenting a comprehensive survey on the working principle of well-known DL

algorithms, their implementation frameworks, and the relevant hardware platforms.
4. Covering the real-world applications of DL techniques in IIoT systems.
5. Suggesting some potential future research directions.

The remainder of this article is organized as follows. Section 2 describes the detailed
reference architecture of the IIoT system. Section 3 briefly discusses the potential of
several DL schemes for IIoT and elaborates the working principle of each algorithm. Some
well-known software frameworks are discussed in relation to the implementation of DL
algorithms in Section 4. Section 5 presents some suitable hardware platforms for the real-
time implementation of DL schemes for the IIoT. Section 6 comprises some real-world cases
of DL application for IIoT and Section 7 summarizes the challenges faced by DL-based
IIoT and presents some potential future research directions. Finally, a brief conclusion is
presented in Section 8.

2. Reference Architecture of the Industrial Internet of Things (IIoT)

Over the past decade, IIoT has brought about a great revolution in modern tech-
nologies by providing seamless connectivity among devices. In this Internet-enabled era,
our mobile applications, devices (smartwatches, tablets/iPads, laptops, etc.), and many
more are sending valuable information continuously to IoT networks. These IoT/IIoT
systems are built upon specific architectures that include different layers and elements with
particular functionalities [16,17]. For instance, a detailed 7-layer architecture for the IIoT is
presented in Figure 3.
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Figure 3. Reference architecture of the Industrial Internet of Things.

2.1. Perception Layer

This layer, which is also known as a “physical” layer, collects environmental data
and performs the necessary preprocessing. This layer transforms the acquired analog data
into digital to make it best compatible with other layers of the system [18]. The main
components of this layer are sensors and actuators.

• Sensors: These are small devices that can detect changes in the surrounding envi-
ronment and extract useful information from the data acquired. Usually, sensors are
considered to be resource-constrained devices that have little processing and compu-
tational power combined with limited memory resources. However, modern sensors
have great capacity to gather environmental signals with a higher level of accuracy.
The most commonly used sensors across multiple industries are used to measure
temperature, humidity, air pressure, weight, acceleration, position, and many others.

• Actuators: These are usually electromechanical devices that convert electrical signals
into physical actions. In an industrial environment, linear and rotary are the two
general types of actuators most often used. Linear actuators transform electrical
signals into linear motions, which are useful in position adjustment applications.
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Meanwhile, rotary actuators transform electrical energy into rotational energy. These
are usually used for the position control of devices such as conveyor belts.

2.2. Connectivity Layer

This layer connects the perception layer and edge layer using advanced communi-
cation technologies [19]. Two methods may be adopted for communication in this layer.
In the first method, direct communication is performed using a TCP or UDP/IP stack. In
another method, smart gateways provide a communication link between the local area
network (LAN) and the wide-area network (WAN). Several advanced communication
technologies and protocols are used in this layer, as described in the following.

• WiFi: This is the most versatile and commonly used scheme across communication
technologies. WiFi modems are very suitable for both personal and official uses,
delivering smooth communications among LAN and WAN.

• Ethernet: This is an older technology used for connecting devices in a LAN or WAN,
which enables them to communicate with each other via a specific communication
protocol. Ethernet also enables network communication between different network
cables, such as copper to optical fiber and vice versa.

• Bluetooth: This wireless protocol is widely used for information exchange over short
distances by creating personal area networks.

• NFC: Near Field Communications (NFC) is a wireless technology that enables secure
communication between smart devices at short distances. The communication range
of NFC is usually considered to be about 10 cm.

• LPWAN: Low-Power Wide-Area Network (LPWAN) describes a class of radio tech-
nologies used for long-distance communication. The top LPWAN technologies are
LoRa, Sigfox, and Nwave. As compared to other wireless technologies such as Blue-
tooth and Wi-Fi, LPWANs are usually used to send smaller amounts of information
over longer distances.

• ZigBee: This is a product from the Zigbee alliance that is designed especially for
sensor networks on the IEEE 802.15.4 standard. The mostly used data communication
protocols for this communication standard are ISA-100.11.a and WirelessHART. These
protocols define Media Access Control (MAC) and physical layers to handle several
devices at low-data rates.

• LTE-M: Long Term Evolution for Machine is a leading LPWA network technology
for IoT applications. It is used for interconnecting objects such as IoT sensors and
actuators, or other industrial devices via radio modules.

• NB-IoT: This is a standards-based low-power wide-area (LPWA) technology that
enables a wide variety of smart devices and services. NB-IoT improves the power
consumption, spectrum efficiency, and system capacity of smart devices.

2.3. Edge Layer

In the early stages, latency often becomes a major challenge to the growth of an
IoT network. Edge computing is considered to be a potential solution to this issue, as it
accelerates the growth of IoT networks. This layer facilitates the system’s ability to process
and analyze data closer to the source. Edge computing technology has now become a new
standard for advanced 5G mobile networks that enable broader system connectivity at
lower latency. The performance of IoT networks is significantly improved by performing
all processes at the edge [20].

2.4. Processing Layer

This layer collects, stores, and analyses information from the edge layer [21]. These
operations are all performed by IoT systems and include two main stages.

• Data Accumulation: Real-time information is acquired through an API and further
stored to meet the demands of non-real-time applications. This stage serves as a tran-
sient link between query-based data consumption and event-based data generation.
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This stage also determines the relevance of the data acquired to the stated business
requirements.

• Data Abstraction: Once data accumulation and preparation have been completed, con-
sumer applications may use it to produce insights. Several phases are involved in the
end-to-end process, including integrating data from multiple sources, reconciliation
of formats, and data aggregation in a single place.

To enhance the compatibility of smart devices, these techniques are usually deployed to-
gether. The commonly used protocols for the processing layers are described in the following.

• Transmission Control Protocol (TCP): It offers host-to-host communication, breaking
large sets of data into individual packets and resending and reassembling packets
as needed.

• User Datagram Protocol (UDP): Process-to-process communication is enabled using
this protocol, which operates on top of IP. Over TCP, UDP offers faster data transfer
speeds, making it the protocol of choice for mission-critical applications.

• Internet Protocol (IP): Many IoT protocols use IPv4, while more recent executions
use IPv6. This recent update to IP routes traffic across the Internet and identifies and
locates devices on the network.

2.5. Application Layer

In this layer, software analyses the data to provide promising solutions to critical
business problems. Thousands of IIoT applications vary in design complexity and functions,
as demonstrated by various versions of this layer. Each one uses various technologies
and operating systems (OS). Some prominent applications include device monitoring
through software control, business intelligence (BI) services, analytic solutions through
AI techniques, and mobile applications for simple interactions. In recent trends, the
application layer can be built at the top of IoT/IIoT frameworks that provide software-
based architectures with ready-made instruments for data visualization, data mining, and
data analytics [22]. Some widely used protocols for the applications layer are discussed in
the following.

• Advanced Message Queuing Protocol (AMQP): It allows messaging middleware to
communicate with one another. It enables a variety of systems and applications
to communicate with one another, resulting in standardized communications on a
large scale.

• Constrained Application Protocol (CoAP): A constrained-bandwidth and constrained-
network protocol designed for machine-to-machine communication between devices
with limited capacity. CoAP is a document-transfer protocol that operates on the User
Datagram Protocol (UDP).

• Data Distribution Service (DDS): A flexible peer-to-peer communication protocol
capable of running small devices as well as linking high-performance networks. DDS
simplifies deployment, boosts dependability, and minimizes complexity.

• Message Queue Telemetry Transport (MQTT): A messaging protocol developed for
low-bandwidth communications to faraway places and mostly used for lightweight
machine-to-machine communication. MQTT employs a publisher-subscriber pattern
and is suited for tiny devices with limited bandwidth and battery life.

2.6. Business Layer

The IoT-acquired data are considered useful if they are applicable for business plan-
ning and strategy. Every business has specific goal-oriented tasks that must be accom-
plished by extracting useful information from the data gathered. Business enterprises also
use past and present data to plan future goals. Modern firms frequently adopt intelligent
data analysis techniques to enhance their decision-making capabilities [23]. Today, software
and business intelligence techniques have gained great attention from industries as a means
of improving their performance and profitability.
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2.7. Security Layer

Security has become one of the essential requirements of an IIoT architecture, due to
the rapid increase of modern challenges. Hacking, denial of service, malicious software,
and data breaches are the main challenges of the current IIoT infrastructures [24]. This
layer performs three main functions as, which can be described as follows.

• Device Security: This is the beginning point of security in the IIoT framework. Many
manufactures and companies integrate both software and hardware-based security
schemes in IoT devices.

• Cloud Security: Cloud storage is replacing the traditional data storage servers in
modern IoT infrastructures, so in turn new security mechanisms are also adopted to
secure that cloud. Cloud security includes encryption schemes and intrusion detection
systems, etc., as means of preventing cyberattacks and other malicious activities.

• Connection Security: In an IIoT network, the data must be encrypted before transmis-
sion via any communication channel. In this context, different messaging protocols,
such as MQTT, DDS, and AMQP, may be implemented to secure valuable informa-
tion. In modern trends, the use of TSL cryptographic protocol is recommended for
communication in industrial applications.

3. Deep Learning for the IIoT

The use of smart manufacturing in the IIoT has several advantages. For one thing,
it can be very helpful to make manufacturing and production processes intelligent [25].
New industrialists are adopting IIoT solutions to enhance the productivity and profitability
of their industries. In IoT-enabled industries, the data collected from sensors and smart
devices plays an important role to make the production process smarter [25]. Therefore,
the deployment of intelligent data analysis techniques has now become an essential re-
quirement of modern industries.

DL is considered to be one of the most powerful techniques in the domain of artificial
intelligence (AI). The integration of DL methods in smart industries can upgrade the smart
manufacturing process into a highly optimized environment by information processing
through its multi-layer architecture. DL approaches are very helpful due to their inherited
learning capabilities, underlying patterns identification, and smart decision-making. The
biggest advantage of DL over conventional ML techniques is automatic feature learn-
ing. With this option, there is no need to implement a separate algorithm for feature
learning [25].

The deployment of DL techniques can be very effective to perform the types of
aforementioned analysis in smart industries. Some well-known DL-based techniques for
the IIoT are discussed in the following section.

3.1. Deep Feedforward Neural Networks

This is the most fundamental type of deep neural network (DNN), in which the
connections between nodes move forward. The general architecture of the deep forward
neural network (DFNN) is presented in Figure 4. As compared to shallow networks, the
multiple hidden layers in DNN can be very helpful to model complex nonlinear relations.
This architecture is very popular in all fields of engineering because of its simplicity and
robust training process [26].

