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Abstract: Lithium-ion consumption has risen significantly in recent years due to its use in portable
devices. Alternative sources of lithium, which include the recovery from brine using the sustainable
and eco-friendly electrodialysis technology, has been explored. This technology, however, requires
effective cation-exchange membranes that allow the selective permeation of lithium ions. In this study,
we have investigated, via molecular dynamics simulations, the role of the two common charged
groups, the sulfonic and the phosphoric groups, in promoting the adsorption of monovalent ions from
brine comprising Li+, Na+, Mg2+, and Ca2+ ions. The analysis of the mean square displacement of the
ions revealed that Li+ and Na+ ions exhibit superior diffusion behaviors within the polyelectrolyte
system. The O-atoms of the charged groups bind strongly with the divalent ions (Mg2+ and Ca2+),
which raises their diffusion energy barrier and consequently lowers their rate of permeation. In
contrast, the monovalent ions exhibit weaker interactions, with Na+ being slightly above Li+, enabling
the permeation of Li+ ions. The present study demonstrates the role of both charged groups in cation-
exchange membranes in promoting the diffusion of Li+ and Na+ ions, and could serve as a guide for
the design of effective membranes for the recovery of these ions from brine.

Keywords: lithium-ion recovery; brine; polyelectrolyte membrane; electrodialysis; MD simulation

1. Introduction

The advent of green energy-storage devices, such as lithium-ion batteries (LIBs), which
are gradually phasing out the existing lead-acid batteries, nickel-cadmium batteries, and
nickel-metal hydride batteries, has contributed significantly to the technological advance-
ment of the world [1–3]. LIBs have found applications in several portable electronic devices,
such as cell phones, camcorders, laptops, and, more recently, in electric cars [4,5]. The
traditional method of production of lithium-ions is through mining or the acid leaching of
lithium aluminum inosilicates, otherwise known as spodumene, LiAl(SiO3)2 [6]. Lithium
metals with high purity (99.50–99.99%) have also been produced at high temperatures by
the electrowinning of molten eutectic LiCl-KCl salts [7,8]. These technologies are, however,
energy-intensive, capital-intensive, and often result in the production of non-ecofriendly
side products. Sodium-ion batteries (SIBs) have also emerged as promising substitutes for
LIBs, due to the similarity in their valence shell chemistry [9–11]. In addition, sodium is
cheap, non-toxic, and relatively abundant, compared to lithium. While research attention
is gradually shifting to the development of SIB technology, it is critical to continue to find
alternative sources of the metal ions for the sustainability of these technologies.

Electrodialysis (ED) is a membrane-desalination technology that utilizes ion-exchange
membranes to transport ions under the influence of an applied electric potential [12–14].
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While this technology is used mainly for water purification, it has the potential for the
recovery of lithium ions from brine, especially since most brine contains, in addition to Na+

ions, an abundance of cations, such as Ca2+, Mg2+, K+, and Li+ ions [15–18]. The core of
this technology is, thus, the design of effective monovalent cation-exchange membranes
that allow the selective permeation of Li+ ions while rejecting the divalent ions. Typical
cation exchange membranes are composed of polyelectrolyte (PE) molecules containing
sulfonic acid, phosphoric acid, or carboxylic acid groups [19]. The interaction of the active
functional groups and the mobility of the molecular chain of the PE play critical roles in
the diffusion of the ions through the membrane. There is, therefore, the need for a careful
architecture of the polymeric backbone and the active functional groups, as these affect the
overall performance of the cation-exchange membranes.

Molecular simulation is a functional tool in the design of effective polyelectrolytes
for the selective permeation of various metal ions. It is reported in various literature as
being complementary to the experimental approach, and has the advantages of low-cost
and less labor, and yields results with high accuracy. Several reports have documented
the use of simulations to investigate the mechanisms of interactions and the diffusion of
counterions in polymeric materials [20–24]. The polyelectrolyte–water molecular simula-
tion model proposed by Stevens and Kremer [25,26] revealed that the spatial orientation of
PE molecules in aqueous media was non-linear; rather, they appeared coiled, and shrunk
with the aggregation of counterions. The nature of the aggregation of the counterions
and the effect of the molecular chain length was later reported by Liu et al. [27]. The
nature of aggregation of the counterions was also studied by Konieczny et al. [28], and
they found that a few counterions were confined around the PE molecules, while others
were distributed in the aqueous phase. The role of co-existing counterions, Ca2+ ions,
on the distribution of Na+ ions around the PE molecules in the aqueous phase was in-
vestigated by Molnar et al. [29], and they found that the Ca2+ ions shielded the intrinsic
negative charges on the PE molecules, preventing the effective distribution of Na+ ions
and promoting the shrinkage of the molecules. The interaction of co-existing Na+ and Ca2+