The most commonly used gradient descent algorithm is preferred for the training of
DFNNs. In this algorithm, the weights are first initialized randomly and then the error is
minimized using gradient descent. The complete learning process involves multiple execu-
tions of forward and backward propagation consecutively [27]. In forward propagation,
the input is processed towards the output layer through multiple hidden layers and the
calculated output is compared with the desired output of the corresponding input. In the
backward process, the rate of change of error is calculated concerning network parameters
to adjust the weights. This process will continue until the desired output is achieved by the
neural network.
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Figure 4. A general architecture of the deep feedforward neural network (DFNN).

Let xi as the input of neural network and fi as the activation function of layer i. The
output of the layer i can be computed as

xi+1 = fi(wixi + bi) (1)

Here, xi+1 becomes the input for the next layer, wi and bi are the essential parameters
that connect the layer i with the previous layer. These parameters are updated during the
backward process as shown in the following.

wnew = w− η
∂E
∂W

(2)

bnew = b− η
∂E
∂b

(3)

Here, wnew and bnew are the updated parameters for w and b. E represents the cost
function and η is the learning rate. The cost function of the DL model is decided according
to the desired task such as classification, regression etc.

3.2. Restricted Boltzmann Machines (RBM)

RBM can also be described as stochastic neural networks. This is one of the well-known
and widely used DL approaches because of its capability to learn the input probability
distribution in both supervised and unsupervised manners. Paul Smolensky introduced
this technique in 1986 with the name Harmonium, and Hinton popularized it in 2002
with the development of new training algorithms [28]. Since then, RBM has been applied
widely in a variety of tasks such as dimensionality reduction, representation learning, and
prediction problems. Deep belief network training using RMB as a building block was a
very famous application. Presently, RBMs are frequently used for collaborative filtering,
due to the excellent performance of the Netflix dataset [29]. RBM is an extension of the
Boltzmann Machine with a restriction in the intra-layer connection between units. It is
an undirected graphical model that contains two layers, visible and hidden, that form a
bipartite graph. In recent studies, several variations of RBMs have been introduced in
terms of improvised learning algorithms [30]. These variants include conditional RBMs,
temporal RBMs, convolutional RBMs, factored conditional RBMs, and Recurrent RBMs.
To deal with the data characteristics, different types of nodes may be introduced, such
as Gaussian, Bernoulli, etc. In RBM, each node is considered a computational unit that
processes the information needed to make stochastic decisions. The general architecture of
RBM is presented in Figure 5.
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Figure 5. A general architecture of the Restricted Boltzmann Machines (RBM).

The joint probability distribution of a standard RMB can be described with the Gibbs
distribution p(v, h) = 1

z e−E(v,h)

Here energy function E(v, h) can be described as

E(v, h) = −
n

∑
i=1

m

∑
j=1

wijhjvi −
m

∑
j=1

bjvi −
n

∑
i=1

cihi (4)

Here m and n represent the number of visible and hidden units. hj and vj are the
states of the hidden unit i and visible unit j respectively. bj and cj describes real-valued
biases corresponding to the jth and ith units, respectively. wij are the weights that connect
visible units with hidden units. Z indicates the normalization constant that ensures the
sub-probability distributions equal to 1. Hinton proposed the Contrastive Divergence
algorithm for the training of RBMs. This algorithm trains the RMB to maximize the
training sample’s probability. Training stabilizes the model through minimization of its
energy through updating the model’s parameters, which can be done using the following
Equations (5)–(7).

∆wij = ε
(〈

vihj
〉

data −
〈
vihj

〉
model

)
(5)

∆bi = ε(〈vi〉data − 〈vi〉model ) (6)

∆Ci = ε
(〈

hj
〉

data −
〈

hj
〉

model

)
(7)

Here, ε represents the learning rate, 〈.〉data , and 〈.〉model represent the expected value
of data and model, respectively.

3.3. Deep Belief Networks (DBN)

DBNs are made up of several layers of latent variables. These variables are typically
binary and indicate the hidden characteristics of the input observations. DBN with one layer
is the same as an RBM because the connection among the two top layers is undirected [31].
The remaining connections in DBN have directed graphs towards the input layer. A DBN
model follows a top-down approach to generate a sample [32]. First, the samples are drawn
from the RMB on the top layer using Gibbs sampling. After that, simple execution of
ancestral sampling is performed by visible units in a top-down approach. A generic DBN
model is presented in Figure 6.
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Figure 6. A general architecture of the Deep Belief Networks (DBN).

The inference in DBN is an uncontrolled issue due to explaining away effect in the
latent variable model. Hin presented an efficient and fast method to train DBN by RBM
stacking: at the initial stage, the lowest level of RBM learns the distribution of input
data during the training process [33]. At the next stage, RBM computes the higher-order
correlation among the hidden units of the previous layer. The entire process is repeated for
each hidden layer. At the next stage, RBM computes the higher-order correlation among
the hidden units of the previous layer. The entire process is repeated for each hidden layer.
A DBN with Z number of hidden layers models the joint distribution among the visible
layer v and hidden layer hz, here z = 1, 2, 3, . . . , Z as described in the following.

p(v, h1, . . . , hz) = p(v | h1)

(
z−2

∏
z=1

p(hz | hz+1)

)
p(hz−1, hz) (8)

Hinton’s training technique led directly to the modern era of DL, as it was the first deep
architecture that had been trained efficiently. By adding layers to the NN, the logarithmic
probability of the training data can be increased greatly. The DBN has been used as a
classifier in several applications, such as computer recognition, phone recognition, etc. In
speech recognition, DBN is used for pre-training of the DNN, deep convolutional neural
network, and many others.

3.4. Autoencoders (AE)

An autoencoder is an unsupervised learning technique for neural networks that trains
the network to ignore noise signals and thus develop more efficient data representations.
AE is a 3-layer neural network, as presented in Figure 7. Here the input and output layers
have the same number of units, but the hidden layer usually contains a lower number of
neurons. The hidden layer encodes the input data into a compact form. AE generally uses
deterministic distributions instead of particular distributions, as in the case of RBM [34]. A
backpropagation algorithm is usually used to train an AE. This training process contains
two stages: encoding and decoding. In the first stage, the model encodes the input into
hidden representations through the weight metrics. In the decoding phase, the model
reconstructs the same input from an encoded representation using the weight metrics. The
encoding and decoding process can be further elaborated mathematically, as presented in
Equations (9) and (10).



Sensors 2021, 21, 7518 12 of 45

Figure 7. A general architecture of an Autoencoder (AE).

In the encoding stage.
y′ = f (wX + b) (9)

Here, X represents an input vector, f is an activation function, w and b are the param-
eters that are required to be tuned and y is the hidden representation.

In decoding stage
X′ = f

(
w′y′ + c

)
(10)

Here X represents the reconstructed input at the output layer, w′ is the transpose of w
and c represent bias value to the output layer.

wnew = w− η
∂E
∂W

(11)

bnew = b− η
∂E
∂b

(12)

Here, wnew and bnew are the updated parameters after the completion of the current
iteration. E represents the reconstruction error at the output layer.

A deep autoencoder (DAE) is composed of multiple hidden layers of AE. Because
of multiple layers, the training of AE can be a difficult task [35]. This difficulty can be
overcome by training each layer of a DAE as simple AE. The DAE has been successfully
applied in several applications, such as document encoding for faster subsequent retrieval,
speech recognition, and image retrieval, etc. [36]. AEs gained great attention from different
researchers because of their non-generative and non-probabilistic nature.

3.5. Convolutional Neural Network (CNN)

CNNs are a type of neural network inspired by the human visual system. CNNs were
initially proposed by LeCun in 1998 [37] and gained popularity in the DL frameworks when
Krizhevsky et al. [38]. won the ILSVRC-2012 competition with his proposed architecture
AlexNet. This remarkable achievement started a new trend in AI, as data scientists observed
the great classification capabilities of CNN and its variants. In many applications, CNN
algorithms proved their superior performance in human recognition systems.

The fundamental architecture of CNN is presented in Figure 8. It contains multiple
convolutional and pooling layers and a fully connected layer at the end. The convolutional
layer’s primary role is to extract essential features from the provided input image based on
the spatial relationship between pixels. Pooling layers perform dimensionality reduction
of feature maps while maintaining feature information. Finally, a fully connected layer con-
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nects the neural network with the output layer to obtain the desired output. CNNs are very
useful for image descriptor extractions using latent spatial information. A common image
contains several characteristics such as color, contours, edge, textures, strokes, gradient,
and orientation. A CNN splits an image according to the aforementioned properties and
learns them as representation in various layers. CNNs gained great popularity in computer
vision applications such as image detection, image classification, image segmentation, and
image super-resolution reconstruction. Multiple CNN frameworks have been proposed by
considering the real-world application requirements and maintaining the high accuracy
threshold. Region-based CNN (R-CNN) and You Only Look Once (YOLO) are popular
examples of such modern architectures. The common naive-based CNNs are computation-
ally very expensive because they consider a huge number region proposal to find an object
within an image. However, R-CNN-based addresses this issue by the selection of a region
of interest (ROI) with a selective search. Redmon et al. [39] initially proposed a YOLO
technique in 2016. It has very high speed as compared to R-CNN with little compromise in
performance. It understands the generalized representation of an image by looking at the
object once with a CNN. However, this technique faces spatial constraints in the detection
of smaller objects. Apart from these frameworks, there are several other variants of CNN
have been proposed, such as AlexNet, LeNet, VGGNet, ResNet, GoogleNet, ZFNet, and
many others [12]. These CNN frameworks have had a great impact on AI-enabled vision
research for future applications.

Figure 8. A general architecture of the Convolutional Neural Network.

3.6. Recurrent Neural Network (RNN)

An RNN is a class of ANN in which connections between nodes make a directed
graph along a temporal sequence [40]. This property allows it to exhibit temporal dynamic
behavior. In conventional neural networks (CNNs), all inputs and outputs are independent
of one another. In some cases, when it is required to predict the next word or statement,
then previous data are required. Therefore, there is a need to remember the previous data.
RNN addresses this issue with the help of a hidden layer. The most significant feature
of an RNN is the hidden state that remembers the sequence information [40]. RNN has
a memory that recollects all the information about what has been calculated during the
process. It uses the same parameters for all inputs and the information about what has
been calculated during the process. It uses the same parameters for all inputs and performs
the same tasks on all the input or hidden layers to generate a suitable output. As compared
to other neural networks, this feature reduces the complexity of parameters.

An RNN is a class of ANN in which connections between nodes make a directed
graph along a temporal sequence [41]. This property allows it to exhibit temporal dynamic
behavior. In conventional neural networks, all the input and outputs are independent of
each other. In some cases, when it is required to predict the next word or statement then
previous data are required. Therefore, there is a need to remember the previous data. RNN
addresses this issue with the help of a hidden layer. The most significant feature of RNN is
the hidden state that remembers the sequence information [42]. RNN has a memory that
remembers all the information about what has been calculated during the process. It uses
the same parameters for all inputs and performs the same tasks on all the input or hidden
layers to generate a suitable output. As compared to other neural networks, this feature
reduces the complexity of parameters.
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The general architecture of RNN is shown in Figure 9. To understand the working
mechanism of RNN, we describe a brief example here. Suppose there is a DNN that
contains 1 input layer, 3 hidden layers, and 1 output layer. Each layer will have its own set
of weights and biases. Let us assume for hidden layers the weights and biases for each layer
is described as w1, w2, w3 and b1, b2, b3. Each of these layers is independent of the others
as they do not memorize the previous output. RNN converts the independent activations
into dependent activations by providing the same biases and weights to each layer. It
memorizes each of the previous outputs as input to the next hidden layer, which results in
complexity reduction. Here, these 3 layers can be converted into a single recurrent layer in
such a way that the weights and biases are identical for all the hidden layers. The existing
state can then be calculated using the following expression.

ht = f (ht−1, xt) (13)

Here ht represents the current state, ht−1 is the previous state and xt is the input state
of the neural network.

Figure 9. A general architecture of the Recurrent Neural Network (RNN).

Now a hyperbolic tangent (tanh) activation function can be applied through the
following expression.

ht = tanh(whhht−1 + wxhxt) (14)

Here whh is weight at current neuron and wxh is weight at input neuron.
Now the output can be calculated using the following expression.

yt = whyht (15)

Here yt represents the output and why is the weight at the output layer.

3.7. Generative Adversarial Networks (GAN)

GANs are algorithmic frameworks that employ two neural networks to generate new
and synthetic data instances that can pass for real data. GANs are used widely in voice,
image, and video generation applications [43]. Ian Goodfellow initially introduced GAN
in 2014 at the University of Montreal, Canada. Yann LeCun, the AI research director of
Facebook, has called adversarial training the most emerging idea in the last 10 years of ML.
GANs have great potential in multiple applications because of their ability to mimic any
kind of data distribution [44]. These networks can also be trained to create worlds similar
to our own choice in several domains, such as speech, music, image, video, etc. In a sense,
these networks are considered robot artists that can produce impressive output. GANs
can also be used to generate fake media content, a technology that has come to be known
as Deepfakes.
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GANs are made up of two models. The first model is referred to as a generator,
and its primary function is to produce new data that is comparable to the desired data.
The generator might be compared to a human art forger, who makes counterfeit pieces
of art. The second model is called a discriminator. This model validates the input data,
deciding whether it is from the original dataset or was created by a forger. In this context,
a discriminator is comparable to an art expert who attempts to determine if artworks are
genuine or fraudulent. The working process of GANs are presented in Figure 10. The GAN
can be easily understand using universal approximators such as ANN. A generator can be
model using a neural network G(n, θ1). Its main function is to map input noise variables
n to the desired data space x. Conversely, the discriminator can be model using a second
neural network D(x, θ2). It generates the output probability of data authenticity in the
range of (0, 1). In both cases, θi describes the weights of each neural network.

Figure 10. A general architecture of the Generative Adversarial Networks (GAN).

Consequently, the discriminator trains to categorize the input data accurately, which
means that the weights of neural networks are updated to optimize the probability that
any real data input x is categorized as belongs to a real dataset. The generator is trained
to generate the data as realistically as possible. This also means that the weights of the
generator are tuned to increase the probability that any fake image is classified as part
of the original dataset. After multiple executions of the training process, the generator
and discriminator will reach the point where further improvement is not possible. At this
point, the generator produces realistic data synthetic data, and the discriminator is unable
to differentiate between the two types of input. During training, both the generator and
discriminator will try to optimize the opposite loss function [45]. The generator tries to
maximize its probability of having its output recognized as real, while the discriminator
tries to minimize this value.

4. Deep Learning Frameworks

Several ML and DL frameworks are already facilitating the users to use the graphical
processing unit (GPU) accelerators and thus expedite the learning process with interactive
interfaces. Some of these frameworks allow for the use of optimized libraries, such as
OpenCL and CUDA, to further enhance the performance. The most significant feature of
multicore accelerators is their significant ability to expedite the computations of matrix-
based operations [46]. The software development in ML/DL is highly dynamic and
has multiple layers of abstraction. The most commonly known ML/DL frameworks are
presented in Figure 11. A short description of each framework, along with its advantages
and disadvantages, is described in the following.
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Figure 11. Some well-known ML/DL frameworks.

4.1. TensorFlow

This is an open-source library for numerical calculations using data flow graphs [47].
This framework was created and maintained by the Google Brain team at Google’s Machine
Intelligence research organization for ML and DL, and it is designed especially for large-
scale distributed training and inference. The nodes in the network represent mathematical
processes, while the graph edges define the multidimensional data arrays transferred
between nodes. TensorFlow’s framework is made up of distributed master and slave
services with kernel implementations. This framework contains around 200 operations,
such as arithmetic, array manipulation, control flow, and state management. TensorFlow
was designed for both research and development applications. It can easily execute
on CPUs, GPUs, mobile devices, and large-scale systems with hundreds of nodes [48].
Additionally, TensorFlow Lite is a lightweight framework for embedded and mobile
devices [49]. It facilitates the on-device ML/DL inference with low latency and small
binary size. It supports multiple programming interfaces that include API for C++, Python,
GO, Java, R, Haskell, etc. The TensorFlow framework is also supported by Amazon and
Google cloud environments.

4.2. Microsoft CNTK

Microsoft Cognitive Toolkit is a commercial-grade distributed DL framework that
includes large-scale datasets from Microsoft Research [50]. It facilitates the implementation
of DNN for image, speech, text, and handwritten data. Its network is defined as a sym-
bolic graph of vector operations using building blocks. These operations include matrix
addition/multiplication or convolution. CNTK supports RNN, CNN, and FFNN models
and enables the implementation of stochastic gradient (SGD) algorithms with automatic
parallelization and differentiation across multiple servers [51]. CNTK is supported by both
Windows and Linux operating systems using C++, C#, Python, and BrainScript API.

4.3. Keras

This is a Python library that enables bindings between several DL frameworks such
as Theano, CNTK, TensorFlow, MXNet, and Deeplearning4j [52]. It was released under the
MIT license and was developed especially for fast experimentation. Keras runs on Python
2.7 to 3.9 and can execute smoothly on both CPUs and GPUs. Francois Chollet developed
and maintained this framework under four guiding principles [53], namely:

1. It follows the best practices by offering simple, consistent APIs to reduce cognitive
load.

2. Neural layers, optimizers, cost functions, activation functions, initialization schemes,
and regularization methods are all separate modules that can be combined to construct
new models.

3. The addition of new modules is easy and existing modules provide sufficient examples
that allow for the reduction of expressiveness.

4. It works with Python models that are easy to debug as well as compact and extensible.
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4.4. Caffe

This framework was developed by Yangqing Jia and community contributors at the
Berkeley Artificial Intelligence Research (BAIR) lab [54]. It provides speed, expression, and
modularity. In Caffe, DNN are defined layer by layer. Here, a layer is the fundamental unit
of computation essence of a complete model. Accepted data sources include Hierarchical
Data Format (HDF5), efficient databases (LMDB or LevelDB), or popular image formats
(e.g., JPEG, PNG, TIFF, GIF, PDF). In this framework, common layers provide normalization
and vector processing operations. It provides Python support for custom layers but is not
very efficient in doing so. Therefore, the new layers must be written in C++ CUDA [55].

4.5. Caffe2

At Facebook Yangqing Jia developed Caffe2, which is a modular, lightweight, and
highly scalable DL framework [56]. Its major goal is to provide a fast and simple approach
that promotes DL experimentation and exploits research contributions of new models and
techniques. Its development is done in PyTorch, and it is used at the production level at
Facebook. It has several improvements over Caffe, particularly in terms of new hardware
support and mobile deployment. The operator is the fundamental unit of computation in
this framework. Currently, Caffe2 has about 400 operators and several other operators are
expected to be implemented by the research community. This framework provides Python
scripts that facilitate the translation of existing Caffe models into Caffe2. However, this
conversion procedure requires a manual verification process of accuracy and loss scores.
Caffe also facilitates the conversion of the Torch model to Caffe2 [57].

4.6. MXNet

This DL framework is designed for both flexibility and efficiency. Pedro Domingos
developed this framework with colleagues at the University of Washington, USA. This
framework is licensed under an Apache 2.0 license. It has wide support for Python,
R, Julia, and many other programming languages. In addition, several public cloud
providers support this DL framework [58]. MXNet supports imperative programming,
which improves productivity and efficiency. At its core, this DL framework contains a
dynamic dependency scheduler that parallelized both imperative and symbolic operations
automatically. A graph optimization layer expedites the symbolic execution make it
memory efficient. It is a lightweight, portable framework that is highly compatible with
multiple CPUs, GPUs, and other machines. It also facilitates the efficient deployment of
trained DL models on resource-constrained mobile and IoT devices [59].

4.7. Torch

This is a scientific computing platform that supports a wide range of ML/DL algo-
rithms based on the high-level programming language Lua. Many organizations such as
Google, Facebook, Twitter, and DeepMind support this framework [60]. This framework
is freely available under a BSD license. It uses object-oriented programming and C++ for
implementation. Recently, its application interfaces have also been written in Lua, thus
enabling optimized C/C++ and CUDA programming. Torch is built around the Tensor
library, which is accessible with both CPU and GPU backends. The Tensor library is ef-
fectively implemented in C, which enables it to offer a wide range of classical operations.
This DL framework supports parallelism on multicore CPUs and GPUs via OpenMP and
CUDA, respectively. This framework is mostly used for large-scale learning such as image,
voice, and video applications, optimization, supervised and unsupervised learning, image
processing, graphical models, and reinforcement learning [61].