ions on polymethacrylic acid-based PE molecules was reported by Huang et al. [30,31].
Their results revealed that the attraction of the carboxylic acid groups towards Ca2+ ions
on the PE molecules played a significant role in the geometric size of the PE molecules.
Sun et al. [32] recently proposed the PE chain–counterion aqueous solution model for the
investigation of the diffusion behavior of Li+ and Mg2+ ions on sulfonic and phosphoric
acid fixed-charged group PEs. Their results revealed that the interaction of the counterions
with the fixed-charged groups determined the diffusion of the ions, and that the sulfonic
acid group was ideal for the selective permeation of monovalent ions, such as Li+ ions.
This model, owing to its remarkable consonance with experimental data as reported by
Sun et al. [32], is further explored in this study.

In the present study, we have investigated, using molecular dynamics (MD), simu-
lations of the influence of both the sulfonic and the phosphoric acid fixed-charge groups
on the diffusion of Li+, Na+, Ca2+, and Mg2+ ions on PE membranes in aqueous media.
The nature of the interactions and the mechanism of diffusion of the counterions through
the membrane material were fully accounted for. This study revealed the role of both
functional groups in promoting the adsorption of monovalent ions, and could serve as a
basis for the design of effective ion-exchange membranes for the recovery of Li+ and Na+

ions from brine.

2. Molecular Dynamics Simulations
2.1. Model

The structural backbone of typical cation-exchange membranes generally contains
fixed-charge acid groups, mainly the sulfonic, the phosphoric, or the carboxylic acid
groups. The present membrane material was constructed by mixing two aromatic moieties
containing the sulfonic and the phosphoric groups. Initially, the two monomers, namely,
4-ethylbenzene sulfonate (designated as M1) and 4-ethyl-phenyl phosphate (designated
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as M2), as presented in Figure 1a,b, were sketched and geometrically optimized. The
two monomers were co-polymerized to form the copolymer 4-[3-(4-phosphonoxy-phenyl)-
butyl]-benzene sulfonic acid (designated as co-M1M2), with the degree of polymerization
of 1, as presented in Figure 1c, using the Block co-polymer command. Thereafter, co-
M1M2 was taken as the monomer for the building of the homopolymer –[M1M2]–20, with
the degree of polymerization of 20, as presented in Figure 1d. All the molecules—the
monomers, the copolymer, and the final polyelectrolyte homopolymer—were geometrically
optimized using the Condensed-phase Optimized Molecular Potentials for Atomistic
Simulation Studies II (COMPASS II) forcefield on the Forcite module. The COMPASS II
forcefield was selected because it provided extended coverage of the COMPASS forcefield
to polymeric and heterocyclic systems [33]. The metal cations Li+, Na+, Ca2+, and Mg2+, and
the anion Cl− ions, were built and the respective charges were assigned. The forcefields
assigned for the ions were lithium, +1 ion for Li+; sodium, +1 ion for Na+; calcium,
+2 ion for Ca2+; magnesium, +2 ion for Mg2+; and chlorine, −1 ion for Cl−. The water
molecules were modeled and a rigid planar simple-point charge SPC-like water model was
obtained [34,35]. The forcefield selected for the atoms were h1o, hydrogen-bonded to O, F,
and o2*, oxygen, sp3 in water explicitly for the hydrogen and oxygen atoms, respectively.
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Figure 1. Structural conformations of (a) 4-ethyl benzene sulfonate (M1), (b) 4-ethyl-phenyl phos-
phate (M2), (c) 4-[3-(4-phosphonoxy-phenyl)-butyl]-benzene sulfonic acid (co-M1M2), and (d) the
polyelectrolyte chain showing the pendant groups.

2.2. Construction of Polyelectrolyte–Aqueous System

The simulation box was built using the amorphous cell module. The polyelectrolyte-
metal chloride aqueous system was modeled as amorphous in a cubic cell with an edge
length of 30 Å. The periodic boundary conditions are applied in the three orthogonal
directions. The density of the system was set to 1.05 g/cm3, the temperature to 298 K, and
the convergence tolerance quality was set as ultrafine. A typical simulation box consisted
of the polyelectrolyte chain with a degree of polymerization 20, 20 cations (Li+, Na+, Ca2+

or Mg2+), a balanced charge of chloride ions (1:1 ratio for the monovalent ions and 1:2
for the divalent ions), and 500 molecules of water. The constructed simulation box was
geometrically optimized using the Forcite module and the system maintained electrical
neutrality, as presented in Figure 2 for the PE-CaCl2-H2O system.
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Figure 2. Model of polyelectrolyte-CaCl2-water molecules at 298 K. The purple region represents the
polyelectrolyte backbone. All other atoms remain the same as depicted in Figure 1.

2.3. Molecular Dynamics Simulations

Molecular dynamics simulations were conducted using the Forcite module. The
initial systems were structurally optimized using the congruent gradient, followed by
a dynamics simulation on the constant pressure-constant temperature (NPT) ensemble
(P = 10−4 GPa, T = 298 K) to stabilize the system with a simulation time of 500 ps and
a time step of 0.001 ps. The molecules of the polyelectrolyte chain from the last frame
generated from the NPT simulation were fixed using the constraints toolbar, and the cations
were indicated as set. The system was subjected to the dynamics simulation under the
constant volume-constant temperature (NVT) ensemble with a total simulation time of
1.5 ns, and the trace file recording was output at every 5000 steps (5 ps). The starting
velocity of the atoms at a given temperature was designated randomly by the Boltzmann
distribution, the summation method was atom-based, and a truncation radius of 18.5 Å
was chosen for the non-bonded interaction energy. The Particle–Particle Particle–Mesh
(PPPM) method of summing up the coulombic electrostatic potential energy was chosen,
and the Berendsen constant temperature thermal bath and the constant pressure system
was selected for temperature and pressure control. The total energy of the system under
the NVT ensemble was determined to confirm the attainment of equilibrium. The total
energies of the CaCl2, LiCl, NaCl, and the MgCl2 systems fluctuated around 27,000, 21,700,
21,000, and 30,000 kCal/mol, respectively, as presented in Figure 3.

The diffusion properties of the ions within the polyelectrolytes were determined by
estimating the mean square displacement (MSD). The MSD indicates the average separation
of all particles from their corresponding initial positions at time t into the motion. The
greater the MSD value, the higher the diffusivity of the ions within the system. The MSD
at time t in a given ensemble is expressed by the Equation:

MSD =
1
N ∑N

i=1|xi(t)− xi(0)|2 (1)

where N represents the number of particles to be averaged, and xi(0) and xi(t) are the initial
positions of the i ion and the position of the ion at time t, respectively.
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Figure 3. Total energy variations within the NVT ensemble for the polyelectrolyte chain–aqueous 
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The diffusion coefficient of the ions, D, was estimated following the Einstein Equation,
as follows:

D =
1
6

lim
t→∞

d(MSD)

dt
(2)

A plot of log (MSD) vs. log t should give a slope of unity, which, when divided by six,
yields the diffusion coefficient of the ions.

The description of the counterion distribution in the vicinity of the fixed-charge groups
was estimated by the pair correlation function (PCF), using the expression:

gxy(r) =
V
[
∑i 6=j δ

(
r−

∣∣rxi − ryj
∣∣)](

Nx Ny − Nxy
)
4πr2dr

(3)

where x and y depict the two interacting systems, V represents the volume of the system, r
the separation between them, Nx and Ny the number of particles of x and y, and where Nxy
stands for the number of similar x and y particles and rxi and ryj for the 3D coordinates of x
in i and y in j, respectively.

The interaction energies of the counterions towards the fixed-charge groups were
estimated as follows:

∆Eint = Exy −
(
Ex + Ey

)
(4)

where Exy represents the total energy of the entire system, and Ex and Ey are the energies
of the PE–aqueous system and the counterions, respectively.