4.8. PyTorch

This is a Python library for GPU-accelerated deep learning frameworks. Facebook’s AI
research department introduced this framework, which is written in Python, C, and CUDA,
in 2016. It incorporates several acceleration libraries, including NVIDIA and Intel MKL.



Sensors 2021, 21, 7518 18 of 45

At the core level, it uses CPU and GPU Tensors and NN backend written as independent
libraries [62]. Tensor computing is supported in PyTorch, with substantial GPU acceleration.
It gained great popularity because of the ease with which it enables users to implement
complex architectures. It also employs a reverse mode auto differentiation approach to
modify network behavior with minimal effort. Industrial and scientific organizations
widely use this framework. Uber created Pyro, a universal probabilistic programming
language that leverages PyTorch as a backend, in a popular application. This library
is supported by Twitter, Facebook, and NVIDIA and is freely available under the BSD
license [63].

4.9. Theano

This is a pioneering DL tool that supports GPU computations and is actively main-
tained by the Montreal Institute for Learning Algorithms at the University of Montreal,
Canada. It is also an open-source framework available under the BSD license [64]. Theano
uses the NumPy and BLAS libraries to compile mathematical expressions in Python and
thus transform complicated structures into simple and efficient code. These libraries enable
speedy executions on CPUs and GPUs platforms. Theano has a distributed framework for
training models and support extensions for multi-GPU data parallelism [65].

4.10. Chainer

This is an open-source, Python-based framework for DL models developed by re-
searchers at the University of Tokyo, Japan. It offers a diverse set of DL models, including
RNN, CNN, variational encoders, and reinforcement learning [66]. The main intent of
Chainer is going beyond invariance. This framework enables automatic differentiation
application interfaces based on the Define-by-Run technique. It creates neural networks
dynamically, as compared to other frameworks. For high-performance training and in-
ferences, this framework supports CUDA/cuDNN through CuPy. It also uses the Intel
MKL library for DNN that accelerates DL schemes for Intel-based architectures. It has
several libraries for industrial applications, such as ChainerRL, ChainerCV, and Chain-
erMN. In a study performed by Akiba in 2017, ChinerMN demonstrated its superior
performance in a multi-node setting as compared to the results achieved by CNTK, MXNet,
and TensorFlow [67].

5. Hardware Platforms for the Implementation of Deep Learning Algorithms

In the early days of this field, special labs were established for the implementation
of AI and DL techniques. These labs were equipped with high-performance computing
machines that were not affordable for an individual researcher. However, with ongoing
advancements in embedded electronics, single-board computers (SBC) have gained great
popularity in both academia and industry for the deployment of real-time DL algorithms
in industrial applications. Currently, many development boards with the capabilities of AI
use are available on the market. Some well-known hardware development platforms for
DL deployments are presented in Figure 12. In the following, we discuss some well-known
and powerful SBCs that can or have been used for DL implementations.



Sensors 2021, 21, 7518 19 of 45

Figure 12. Some well-known Development Boards for DL Implementations.

5.1. Raspberry Pi 4

This is the latest development board of the popular Raspberry Pi family of SBC. It
offers high processing speeds, large memory, efficient multimedia performance, and vast
connectivity, particularly as compared to the previous generations of Raspberry Pi modules.
This development board is released with a well-documented user manual that can be very
helpful for beginners to expedite their learning process. The hardware specifications of
Raspberry Pi 4 present the option of 2 GB, 4 GB, and 8 GB DDR4 RAMs that make this SBC
an ideal choice for AI and DL-based projects [68]. Due to these characteristics, this SBC has
great support from the scientific community. Raspberry Pi 4 is often used in object detection
and image processing applications. Several open-source ML/DL libraries provide great
support for the speedy implementation of real-world applications. This development board
is also complemented by AI-supported third-party accessories. Raspberry Pi used along
with Intel Neural Computing Stick 2 makes an ideal combination for the development
of AI frameworks. Another alternate third-party accessory is the Coral Edge TPU USB
accelerator that enables this SBC for AI-enabled applications [69]. Additional platforms,
such as Google’s AIY Vision and Voice kits, can also be paired with Raspberry Pi 4 to make
significant contributions in AI and DL projects.

5.2. NVIDIA Jetson XavierTM

This platform provides supercomputer performance at edge in a compact system-on-
module. It also has new cloud-native support that accelerates the NVIDIA software stack.
The power and efficiency of this module enable multi-modal and accurate AI inference
in a small form factor. The development of this SBC opened new doors for innovative
edge devices in logistics, manufacturing, retail, agriculture, service, healthcare, smart
cities, and many other applications [70]. The Jetson Xavier NX module with cloud-native
support enables the design, deployment, and management of AI edge. The NVIDIA
Transfer Learning Toolkit with pre-trained AI models from NVIDIA NGC provides a
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faster interface with optimized AI networks. To improve the performance of existing
deployments, this module supports flexible and seamless updates. NVIDIA JetPack™ SDK
facilitates the development of applications for Jetson Xavier NX with supporting libraries.
It supports several AI frameworks such as graphics, multimedia computer vision, and
many others. JetPack ensures reductions in development costs with the integration of the
latest NVIDIA tools.

5.3. NVIDIA Jetson Nano™

This module is an SoM of Jetson Nano Development Kit, and it tends to be used
mostly to assemble a development board to deploy in AI-based graphic applications. This
powerful AI-enabled SBC enables developers, students, and hobbyists to implement DL
algorithms and models for several applications such as object detection, image classification,
speech processing, image segmentation, and more [71]. This module is available with the
multiple features of Jetson Nano Development Kit, which includes the main CPU, GPU,
and several user interfaces such as USB, GPIO, and CSI. Instead of using a MicroSD card,
the Jetson Nano module has 16 GB eMMC storage. All functionalities of this SBC can be
accessed via an M.2 E connector.

5.4. NVIDIA Jetson AGX Xavier™

Jetson AGX Xavier development board provides great support for the development of
end-to-end AI-enabled robotics applications for delivery, agriculture, retail, manufacturing,
and many other fields. This development board facilitates the industrial or business
circumstances related to automobile upgrades, horticulture, production, manufacturing,
and retailing, among others. NVIDIA designed this SBC especially for advanced- level
developers and engineers to explore the great potential of AI deployments in industrial,
scientific, and business applications. The advanced capabilities of NVIDIA Jetson AGX
Xavier make it an ideal choice for companies, businesses, and industries seeking to create
versatile applications [72].

5.5. Google Coral

When a deployment of rapid ML/DL inferences in a compact form factor is required,
this development board is an appropriate choice. This SBC can be used to prototype the
embedded system and subsequently scale to production using the onboard Coral SoM
combined with custom hardware. Google Coral provides a fully integrated system that
includes NXP’s iMX 8M, LPDDR4 RAM, eMMC memory, Bluetooth, and WiFi. Its distinct
processing capability is provided by Google’s Edge TPU co-processor. Google created the
Edge TPU, a tiny ASIC architecture that offers high-performance ML/DL inferences while
consuming relatively little power. It can execute advanced mobile vision models such as
MobileNet v2 at almost 400 FPS, all in an energy-efficient manner [73].

5.6. Google Coral Dev Board Mini

This is a low-cost SBC with a built-in Edge TPU and real-time inference module for
powerful ML/DL algorithms. This development board integrates MediaTek 8167 SoC
with the Edge TPU, making it a standalone hardware platform capable of executing AI
applications smoothly. TensorFlow Lite can be used with Edge TPU for quick and energy-
efficient inferences. This integration provides adequate data protection according to the
General Data Protection Regulation (GDPR) [74]. Google uses ML/DL-based solutions in
its services at a large scale. Google introduced specialized processors TPU that can execute
ML/DL algorithms in a faster and energy-efficient manner using TensorFlow. The best
example is Google Maps Street view, which is analyzed by a TensorFlow-based neural
network. Edge TPU supports TensorFlow Lite, which is highly compatible with embedded
and mobile devices for efficient ML/DL implementations [74].
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5.7. Rock Pi N10

This development board is a new member of the Rock Pi family. It contains a powerful
SoC RK3399Pro that is integrated into GPU, CPU, and NPU. RK3399Pro’s CPU is a six-core
that includes Dual Cortex-A72 and quad Cortex-A53. Its GPU supports Open CL 1.1 1.2,
Vulkan, OpenGL ES 1.1/2.0/3.0/3.1/3.2, and DXI. Its NPU supports 8/16bit computing.
The NPU has very good performance for complex calculations, which can be very helpful
in DL applications [75]. This development board has multiple resources for storage. A 64
GB eMMC 5.1 and 64 bits dual-channel 8 GB LPDDR are embedded on the mainboard.
Rock Pi N10 also supports multiple interfaces for camera, audio, USB, Ethernet, display,
and I/O pins. This development board uses Android 8.1 and Debian as its firmware [75].

5.8. HiKey 970

This is a Super-Edge AI computing platform that is supported by Kirin 970 SoC with
4 × Cortex A53 and 4 × A73 processors. It has 6 GB UFS storage, 6 GB LPDDR4 RAM,
and Gigabit Ethernet onboard. It is considered the world’s first dedicated NPU AI plat-
form, which integrates popular neural network frameworks and Huawei HiAI computing
architecture [76]. It supports CPU, GPU, and NPU all dedicated to AI acceleration. This
SBC is mostly used to implement DL algorithms in automobiles, robots, and smart city
applications [76].

5.9. BeagleBone AI

This development board provides great support for the use of AI in everyday applica-
tions. It has embedded vision engine (EVE) cores and the T1 C66x digital signal processor
cores supported by OpenCL API with pre-installed tools. It is widely used in home au-
tomation as well as commercial and industrial applications [77]. This SBC is considered an
ideal candidate for AI and DL implementations. It contains a rich collection of features and
mimics the Linux approach, which makes it as an open-source platform. Some powerful
specifications of this SBC make it more powerful than other development boards, such
as its a Dual ARM Cortex A-15 processor, 2 C66x floating-point VLIW DSPs, dual-core
PowerVR SGX544 3D GPU, and the dual-core programmable real-time unit, which consists
of four embedded vision engines [77].

5.10. BeagleV

This development board offers open-source RISC-V computing on Linux distributions
such as Fedora and Debian. This is a powerful SBC that contains a SiFive U74 processor,
8 GB RAM, and multiple I/O ports. BeagleV is comparatively affordable, as contrasted
with other SBCs. The SiFive U74 processor contains two cores and an L2 cache that can
all compete with the performance of other processors, such as ARM Cortex-A55 [78]. The
SiFive U74 also includes a Vision DSP Tensilica-VP6, an NVDLA Engine, a Neural Network
Engine, and an audio processing DSP. Currently, this development board is only available
without GPU, but according to CNX software, it will also be available with GPU from
September 2021. This SBC facilitates developers’ ability to extend their projects more
strongly and flexibly.