3. Results and Discussion
3.1. The Role of the Fixed-Charged Groups

A MD simulation was conducted to investigate the counterion migration within the
polyelectrolyte membrane material. A system comprising the polyelectrolyte, 500 molecules
of water, 20 cations, and charge-balanced Cl− ions were constructed and subjected to NVT
dynamic simulation. The diffusion of the ions through the membrane were analyzed by
the mean square displacement (MSD) analysis. The MSD–t curves of the polyelectrolyte–
aqueous system comprising Li+, Na+, Mg2+, and Ca2+ ions are presented in Figure 4. The
results revealed that the MSD of the monovalent ions (Li+ and Na+) increases linearly
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with time, implying the diffusion of these ions within the polyelectrolyte system. The
divalent ions (Mg2+ and Ca2+), in contrast, exhibited a relatively stronger interaction with
the charged groups on the polyelectrolyte promoted by their effective nuclear charges.
Compared to the previous report on isolated sulfonic and phosphoric fixed-charge sys-
tems [32], the present polyelectrolyte–aqueous system comprising both functional groups
on the polyelectrolyte chain exhibited a weaker attraction for the monovalent ions, resulting
in higher MSD values. This could serve as a strategy for the selective permeation of the
monovalent ions during recovery from a mixture of all the ions, such as in brine.
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Mg2+ (red), and Ca2+ (black) ions in aqueous polyelectrolyte systems. All the atoms remain the same
as depicted in Figure 1.

3.2. Diffusion of Counterions in Aqueous Media

The role of the polyelectrolyte chain on the diffusion of the metal ions was further
investigated by carrying out MD simulations in an aqueous system without the polyelec-
trolyte. The simulation box in Figure 5a–d consisted of 2500 molecules of H2O, 50 cations,
and a balanced charge of Cl− ions to maintain electrical neutrality. The density of the aque-
ous system was set to 1.05 g/cm3 while the other simulation conditions were maintained
as before. The mean square displacement as a function of time (MSD–t) curves of the NVT
simulation (Figure 5e) revealed that the MSD of all the cations increased linearly with
time and followed the order Na+ > Li+ > Ca2+ > Mg2+, in accordance with their hydration
radii [36]. The log (MSD) vs. log (t) curve for the Li+ ions (Figure 5f) and for the other
ions (Supplementary Materials) yielded linear fits in all cases, with slopes of 1.0176, 1.0216,
1.0140, and 1.0154 (almost unity) for Li+, Na+, Mg2+, and Ca2+ ions, respectively, suggest-
ing that the migration of the ions in aqueous solution occurs predominantly through the
diffusion process. The corresponding diffusion coefficients, D, of the ions were calculated
as 1.696 × 10−9, 1.702 × 10−9, 1.690 × 10−9, and 1.692 × 10−9 m2/s for Li+, Na+, Mg2+,
and Ca2+ ions, respectively. While the simulated D values did not yield exactly the same
results as the actual D values of the ions in aqueous media [37], the simulated values are of
almost the same magnitude as the actual values, and are consistent with the size–charge
correlation, in the order Mg2+ < Ca2+ < Li+ < Na+.
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Figure 5. Representative simulation model of the counterions–aqueous system (a) Li+, (b) Na+,
(c) Mg2+, and (d) Ca2+ ions at 298 K. The MSD–t curve of all the ions—blue (Li+), red (Na+), black
(Mg2+), and green (Ca2+)—are shown in (e), whereas the log (MSD) vs. log (t) curve for Li+ ions is
shown in (f). All other atoms remain the same as depicted in Figure 1.

3.3. Interaction of Co-Existing Ions with the Polyelectrolyte Chain

The interaction of the polyelectrolyte chain with co-existing ionic systems Li+/Na+,
Li+/Mg2+, and Li+/Ca2+, was further investigated. MD simulations were carried out in an
NVT ensemble on a simulation box consisting of a 1:1 ratio for the ions, the polyelectrolyte
chain, 500 molecules of H2O, and a balance of Cl− ions. The simulation conditions remained
the same as previously. Figure 6 presents the distribution of Li+ ions around the charged
groups. Two major peaks were observed in all plots, indicating two major interaction
regions in accordance with the ionic hydration shells [38,39]. The sharp peak around
1.05 Å corresponds to a strong electrostatic attraction between the O-atoms of the charged
groups and the Li+ ions. The second peak at 1.65 Å indicates that two major close-range
interactions occur between the O-atoms and the Li+ ions. For other peaks at higher
separations, r appeared weaker and eventually diminished due to the shielding of the
negative charges, possibly by molecules of water, thereby weakening the interactions
with Li+ ions. The snapshots of the attraction of the counterions towards the O-atoms are
presented in Figure 7, and indicate a moderate attraction for the Li+ ions, resulting in the
effective diffusion of the ions within the membrane material.