6. Applications of Deep Learning in the IIoT

DL techniques have shown promising results in several applications. This section
discusses some potential use cases of DL in IIoT applications.

6.1. Agriculture

Agriculture is a major industry and foundation of the economy in several countries.
However, multiple factors such as population growth, climate change, and food safety
concerns have propelled researchers to seek more innovative techniques for the protection
and improvement of crops. In developed economies, AI and DL techniques are frequently
used for improving the productivity and quality of agricultural products. Some popular
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research contributions in the context of DL techniques for the agricultural industry can be
found here [79–88]. A comparison of some prominent studies is presented in Table 2. In
the following, we discuss several prominent applications of DL in the agricultural sector as
shown in Figure 13.

Figure 13. Applications of DL in agriculture.

Table 2. State-of-the-art contributions in DL-based agriculture.

Author DL Algorithm Dataset Application Purpose of DL Technique

Sehgal et al. [79] LSTM Dataset from Syngeta
crop challenge (2016) Weather prediction Weather prediction according to

the conditions of preceding year

Song et al. [80] DBN
Data gathered from
corn field (irrigated) in
China

Soil moisture content
prediction

Prediction of moisture content in
the soil

Douarre et al. [81] CNN X-ray tomographic
images of soil

Root and soil
segmentation

Image categorization into two
classes root and soil

Aliev et al. [82] RNN Sensory data Internet of plants-based
system

To envisage the minimum and
temperature records for ten days

Huang et al. [83] CNN Data collected using
multirotor UAV

Weed mapping in
smart agriculture

Classification of input images
into three categories: weed, rice
and others

Rahnemoonfar
et al. [84] CNN Dataset consisting of

24,000 images Tomato counting Prediction of tomatoes quantity

Jiang et al. [85] LSTM

Data obtained from the
National Agricultural
Statistics Service
(NASS) Quick Stats

Crop yield prediction Corn yield prediction

Ferentinos et al. [86] CNN Leaf images of plants Plant disease detection Image classification into health
and diseased categories

Toda et al. [87] CNN Plant Village dataset Plant disease diagnosis
Leaf image classification into
healthy and diseased categories
and diagnosis of disease type

Grinblat et al. [88] CNN

Dataset consisting of
vein leaf images of
soybean, red beans,
and white beans

Plant identification
Legume’s classification into three
categories: red beans, soybean,
and white beans
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6.1.1. Weed Detection

When a vast number of data are produced by certain applications, then DL techniques
are considered to be an ideal choice of solution. In weed detection problems, DL models
can be trained using thousands of images of weeds. After optimized training, the DL model
can successfully distinguish weeds from crops.

6.1.2. Smart Greenhouse

Greenhouses enable independent climate inside a specific area. It is quite complex to
manage the micro-climate for a greenhouse. In this context, several environmental factors
must be managed, such as temperature, humidity, wind direction, the intensity of light,
heating, ventilation, etc. The use of DL methods in the greenhouse can be worthwhile to
predict these outcomes and control these variables. DL can efficiently manage the inside
climate by considering all the internal and external environmental factors.

6.1.3. Hydroponics

This system enables the growth of plants in a nutrient-rich environment instead of
soil. Several factors affect the performance of the hydroponic system, such as temperature,
sunlight, pH balance, and nutrition density. DL models can be trained according to these
environmental parameters to launch an appropriate control action.

6.1.4. Soil Nutrient Monitoring

Soil fertility or nutrient level is determined by the organic matter in the soil, and it
determines the yield and quality of an agricultural product. DL frameworks can be used
to predict the presence of organic matter for the calculation of soil fertility. As a result,
farmers can more easily predict the productivity and health of the soil on their farms.

6.1.5. Smart Irrigation

A DL-based framework for a plant recognition system can easily determine the water
requirement for a particular plant type. It can also control the amount of water flow
according to the plant’s requirements. In this particular application, the convolutional
neural network (CNN) can be an ideal choice, since it can recognize the plant type after
training by on datasets of plant images.

6.1.6. Fruit and Vegetable Plucking

Picking ripe crops requires labor and the ability to distinguish targets accurately. A
DL model can be trained using image datasets of fruit and vegetables and then deployed
in fruit and vegetable-picking tools such as robots. This robot can easily distinguish
the specific fruit or vegetable from other objects and then pluck it. For this particular
application, CNN can be an ideal choice.

6.1.7. Early Detection of Plant Diseases

DL frameworks can also be used for the early-stage detection of plant diseases. In this
particular application, an image dataset will be required that contains the images of plant
leaves with a particular disease. A deep convolutional neural network can then be trained
to identify this disease and perform this task.

6.2. Education

DL is a type of individualized learning in the education industry. It can be used to
provide an individualized educational experience to each student. Here, the students
are guided for their own learning, can follow the pace they want, and make their own
decisions about what to learn. Some state-of-the-art research contributions in the context
of DL techniques for the education industry can be found here [89–94]. A comparison of
some prominent studies is presented in Table 3. In the following, we discuss some top
applications of DL in the education sector as shown in Figure 14.
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Figure 14. Applications of DL in education.

Table 3. State-of-the-art contributions in DL-based educational sector.

Author DL Algorithm Dataset Application Purpose of DL Technique

Bhardwaj et al. [89] CNN FER-2013, MES dataset Student engagement

Monitoring the student’s
emotions in real time such as
anger, fear, disgust, sadness,
happiness, and surprise

Han et al. [90] DNN Amazon Smart education
platform

Designing an intelligent
educational environment

Tsai et al. [91] MLP
University’s
institutional research
database

Precision education
To help universities to more
precisely understand student
backgrounds

Fok et al. [92] CNN Self-generated dataset
Prediction model for
students’ future
development

Analyzing students’ performance
and prediction of their future
program of studies

Nandal et al. [93] DNN Self-generated dataset Student admission
predictor

Development of student
admission predictor program for
students to find the chances of
gaining admission to a university

Khaleel et al. [94] DCNN Self-generated dataset Automated grading
Automatic grade prediction
system for the students of
computer-aided drawing

6.2.1. Adaptive Learning

It helps the students to analyze their real-time performance and modifies teaching
methodologies and curriculum according to the collected information. DL models can
assist to have a customized engagement and tries to adapt to the individual for a better
education. DL frameworks can suggest better learning paths to students using different
materials and methodologies.

6.2.2. Increasing Efficiency

DL has a great capability to organize and manage better content and curriculum.
It helps to understand the potential of everyone and bifurcate the work accordingly. It
can efficiently analyze that which work is best suitable for teacher and student. DL can
make instructors’ and students’ jobs simpler, making them more comfortable with their
educational commitments. These modern techniques can motivate the students to increase
their involvement and towards participation and learning. The DL frameworks also
have the great potential to make education more efficient by classroom management and
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scheduling etc. in summary the DL methods can significantly increase the efficiency of the
education sector.

6.2.3. Learning Analytics

Several times teachers can also become stuck while teaching. Because of this, the
insights and gist are not properly understood by the students. Learning analytics can
help the teacher to perform deep dives into the data. The instructor can go through
hundreds of pieces of material, interpret them, and then draw appropriate connections
and conclusions. It can make a very positive impact on the learning and teaching process.
DL methods can help the students to gain benefits by learning advanced methodologies
through learning analytics.

6.2.4. Predictive Analytics

Predictive analytics is helpful to understand the student’s needs and their behaviors
in the education sector. It helps in drawing inferences about what could happen in the
future. With the use of class assessments and half-year results, it is possible to predict
which students will show the best performance in the exams and which students will face
difficulties. It also assists teachers and parents in being aware and taking appropriate
measures. In short, predictive analysis can help the students in a better way and can also
work on their weak points in education.

6.2.5. Personalized Learning

This is one of the best applications that deep learning provides for education. Students
can define their own learning ways through this educational model. They can study at
their own pace and choose what and how they want to learn. They can select the subjects
they want to study, the teacher, standards, curriculum, and pattern they want to follow.

6.2.6. Evaluating Assessments

DL frameworks can be used to grade student’s assignments and examinations more
accurately as compared to the human. Although some inputs are necessarily required from
humans. However, the best results will have more reliability and validity when a machine
performs the task with more efficiency, higher accuracy, and low chances of error.

6.3. Healthcare

Healthcare is an important sector that provides value treatment to millions of peo-
ple while also being a top income producer for many countries. Technology is helping
healthcare experts to establish alternate staffing models, IP capitalization, deliver smart
healthcare, and reduce administrative and supply expenses, in addition to playing a vital
role in patient care, billing, and medical records. Deep learning is gaining great attention
from healthcare industries. DL can help to analyze millions of data points, precise resource
allocation, provide timely risk sources, and many other applications. Some latest research
contributions in the context of DL techniques for the healthcare industry can be found
here [95–107]. A comparison of some prominent studies is presented in Table 4. In the
following, we discuss some top applications of DL in the healthcare industry as shown in
Figure 15.
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Figure 15. Applications of DL in healthcare.

Table 4. State-of-the-art contributions in DL-based smart healthcare.

Author DL Algorithm Dataset Application Purpose of DL Technique

Choi et al. [95] AE + GAN Sutter PAMF, IMIC-III,
Sutter Heart Failure

Generating patient
records Patient’s, record synthesis

Nie et al. [96] GAN Brain data from ADNI
dataset, Pelvic dataset

Medical image
synthesis

Synthetization of CT image
from MRI

Sha et al. [97] RNN
Medical Information
Mart for Intensive Care
(MIMIC) dataset

Clinical outcome
prediction Mortality prediction

Verma et al. [98] LSTM MIT-BIH dataset Missing data prediction
in healthcare

Prediction of missing data in
healthcare scenarios

Sun et al. [99] RBM
Chronic kidney disease
(CKD) and
dermatology datasets

Clinical decision and
risk prediction

Capturing high-level features
from the clinical data and
predict missing values

Najdi et al. [100] AE ISRUC-Sleep dataset Sleep stage
classification

Dimensionality reduction,
feature extraction, and
classification

Nguyen et al. [101] RNN

Alzheimer’s Disease
Neuroimaging
Initiative (ADNI)
dataset

Alzheimer’s disease
recognition

Modeling the succession of
Alzheimer’s disease for seven
years

Xue et al. [102] RNN
Electronic medical
records, Sensory data
from wearables

Obesity status
prediction

Prediction of improvement in
obesity status based on blood
demographics, pressure, and
step count

Amin et al. [103] CNN Temple University
Hospital dataset

Pathology detection
and monitoring

Classification of EEG signals
into two categories, normal
and pathological

Wang et al. [104] LSTM
Normal Sinus Rhythm
(NSR), Fantasia
Database (FD),

Congestive heart
failure

Detection of congestive heart
failure

Alhussein et al. [105] CNN SVD database, MEEI
database

Voice pathology
detection

Classification of voice signals
into normal and pathological
categories

Maragatham et al. [106] LSTM Electronic Health
Records Heart failure prediction Modeling the risk prediction of

heart failure

Kim et al. [107] DBN

Sixth Korea National
Health and Nutrition
Examination Survey
(KNHANES-VI) 2013
dataset

Cardiovascular risk
prediction

Development of cardiovascular
risk prediction model
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6.3.1. Diseases Identification and Diagnosis

DL can play a significant role in a patient’s disease identification, monitoring his
real-time health condition, and suggest necessary measures to prevent it. It can efficiently
identify the minor diseases as well as the major ones such as cancer detection which is
difficult to identify at early stages. It also provides suitable information that enables more
accurate diagnosis, improved outcomes, and individualized treatments.

6.3.2. Drug Discovery and Manufacturing

Next-generation sequencing and precision medicine are two research and develop-
ment technologies that can help in the treatment of a wide range of health problems. DL
algorithms can identify the patterns in medical data without providing any predictions.
Discovering or producing a novel medication may be a costly and time-consuming proce-
dure because many chemicals are tested and only one outcome might be beneficial. In this
context, DL techniques can expedite this process.

6.3.3. Medical Imaging

DL algorithms have made it feasible to detect microscopic abnormalities in scanned
images of patients, allowing physicians to make an accurate diagnosis. Traditional proce-
dures such as X-ray and CT scans were sufficient for inspecting small abnormalities, but
with the increasing diseases, there is a need to check them thoroughly. DL made advanced
contributions in the field of computer vision. This technique was deployed in Microsoft’s
Inner-Eye project, which develops image analysis technologies. This research project uses
DL algorithms to provide novel tools for the automated, quantitative interpretation of 3D
radiological images. This project also helps the experts in the field of surgical planning
and radiotherapy.

6.3.4. Personalized Medicine/Treatment

Doctors can now provide personalized treatment to individual patients based on
their specific needs according to the explosion of patient data in the form of electronic
health records. They aim to extract insights from enormous volumes of datasets and
use them to make patients healthier at individual levels. DL technologies can help to
suggest personalized combinations and predict the risks of disease. Watson healthcare
creates powerful resources using ML and DL for the patient’s health improvement. This
platform decreased the doctor’s time that was spent on making treatment decisions based
on research analysis, clinical practices, and trials. This DL-based platform now offers blood
cancer treatment and many other diseases.

6.3.5. Smart Health Records

There are still some processes exist that take a lot of time for data entry. Maintaining
every day’s health records is a time-consuming activity. In this context, DL can save time,
effort, and money to maintain health records. Google’s Cloud Vision API and MATLAB’s
DL-based handwriting recognition technology are frequently used for document classifica-
tion. It facilitates the recording of clinical data, modernizes the workflow, and improvement
of health information accuracy.

6.3.6. Diseases Prediction

Multiple DL technologies are being used to monitor and predict epidemics all around
the world. Scientists have access to vast amounts of data collected from satellites, websites,
and social media platforms. DL assists in the collaboration of this information and the
prediction of everything from small diseases to serious chronic infectious diseases.

6.4. Intelligent Transportation Systems

Intelligent transportation systems (ITS) have been influenced by the rapid growth
of deep learning. DL gained great popularity in ITS with the proliferation of data and
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advancements in computational technologies. In ITS, the DL models are being used to
provides powerful and viable solutions to address the multiple challenges in the traditional
transport system. In the context of DL approaches, some latest research contributions re-
lated to the ITS can be found in [108–117]. A comparison of prominent studies is presented
in Table 5. In the following, we discuss potential applications of DL in the ITS as shown in
Figure 16.

Figure 16. Applications of DL in intelligent transport system.

Table 5. State-of-the-art contributions in DL-based intelligent transportation system.

Author DL Algorithm Dataset Application Purpose of DL Technique

Su et al. [108] LSTM 38.6 h of transportation
data Mode detection system

Identification of mode of
transport based on kinetic
energy harvester

Song et al. [109] LSTM
GPS data and
transportation network
data

Human mobility and
transportation mode
prediction

Prediction of human
movements

Mohammadi
et al. [110] GAN Localization dataset,

Path planning dataset Path planning Safe and reliable paths
generation

Camero et al. [111] RNN Data from 29 Parking
slots in Birmingham

Car Park occupancy
prediction

Prediction of occupancies rate
of car parks

Singh et al. [112] AE Traffic videos Road Accident
detection

Extraction of Spatio-temporal
features from the surveillance
video

Lv et al. [113] RNN + CNN Trajectory data from
Beijing and Shanghai Traffic speed prediction Traffic speed prediction

Ma et al. [114] RBM + RNN GPS data
Congestion Evolution
Prediction in the
transportation network

Traffic congestion evolution
from GPS data

Pérez et al. [115] RBM Floating car data
gathered in Barcelona

Real-time traffic
forecasting Traffic prediction in real time

Xiangxue et al. [116] LSTM Floating Car Data Short-term traffic
prediction

Modeling of traffic flow in
urban road networks

Goudarzi et al. [117] DBN
Data containing
historical road traffic
flow

Traffic flow prediction Traffic flows prediction

6.4.1. Traffic Characteristics Prediction

This is one of the most important applications of DL in intelligent transportation. It
can help the drivers to select the most feasible routes and enable the traffic control agencies
for the efficient management of transport. The main characteristics are traveling time,
traffic speed, and traffic flow. As these characteristics are not mutually exclusive, however,
the techniques used to predict one of them can also be used to predict the other features
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6.4.2. Traffic Incidents Inference

The main goal of traffic incident risk prediction for a specific location helps the
traffic management authorities in reducing incident risks in a hazardous region and traffic
congestion in incident locations. Several key factors can be helpful for traffic incidents
prediction. These factors include traffic flow, human mobility, weather, geographical
position, period, and day of the week. All these features can be evaluated as indicators of a
traffic incident. DL models can be effectively used to predict and detect traffic incidents.

6.4.3. Vehicle Detection

Vehicle detection in highway monitoring videos is a challenging task and very impor-
tant in terms of intelligent traffic management and control. Traffic surveillance cameras
are installed on highways that generate a vast amount of data in the form of traffic videos.
These data can be further analyzed to identify the vehicle identification. DL algorithms
provide fast and robust solutions for vehicle detection that can be helpful for traffic man-
agement authorities to ensure traffic safety on highways.

6.4.4. Traffic Signal Timing

One of the major responsibilities of ITS management is to control the traffic flow using
traffic signals. The optimum selection of signal timing plays a significant role in traffic flow
management. This is one of the biggest challenges in the field of modern transportation.
DL studies providing new paths by modeling the dynamics of traffic to obtain the best
performance on the roads. In several studies, the DL algorithms proved their superior
performance for the optimum selection of traffic signal timing.

6.4.5. Visual Recognition Tasks

The use of non-intrusive recognition and detection systems, such as camera-image-
based systems, is one of the most significant uses of DL. These applications might range
from providing appropriate roadway infrastructure for driving cars to provide autonomous
vehicles with a safe and dependable driving strategy.

6.5. Manufacturing Industry

DL-based solutions are transforming manufacturing industries into highly efficient
organizations by improving productivity, increasing capacity use, decreasing production
defects, and reducing maintenance costs. In the context of DL approaches some latest
research contributions for the manufacturing industry can be found here [118–126]. A
comparison of some prominent studies is presented in Table 6. In the following, we discuss
some potential applications of DL in the manufacturing industry as shown in Figure 17.

6.5.1. Maintenance

DL algorithms are widely used for predictive maintenance in an industry to prevent
failures of the machine by identifying the upcoming potential challenges more accurately.
DL frameworks analyze the real-time images, sounds, and other information collected by
industrial sensors to reduce the downtime of systems.
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Figure 17. Applications of DL in manufacturing industry.

Table 6. State-of-the-art contributions in DL-based manufacturing industries.

Author DL Algorithm Dataset Application Purpose of DL Technique

Park et al. [118] AE Sensory data, network
traffic data

Intrusion detection
system Development of IDS

Tao et al. [119] CNN Sensory data Worker activity
recognition

Classification of worker’s
activities into 6 groups:
screwdriver, used power, grab
tool, hammer, rest arm, turn a
screwdriver, and wrench usage

Ren et al. [120] AE
IEEE PHM2012 data
provided by the
FEMTO-ST Institute in
France

Remaining useful life
prediction of bearings

Features extraction that is
important for the remaining
bearings’ life prediction

Yan et al. [121] AE
Data collected from
CNC machining
centers

Remaining useful life
prediction in machines

Features extraction that is
important for the remaining
machine’s life prediction

Jiang et al. [122] AE Process data samples Fault classification Feature learning from a wide
variety of faults

Yuan et al. [123] CNN
Bearing data offered by
Case Western Reserve
University (CWRU)

Diagnosis and
monitoring in
manufacturing

Identification and prediction of
machine faults

Li et al. [124] CNN Sensory data Manufacture inspection
system

Classification of production
items into two categories:
defected and non-defected.

Wang et al. [125] DBN
Sensory data gathered
from a centrifugal
compressor

Condition prediction
Prediction of machine’s
condition in manufacturing
systems

Zhang et al. [126] LSTM

Sensory data obtained
from 33 sensors
deployed on a pump in
power station

Industrial IoT
equipment analysis

Prediction of the working
condition of industrial
equipment to enhance
operation quality

6.5.2. Predictive Analytics

DL models can accurately predict operational outcomes. It enables the companies
to optimize their manufacturing processes. DL algorithms use real-time sensor data
monitoring production lines, inventory, waiting for the time of machines, technical and
physical conditions of machines, and behavior of workers. Manufacturing companies
can also examine the effectiveness of their processes by analyzing the information about
quality issues, raw materials, maintenance procedures, and environmental factors such
as temperature and humidity. The predictive analysis can be very helpful to identify,
unprofitable lines, non-value-added activities, and bottlenecks in industrial operations.
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6.5.3. Product Development

DL is increasingly used in product designing. DL-based software enables the man-
ufactures to input the important aspects of product design such as material, cost, and
durability, etc. Based on the user input, this software proposes a highly suitable product
design and facilitates the user for more realistic testing without having to build extremely
expensive prototypes. Engineers of the automotive industry believe that the DL will be
the most promising approach to design high-speed racing cars and can also be helpful to
create more realistic platforms to achieve optimal performance.