3.4. Interaction of the Polyelectrolyte Chain with Mg2+/Li+ Ions

The concentration of Mg2+ ions in most brine is often greater than those of Li+ ions [40–42].
This results in a competition in the diffusion of the ions during the recovery process. In
order to suppress the interference of the Mg2+ ions, it is desired that the polyelectrolyte
chain in the membrane material exhibits a high affinity and, consequently, a greater retar-
dation for the competing ions. The interaction of the polyelectrolyte chain with Mg2+/Li+

ions was investigated in this study to explore the effect of a high concentration of Mg2+

ions on the diffusion of Li+ ions. Three PE–aqueous systems were constructed, comprising
5 polyelectrolyte chains, 2500 molecules of H2O, 20 Li+ ions, 50, 100, and 200 Mg2+ ions in
the first, second, and third systems, respectively, and a balanced charge of Cl− ions. All
other simulation details remained as previously described. The distribution of Li+ ions
around the charged groups are reflected in Figure 8. Two distinct strong peaks are visible
in the curve, similar to those presented in Figure 6. The intensity of the peak at 1.05 Å was
strongest when the amount of Mg2+ ions was maintained at 50. This is due to the presence
of sufficient charged groups, and the competitive adsorption between the Mg2+ and the
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Li+ ions was not substantial. Increasing the Mg2+ ions to 100, and later to 200, resulted
in a decrease in the intensity of the O-Li distribution peak, which occurred as a result of
the significant shielding of a considerable amount of Li+ ions which are prevented from
reaching the electro-adsorption layer of the charged groups. This weakens the interac-
tion with the Li+ ions, and promotes their diffusion through the polyelectrolyte. These
results suggest that increasing the concentration of the Mg2+ ions enhances the diffusion
of Li+ ions, making the membrane material suitable for the recovery of Li+ ions in brine
containing high concentrations of Mg2+ ions.

Membranes 2021, 11, 940 8 of 12 
 

 

 
Figure 6. Radial distribution functions of O-atoms in the sulfonic and phosphoric fixed-charge 
groups to Li+ ions in an ensemble comprising (a) Li+/Na+, (b) Li+/Mg2+, and (c) Li+/Ca2+ ions. 

 
Figure 7. Snapshots of the interactions of (a) Li+, (b) Na+, (c) Mg2+, and (d) Ca2+ ions during an NVT 
simulation at 298 K. All other atoms remain the same as depicted in Figure 1. 

3.4. Interaction of the Polyelectrolyte Chain with Mg2+/Li+ Ions 
The concentration of Mg2+ ions in most brine is often greater than those of Li+ ions 

[40–42]. This results in a competition in the diffusion of the ions during the recovery pro-
cess. In order to suppress the interference of the Mg2+ ions, it is desired that the polyelec-
trolyte chain in the membrane material exhibits a high affinity and, consequently, a 
greater retardation for the competing ions. The interaction of the polyelectrolyte chain 
with Mg2+/Li+ ions was investigated in this study to explore the effect of a high concentra-
tion of Mg2+ ions on the diffusion of Li+ ions. Three PE–aqueous systems were constructed, 
comprising 5 polyelectrolyte chains, 2500 molecules of H2O, 20 Li+ ions, 50, 100, and 200 
Mg2+ ions in the first, second, and third systems, respectively, and a balanced charge of Cl- 
ions. All other simulation details remained as previously described. The distribution of 
Li+ ions around the charged groups are reflected in Figure 8. Two distinct strong peaks 
are visible in the curve, similar to those presented in Figure 6. The intensity of the peak at 
1.05 Å was strongest when the amount of Mg2+ ions was maintained at 50. This is due to 

Figure 6. Radial distribution functions of O-atoms in the sulfonic and phosphoric fixed-charge
groups to Li+ ions in an ensemble comprising (a) Li+/Na+, (b) Li+/Mg2+, and (c) Li+/Ca2+ ions.