6.5.4. Quality Assurance

DL-enabled computer vision techniques are used for the automatic detection of defec-
tive products. Different manufacturers claim that such quality testing solutions can achieve
up to 90% accuracy in defect identification for specific applications. It also enables the
production teams to address the quality problems at an earlier stage. As an example, Audi
uses DL-based image recognition system for the successful identification of fine cracks on
metal sheets.

6.5.5. Robotics

Several manufacturers use industrial robots to handle dangerous and complicated pro-
cesses. Now DL frameworks enable the robots to learn on their own. A DL-enabled robot
can train itself for performing new tasks using object and pattern recognition capabilities.

6.5.6. Supply Chain Management

DL approaches are considered highly accurate analytical techniques that can add
value in complex supply chain management operations. Using DL models companies
can predict real-time demands, optimize their production schedules and supply chain
operations, and can efficiently manage the inventory to reduce purchasing costs of raw
materials. These capabilities of DL models enable the companies to quickly respond to the
change in market demand.

6.5.7. Logistics

DL models can significantly improve fuel efficiency and delivery time by analyzing
the real-time information about drivers and vehicles in logistic operations.

6.6. Aviation Industry

AI and DL can streamline and automate customer services, analytics, machinery
maintenance, and many other internal procedures and operations in the aviation industry.
The most recent and relevant research contributions related to the use of DL techniques in
the aviation industry field can be found in [127–135]. A comparison of prominent studies
is presented in Table 7. In the following, we discuss the most important applications of DL
in the aviation industry as shown in Figure 18.
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Figure 18. Applications of DL in aviation industry.

Table 7. State-of-the-art contributions in DL-based aviation industries.

Author DL Algorithm Dataset Application Purpose of DL Technique

Alkhamisi et al. [127] RNN
Aviation Safety
Reporting System
(ASRS) dataset

Risk prediction in
Aviation Systems

Improvements of risks
prediction in aviation systems

Rodrigo et al. [128] PCMC-Net
Data extracted from a
global distribution
system (GDS)

Price elasticity
estimation

Differentiate the price elasticity
between business and leisure
trips

Barakat et al. [129] CNN + LSTM Twitter US Airline
Sentiment dataset Airport service quality

Measurement of airport service
quality using passengers’
tweets about airports

Wu et al. [130] CSAE Self-generated EEG
dataset

Detecting fatigue status
of pilots

Development of fatigue
recognition system based on
EEG signals and DL
algorithms

Dong et al. [131] LSTM
Aviation Safety
Reporting System
(ASRS)

Aviation transportation
safety

Identification of incident
causal factors for aviation
transportation safety
improvement.

Yazdi et al. [132] SAE-LM + SDA U.S flight dataset Flight delay prediction Development of flight delays
prediction system.

Wang et al. [133] LSTM ASPM datasets Flight demand and
delays forecasting

Prediction of flight departure
demand in a multiple-stage
time horizon

Corrado et al. [134] DAE
Flight data collected
from San Francisco
International Airport

Anomaly detection
Development of an anomaly
detection system to identify
deviated trajectories

Hasib et al. [135] DNN + CNN US airline service
dataset Sentiment analysis

Evaluation of six major US
airlines and multi-class
sentiment analysis

6.6.1. Revenue Management

It is a popular application of data and analytics that determines the sale of an appro-
priate product to relevant customers at a reasonable price using the right channel. Revenue
management specialists in the aviation industry use DL techniques to define attractive
destinations and adjust prices, find efficient and convenient distribution channels, and seat
management to keep the airline competitive and customer-friendly.

6.6.2. Air Safety and Airplane Maintenance

Airlines usually bear the huge cost because of flights delays and cancellations that
include expenditures on maintenance and compensations to passengers stuck in airports.
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According to a study, about 30% of total delay time is caused by unplanned maintenance.
To address this challenge, a DL-based predictive analysis can be applied to fleet techni-
cal support. Airline carriers deploy intelligent predictive maintenance frameworks for
better data management from aircraft health monitoring sensors. These systems enable
the technician’s access to real-time and historical information from any location. The
information about the current technical condition of an aircraft through notifications, alerts,
and reports can be helpful for employees to identify the possible malfunction and parts
replacement proactively.

6.6.3. Feedback Analysis

AI and DL-enabled systems can swiftly assess if there is a chance to favorably intervene
in the customer journey and transform a bad experience into a pleasurable one. It also
enables the companies to respond rapidly in an aligned and synchronized way that is on
board with the business’s values. Using DL for market research and feedback analysis
enables airlines to make intelligent decisions and meet customer’s expectations.

6.6.4. Messaging Automation

Travelers usually become nervous when a flight delay or baggage loss occurs. If
passengers do not receive a timely response from an airline representative regarding
their problem, then they will not choose this airline for their upcoming trips. The speed
of response to customers matters a lot. DL-based solutions simplify and expedite the
customer service processes using advanced algorithms of natural language processing.
These solutions can automate several routine processes and can create ease for passengers.

6.6.5. Crew Management

One of the major responsibilities of the scheduling department is to assign crews to
each of thousands of flights every day. Crew management is a complex task that includes
several factors such as flight route, aircraft type, crew member license, work regulations,
vaccination of staff, and days off to approve conflict-free schedules for pilots and flight
attendants. Several aviation companies are using AI and DL-based software to make
optimal scheduling in terms of crew qualification, working hours, aircraft expenses, and use.
Such software integrates predictive models with an airline operation management system.

6.6.6. Fuel Efficiency Optimization

Airlines use AI frameworks with built-in DL algorithms to gather and analyze flight
data regarding aircraft type, weather, weight, route distance, and altitudes, etc. DL models
can efficiently estimate the optimal amount of fuel required for a specific flight.

6.6.7. In-Flight Food Service Management

DL techniques can be helpful for supply management specialists to determine the
number of snacks and drinks on board without being wasteful. The effective use of DL
methods can predict the amount of food required for any specific flight. The optimization
in foodservice management can reduce the cost and improve the service quality.

6.7. Defense

ML and DL have become an essential part of modern warfare. Modern military
systems integrated with ML/DL can process enormous amounts of data more effectively
compared to traditional systems. AI techniques improve self-control, self-regulation, and
self-actuation of combat systems because of their inherent decision-making capabilities.
AI and DL are being deployed in almost every military application. Military research
organizations have increased the research funding to drive the adoption of ML/DL-driven
applications for military applications. Recent research contributions related to the use of DL
techniques in defense and military applications can be found in [136–141]. A comparison



Sensors 2021, 21, 7518 34 of 45

of prominent studies is presented in Table 8. In the following, we discuss the most relevant
potential applications of DL in the military domain as shown in Figure 19.

Figure 19. Applications of DL in defense.

Table 8. State-of-the-art contributions in DL-based defense systems.

Author DL Algorithm Dataset Application Purpose of DL Technique

Das et al. [136] R-CNN Self-generated dataset Target detection
Development of a new search
algorithm for object detection
through UAV

Calderón et al. [137] CNN Self-generated dataset Real-time object
detection

Development of a vision-based
object detection system for a
micro-UAV

Krishnaveni et al. [138] DCNN Data collected from
wildlife television.

Surveillance
applications

Identification of abnormal
events and the data streaming
by creating a multipath routing
in WSN

Pradeep et al. [139] CNN Self-generated dataset
Real-time object
recognition in air
defense systems

Accurate identification of
definite target with DL
algorithm and real-time
camera of FWN aircraft

Shi et al. [140] FNN Self-generated Cognitive radio
security

Launching of jamming attacks
on wireless communications
and development of a defense
strategy

Wang et al. [141] DRL Self-generated dataset
Defense strategies
against adversarial
jamming attacks

Design and development of
defense strategies against
DRL-based jamming attackers
on a multichannel access agent

6.7.1. Warfare Platforms

Armed forces from several countries across the globe are incorporating AI techniques
into weapons and other military equipment used on ground, airborne, naval, and space
platforms. The deployment of DL methods on these platforms has enabled the development
of highly efficient autonomous warfare systems. DL enhanced the performance of warfare
platforms with less maintenance.

6.7.2. Cybersecurity

Military platforms are frequently vulnerable to cyber-attacks, which can result in
massive data loss and damage to defense systems. However, the deployment of ML/DL
techniques can autonomously protect computers, networks, data, and programs from any
intrusion. Additionally, DL-enabled cybersecurity systems can record the pattern of new
attacks and develop firewalls to tackle them.
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6.7.3. Logistics and Transportation

The efficient transportation of ammunition, goods, troops and armaments is an integral
component of successful military operations. The integration of DL techniques with
military transportation can reduce human operational efforts and lower transportation
costs. It also enables the military fleets to quickly predict the component failures and easily
detect anomalies.

6.7.4. Target Recognition

ML/DL frameworks are being developed to improve the accuracy of target iden-
tification in complex combat environments. These techniques allow the armed forced
to gain an in-depth understanding of critical operation areas by analyzing documents,
reports, and news feeds, etc. The capabilities of DL-based target identification systems
include aggregation of weather conditions, probability-based forecasts of enemy behavior,
assessments of mission approaches, and suggested mitigation strategies. In addition, the
integration of DL in target recognition systems improves the ability of these systems to
identify the position of targets.

6.7.5. Battlefield Healthcare

ML/DL can be integrated with Robotic Ground Platforms (RGPs) and Robotic Surgical
Systems (RSS) to provide evacuation activities and surgical support in war zones. Under
critical conditions, the health care systems equipped with ML/DL can search the soldier’s
medical records and efficiently assist in complex diagnoses.

6.7.6. Combat Simulation and Training

Simulation and Training is a broad field that combines software engineering, system
engineering, and computer science to develop computerized models that acquaint soldiers
with the various combat systems during military operations.