Membranes 2021, 11, 940 8 of 12 
 

 

 
Figure 6. Radial distribution functions of O-atoms in the sulfonic and phosphoric fixed-charge 
groups to Li+ ions in an ensemble comprising (a) Li+/Na+, (b) Li+/Mg2+, and (c) Li+/Ca2+ ions. 

 
Figure 7. Snapshots of the interactions of (a) Li+, (b) Na+, (c) Mg2+, and (d) Ca2+ ions during an NVT 
simulation at 298 K. All other atoms remain the same as depicted in Figure 1. 

3.4. Interaction of the Polyelectrolyte Chain with Mg2+/Li+ Ions 
The concentration of Mg2+ ions in most brine is often greater than those of Li+ ions 

[40–42]. This results in a competition in the diffusion of the ions during the recovery pro-
cess. In order to suppress the interference of the Mg2+ ions, it is desired that the polyelec-
trolyte chain in the membrane material exhibits a high affinity and, consequently, a 
greater retardation for the competing ions. The interaction of the polyelectrolyte chain 
with Mg2+/Li+ ions was investigated in this study to explore the effect of a high concentra-
tion of Mg2+ ions on the diffusion of Li+ ions. Three PE–aqueous systems were constructed, 
comprising 5 polyelectrolyte chains, 2500 molecules of H2O, 20 Li+ ions, 50, 100, and 200 
Mg2+ ions in the first, second, and third systems, respectively, and a balanced charge of Cl- 
ions. All other simulation details remained as previously described. The distribution of 
Li+ ions around the charged groups are reflected in Figure 8. Two distinct strong peaks 
are visible in the curve, similar to those presented in Figure 6. The intensity of the peak at 
1.05 Å was strongest when the amount of Mg2+ ions was maintained at 50. This is due to 

Figure 7. Snapshots of the interactions of (a) Li+, (b) Na+, (c) Mg2+, and (d) Ca2+ ions during an NVT
simulation at 298 K. All other atoms remain the same as depicted in Figure 1.



Membranes 2021, 11, 940 9 of 12

Membranes 2021, 11, 940 9 of 12 
 

 

the presence of sufficient charged groups, and the competitive adsorption between the 
Mg2+ and the Li+ ions was not substantial. Increasing the Mg2+ ions to 100, and later to 200, 
resulted in a decrease in the intensity of the O-Li distribution peak, which occurred as a 
result of the significant shielding of a considerable amount of Li+ ions which are prevented 
from reaching the electro-adsorption layer of the charged groups. This weakens the inter-
action with the Li+ ions, and promotes their diffusion through the polyelectrolyte. These 
results suggest that increasing the concentration of the Mg2+ ions enhances the diffusion 
of Li+ ions, making the membrane material suitable for the recovery of Li+ ions in brine 
containing high concentrations of Mg2+ ions. 

 
Figure 8. Radial distribution functions of O-atoms in the sulfonic and phosphoric fixed-charge 
groups to Li+ ions in an ensemble comprised of Mg2+/Li+ ions. 

The permeability of the ions was further investigated by constructing an ensemble 
consisting of the polyelectrolyte chain, 500 molecules of H2O, 20 ions each of Li+, Na+, Mg2+, 
and Ca2+, and a balanced charge of Cl- ions. At the end of the NVT dynamic simulation, 
the final frame was taken and the spatial position of constraints of the polyelectrolyte 
chain was removed. The total energy of the system, the energies of the solvated counteri-
ons, and the energy of the aqueous polyelectrolyte system were determined following a 
previously reported method [32]. The interaction energies were calculated using Equation 
(4) and presented in Figure 9. The polyelectrolyte exhibited a significant attraction for di-
valent ions (Mg2+ and Ca2+), which increased the energy barrier between them, resulting 
in the lowering of their diffusion characteristics. The order of interaction energies (Mg2+ > 
Ca2+ > Na+ > Li+) indicates the selective permeation of monovalent ions through the system. 

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

50

100

200

 M
g2

+  io
ns

r (Å)

g O
-L

i+  i
on

s

Figure 8. Radial distribution functions of O-atoms in the sulfonic and phosphoric fixed-charge
groups to Li+ ions in an ensemble comprised of Mg2+/Li+ ions.