6.8. Sports Industry

ML and DL techniques are being adopted to better analyze, organize, and optimize
every aspect of the sports industry. Management and athletes are required to gather every
information about the individual and team performance to gain an edge over their oppo-
nent. AI and virtual reality techniques are increasingly used to provide real-time analytics
in sports. The availability of large data in sports can be very helpful to develop predictive
DL models to make better management decisions. In the context of DL approaches, the
latest and relevant research contributions related to the sports industry field can be found
in [142–149]. A comparison of prominent studies is presented in Table 9. In the following,
we discuss relevant applications of DL in the sports industry as shown in Figure 20.

Figure 20. Applications of DL in sports industry.
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Table 9. State-of-the-art contributions in DL-based sports industry.

Author DL Algorithm Dataset Application Purpose of DL Technique

Chen et al. [142] GAN NBA SportVu Basketball

Development of realistic
defensive plays conditioned on
the ball and offensive term
movements

Chung et al. [143] GAN STATS SportVu Basketball Simulation of offensive tactic
sketched by coaches

Baccouche et al. [144] LSTM + RNN MICC-Soccer-Actions-4
dataset Football Classifying four football

actions

Theagarajan et al. [145] CNN 3 different soccer matches Football Generation of sports highlights

Le et al. [146] RNN STATS Football Ghost modeling in football.

Kautz et al. [147] DCNN Video Recordings from
GoPro Hero 3 action camera Volleyball Activity recognition in

volleyball

Qiao et al. [148] DCNN + LSTM Self-built video dataset Table Tennis

Recognition and tracking of
table tennis’s real-time
trajectories in complex
environments

Cao et al. [149] Tiny YOLOv2 Self-generated shuttlecock
detection dataset Badminton

Precise and detection of the
shuttlecock with badminton
robot

6.8.1. Sports Coaching

The presence of experienced coaches is an essential factor behind every winning team.
Presently, augmented AI with wearable sensors and high-speed cameras are helping a lot
to improve training. The weakest point of conventional coaching is that it takes years to
hone the skills. Now AI-enabled assistants are helping the coaches to improve the game
strategy and optimize the team’s lineup according to modern game requirements.

6.8.2. Analyzing Player Behavior

DL evaluates the multiple parameters of sports side by side. The individual player’s
data can be tracked using wearable sensors, high-speed cameras, and DL throughout the
match. This technology can identify minuscule differences and help us understand the
player’s performance under stress. DL can communicate better real-time game plan change
to coaches and players and can also identify the minuscule differences.

6.8.3. Refereeing

It is one of the earliest applications of ML and DL in sports. These techniques are
helpful in precise judgments to make the game fair and law-abiding. The best example
is the use of hawk-eye technology in cricket to determine if the batter is out or not in the
cases of LBW.

6.8.4. Health and Fitness Improvement

ML and DL are transforming the healthcare industry in several ways. The predictive
and diagnostic capabilities of DL can also be helpful in the sports industry. The physical
health and fitness of the players is an extremely important element in sports. Team
managements spend a lot of money to maintain the mental and physical wellbeing of the
players. Each sport measures the mental and physical skills of a player differently. The
adaptation of DL methods in sports can be very helpful to analyze these skills accurately.

6.8.5. Streaming and Broadcasting

AI and DL frameworks are used in match recording, where broadcasters can selectively
capture the highlights. DL can automatically generate the subtitles for live sports events
in multiple languages based on the viewer’s location and language preferences. DL is
also used in sports marketing to determine the best camera angles during the match. In
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addition, these methods are very helpful to identify the top moments of the game for
multiple brands to obtain better advertising opportunities.

7. Potential Challenges and Future Research Directions

In the previous sections, we discussed the importance and potential applications of DL
techniques in various sectors. However, the successful implementation of these techniques
and obtaining desired results in an IIoT is challenging. This section discusses some key
issues and future research directions for DL-based IIoT.

7.1. Key Challenges

The implementation of DL techniques in the IIoT faces several challenges. In the
following, we discuss some key challenges faced by several IIoT applications.

7.1.1. Complexity

This is one of the biggest challenges faced by DL models. Some extra efforts are
required to address this problem [150]. The first main issue is the computation requirement
and time consumption of the training process because of the complexity of the DL algorithm
and large IIoT datasets. The second major problem is the scarcity of large numbers of
training data in industrial situations, which can impair the efficiency and accuracy of DL
models through overfitting. The complexity problem can be addressed by employing a
tensor-train deep compression (TTDC) model for effective feature learning from industrial
data [151]. This approach increases model speed by condensing many components in the
DL algorithm.

7.1.2. Algorithm Selection

There are several well-known DL algorithms are available for IIoT applications. Most
of these algorithms work fine for any general scenario but for a specific IIoT application,
the selection of the DL algorithm is a challenge [152]. For implementation in a specific
application, it is very important to determine which algorithm is best suitable for this
particular application. The inaccurate selection of the DL algorithm can result in several
issues, including a waste of money, time, and efforts.

7.1.3. Data Selection

The selection of training data is directly connected to the success of a DL method. In
every DL model, the right type and amount of data are important [153]. As part of an
industrial process, it is essential to prevent such data that might lead to selective bias.

7.1.4. Data Preprocessing

In DL models, data preprocessing is another mandatory process. It transforms the
selected data to make it best compatible with desired DL model [154,155]. This pro-
cess includes cleaning, data conversion, feature scaling, and removal or replacement of
missing entries.

7.1.5. Data Labeling

In terms of implementation, training, and deployment in various IIoT applications,
supervised DL techniques are simplest and highly suitable [156]. On the other hand, unsu-
pervised techniques are difficult to implement and sometimes require a lengthy training
process. Additionally, data labeling is challenging for both supervised and unsupervised
DL models and cannot be outsourced for intensive tasks. DL algorithms are continuously
developing, and their feature learning capabilities are changing. The incorporation of new
features in the DL framework can be sometimes a nightmare if the earlier datasets, features,
and models are not properly documented.
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7.2. Future Directions

There are multiple aspects of DL frameworks in the IIoT environments that should be
rectified for future implementations. This feature will necessitate various improvements,
such as the selection of intelligent algorithms with increased efficiency and compatibility
with different hardware platforms. In the following, we discuss some potential future
research directions in the context of DL-based IIoT.

7.2.1. DL-Enabled Edge/Cloud Computing

In smart industrial environments, fast and efficient computing is considered to be
the main feature that affects reliability, latency, and many other important performance
parameters [157–159]. IIoT applications require powerful machines to compute the large
amounts of data generated by diverse operations. To conduct effective computation and
provide understandable computing infrastructure for IIoT, a hybrid cloud-edge computing
environment is now required. However, this is still not recognized as a realistic method
of coping with complex learning issues. There are several reasons behind this problem,
such as low processing power, the resource-constrained nature of IoT devices, and the
complexity of DL algorithms [160,161]. Therefore, it is deemed appropriate to employ
edge-based computing frameworks, simply because of their potential to minimize latency
and improve the learning process. However, the integration of DL techniques with an edge-
enabled framework for IIoT scenarios remains an open research problem. To achieve self-
organization, greater productivity, and reduced runtime, the combined implementation of
parallel and distributed learning for edge-based designs needs further optimization [162].

7.2.2. Distributed Deep Learning

Distributed DL is a specialized approach for large-scale DL operations with massive
training datasets and long training durations. It functions by assigning several computa-
tional resources to collaborate on a single task [163]. Distributed DL can perform several
tasks, such as data collection, data mining, and testing, via multiple distributed nodes
that work on it and address the initial problem simultaneously and promptly. Therefore,
distributed DL is considered one of the most appropriate techniques for implementation
in the IIoT. However, its implementation in the smart industrial environment is still a
challenging task. The main issue is to determine an effective way of managing the overall
distributed computation resources.

7.2.3. Low Latency and Improved Reliability

Smart industrial frameworks require multiple synchronized processes that require
lower latency and higher reliability to obtain the desired performance [164,165]. Further-
more, the DL techniques used in IIoT should be capable of dealing with these challenges
as well as other aspects such as resource management and network deployment [166].
However, the competency of DL-based IIoT scenarios is still in the early stages with low
latency and high-reliability requirements in IIoT. Therefore, research efforts in this area
are necessary to build a theoretical and practical foundation for DL-based IIoT to provide
low-latency and ultra-reliable communication.

7.2.4. Intelligent Sensing and Decision-Making

Control challenges in DL-based IIoT include both sensing and assessment methods
that involve a huge number of sensors and actuators. This does enables smart sensing capa-
bilities though, such as classification, prediction, decision-making, and direct management
of the complete IIoT system [167]. Intelligent sensing and useful decision-making abilities
are strictly enforced in a smart manufacturing environment, with no room for economic
loss or safety issues caused by failure. Therefore, the successful deployment of DL-based
IIoT has stringent criteria for accurate prediction, categorization, and decision-making,
which can only be met using intelligent sensing and data-driven decisions [168,169].
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7.2.5. Lightweight Learning Frameworks

The IIoT framework contains multiple intelligent and connected devices to establish
a smart industrial setup [170]. These devices include sensors, actuators, and controllers
that use different DL algorithms for the learning process. These devices are considered
resource-constrained devices that require lightweight learning algorithms [171]. This will
enhance the learning process for diverse industrial devices, resulting in an intelligent IIoT
network with reduced computing complexity and increased network lifetime. The best
example is the employment of a hardware-in-the-loop (HIL) simulation platform [172–176].
The HIL combines computations for numerous processes with the internal hardware of
sensors and actuators. The essential capability of the HIL platform is the use of real-time
data generated by installed hardware testbeds.

8. Conclusions

This paper presented a comprehensive survey of deep learning (DL) techniques and ap-
plications for the Industrial Internet of Things (IIoT). A brief introduction is presented in the
context of DL deployments for industrial applications along with the latest state-of-the-art
contributions from survey articles. The survey highlighted the major drawbacks of existing
studies and overcame these shortcomings by including additional information. Most of
the existing surveys lack a detailed description of standard IIoT architecture. This study
described the detailed seven-layer architecture of the IIoT along with key enabling technol-
ogy and protocols. This survey discussed the theories of well-known DL algorithms along
with mathematical backgrounds and reference architectures. One of the major shortcomings
of the existing studies is the non-consideration of software and hardware implementation
platform. To address this issue, a detailed description of software and hardware deployment
frameworks is presented in the context of DL and IIoT. To evaluate the effectiveness of DL
for IIoT, several potential use cases of DL technologies for the IIoT are discussed. Finally, this
survey is concluded by highlighting the key challenges in existing DL-based IIoT systems
and presented potential research directions for future endeavors.
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