The permeability of the ions was further investigated by constructing an ensemble
consisting of the polyelectrolyte chain, 500 molecules of H2O, 20 ions each of Li+, Na+, Mg2+,
and Ca2+, and a balanced charge of Cl− ions. At the end of the NVT dynamic simulation,
the final frame was taken and the spatial position of constraints of the polyelectrolyte chain
was removed. The total energy of the system, the energies of the solvated counterions, and
the energy of the aqueous polyelectrolyte system were determined following a previously
reported method [32]. The interaction energies were calculated using Equation (4) and
presented in Figure 9. The polyelectrolyte exhibited a significant attraction for divalent
ions (Mg2+ and Ca2+), which increased the energy barrier between them, resulting in the
lowering of their diffusion characteristics. The order of interaction energies (Mg2+ > Ca2+ >
Na+ > Li+) indicates the selective permeation of monovalent ions through the system.

Membranes 2021, 11, 940 10 of 12 
 

 

 
Figure 9. Interaction energy of the counterions towards the sulfonic and phosphoric pendant groups 
in the polyelectrolyte membrane. 

4. Conclusions 
We have investigated the diffusion of Li+, Na+, Mg2+, and Ca2+ ions in brine through 

the polyelectrolyte membrane materials containing sulfonic and phosphoric pendant 
groups by means of molecular dynamics simulations. It was revealed that the O-atoms of 
the charged groups exhibit stronger attractions for the divalent ions, resulting in a rise in 
the diffusion energy barrier and, consequently, lowering their diffusion through the mem-
brane material. The analysis of the mean square displacement of the ions revealed that Li+ 
and Na+ ions exhibit greater values due to the weak attraction by the charged groups. In 
the presence of higher concentrations of Mg2+ ions, the radial distribution function of the 
O-Li atoms decreases, suggesting the diffusion of Li+ ions through the polyelectrolyte sys-
tem. This study demonstrates the role of both the sulfonic and the phosphoric pendant 
groups in promoting the diffusion of monovalent ions. Our results could serve as a guide 
for the design of effective cation-exchange membranes for the recovery of Li+ and Na+ ions 
from brine. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/membranes11120940/s1, Figure S1: log (MSD) vs log t plots of (a) Mg2+, (b) Ca2+ and (c) 
Na+ ions. 

Author Contributions: Conceptualization, I.A. and Q.P.; methodology, I.A.; software, I.A.; valida-
tion, B.S. and N.B.; resources, I.A.; data curation, I.A.; writing—original draft preparation, I.A. and 
Q.P.; writing—review and editing, B.S. and N.B.; visualization, Q.P.; supervision, Q.P.; funding ac-
quisition, Q.P. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable.  

Informed Consent Statement: Not applicable.  

Data Availability Statement: The raw data generated during this study will be made available by 
the corresponding authors, without undue reservation, upon request. 

Acknowledgments: The authors acknowledge the Deanship of Scientific Research (DSR) at King 
Fahd University of Petroleum and Minerals for providing the computing resources and for the fi-
nancial support. 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 9. Interaction energy of the counterions towards the sulfonic and phosphoric pendant groups
in the polyelectrolyte membrane.



Membranes 2021, 11, 940 10 of 12

4. Conclusions

We have investigated the diffusion of Li+, Na+, Mg2+, and Ca2+ ions in brine through
the polyelectrolyte membrane materials containing sulfonic and phosphoric pendant
groups by means of molecular dynamics simulations. It was revealed that the O-atoms
of the charged groups exhibit stronger attractions for the divalent ions, resulting in a rise
in the diffusion energy barrier and, consequently, lowering their diffusion through the
membrane material. The analysis of the mean square displacement of the ions revealed that
Li+ and Na+ ions exhibit greater values due to the weak attraction by the charged groups.
In the presence of higher concentrations of Mg2+ ions, the radial distribution function of
the O-Li atoms decreases, suggesting the diffusion of Li+ ions through the polyelectrolyte
system. This study demonstrates the role of both the sulfonic and the phosphoric pendant
groups in promoting the diffusion of monovalent ions. Our results could serve as a guide
for the design of effective cation-exchange membranes for the recovery of Li+ and Na+ ions
from brine.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/membranes11120940/s1, Figure S1: log (MSD) vs log t plots of (a) Mg2+, (b) Ca2+ and
(c) Na+ ions.
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