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Background: As an epigenetic alteration, DNAmethylation plays an important role in early
Wilms tumorigenesis and is possibly used as marker to improve the diagnosis and
classification of tumor heterogeneity.

Methods:Methylation data, RNA-sequencing (RNA-seq) data, and corresponding clinical
information were downloaded from the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) database. The prognostic values of DNA methylation
subtypes in Wilms tumor were identified.

Results: Four prognostic subtypes of Wilms tumor patients were identified by consensus
cluster analysis performed on 312 independent prognostic CpG sites. Cluster one showed
the best prognosis, whereas Cluster two represented the worst prognosis. Unique CpG
sites identified in Cluster one that were not identified in other subtypes were assessed to
construct a prognostic signature. The prognostic methylation risk score was closely
related to prognosis, and the area under the curve (AUC) was 0.802. Furthermore, the
risk score based on prognostic signature was identified as an independent prognostic
factor for Wilms tumor in univariate and multivariate Cox regression analyses. Finally, the
abundance of B cell infiltration was higher in the low-risk group than in the high-risk group,
based on the methylation data.

Conclusion: Collectively, we divided Wilms tumor cases into four prognostic subtypes,
which could efficiently identify high-risk Wilms tumor patients. Prognostic methylation risk
scores that were significantly associated with the adverse clinical outcomes were
established, and this prognostic signature was able to predict the prognosis of Wilms
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tumor in children, which may be useful in guiding clinicians in therapeutic decision-making.
Further independent studies are needed to validate and advance this hypothesis.

Keywords: DNA methylation, wilms tumor, target database, children, prognosis

INTRODUCTION

Wilms tumor (WT; nephroblastoma) is the most frequently
identified renal tumor in the genitourinary tract of children,
accounting for 5% of all childhood malignancies (American
Cancer Society, 2020). Depending on the presence or absence
of reversionary atrophy, the histological types of WT can be
divided into two broad categories: favorable histology (FH) and
unfavorable histology (UH) (Perlman, 2005). Despite remarkable
achievements in therapeutic strategies, the survival rate for
certain patient subgroups remains well below 90%, including
those classified as UH (Dome et al., 2015). Nearly 25% of
survivors experience severe chronic health conditions after
WT treatment (Termuhlen et al., 2011). Some sequelae, such
as those that occur after radiotherapy, are considered to be
complications or side effects that occur within a considerably
long latent period following the completion of treatment. These
complications may be more dangerous than the side effects
associated with other treatment modalities because they occur
in growing children. Therefore, it is necessary to accurately
classify the tumor characteristics at the molecular level, which
can avoid inappropriate use of aggressive treatment (e.g.,
chemotherapy and radiotherapy) among low-risk patients, and
then reduce the development of treatment-related chronic
disease.

Pediatric embryonal neoplasms, such as WT, typically present
a limited number of genetic aberrations (Gadd et al., 2017). DNA
methylation, which is one of the most intensively studied
epigenetic modifications, describes the addition of a methyl
group to the cytosine bases of a DNA sequence, usually to
CpG dinucleotides. Some regions of DNA with a high G + C
content (greater than 50%) and observed CpG/expected CpG
ratio of greater or equal to 0.6, if > 200 bp, are defined as “CpG
Islands” and are often found in the promoter regions of active
genes (Gardiner-Garden and Frommer, 1987; Voisin et al., 2015).
To date, DNAmethylation has been demonstrated to be involved
in the pathogenesis of many diseases, including tumor
development. Previous studies have shown that genome-wide
dysregulation of DNAmethylation is associated withWT patients
who display high-risk histology (Brzezinski et al., 2021). The early
and prevalent events inWT are associated with DNAmethylation
changes affected many common cellular functions, most of which
are involved in the epigenetic regulation of early renal
development or transcription. Therefore, it is important to
evaluate the prognostic potential of this molecular feature for
classification determination, prognosis assessment and
identification of appropriate treatment strategies.

In this study, we systematically characterized the DNA
methylation levels in the Therapeutically Applicable Research
to Generate Effective Treatments (TARGET) database to identify
biological and clinical subgroups of WT in children. Our datasets

and the classification regimens were then used to develop a
prognostic model that integrates several representative DNA
methylation markers to classify children with WT into high-
and low-risk groups. Comprehensive profiling that includes stage,
histology and DNAmethylation analysis during clinical diagnosis
may help clinicians to evaluate the disease progression and select
appropriate therapeutic strategies to treat WT in children.
Numerous studies have focused on the pivotal role played by
the tumor microenvironment in the initiation and progression of
WT (Maturu et al., 2017; Fiore et al., 2021; Stahl et al., 2021),
therefore, we also analyzed the level of immune infiltration in
high- and low-risk groups to evaluate the potential correlation
between methylation and immune infiltration in WT.

MATERIALS AND METHODS

Data Collection
The methylation data (Illumina InfiniumHumanMethylation450
BeadChip), RNA-sequencing (RNA-seq) transcriptome data, and
corresponding clinical information for WT samples were
downloaded from the TARGET database (https://ocg.cancer.
gov/programs/target). The data were downloaded on July 24,
2020. The clinical information contains patient de-identified
information, including sex, age, event, tumor stage, and
histological type, with event referring to the endpoint of WT
patients, including none, relapse, and progression. Samples with
unknown clinical information were removed, and the remaining
information for a total of 124 children with WT was included in
our analysis. The data acquired from the TARGET database was
preprocessed, including removing probe sets that were absent in
more than 70% of the WT samples. The cross-reactive CpG sites
and polymorphic CpGs sites were discarded (Chen et al., 2013).
In addition, the CpG sites from the sex chromosomes and single-
nucleotide polymorphisms (SNPs; a list of SNPs that could
potentially affect the methylation array results if present in the
test population, can be found at https://support.illumina.com/
downloads/infinium_hd_methylation_snp_list.html) were also
discarded. In the sva R package, the k-nearest neighbor
(KNN) imputation approach was used to estimate the other
unidentified probes (Zhang et al., 2018). All methylation data
were normalized by the “limma” package in R before further
analysis (Ritchie et al., 2015).

Identification and Molecular Subtyping of
CpG Sites With Important Prognostic
Significance in WT
The univariate Cox regression model in R package, “survival,”
was applied for the selection of CpG sites with prognostic value,
using p < 0.001 as the threshold for significance. To determine the
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CpG sites with independent prognostic value, the significant
prognostic factors identified in the univariate analysis were
analyzed by using forward stepwise analysis in a multivariate
Cox proportional hazards model, in which the clinical parameters
(sex, age, event, tumor stage, and histological type) were regarded
as covariates. p < 0.001 was set as the significance threshold.
Finally, significant independent prognosis-related CpG sites
identified in both the univariate and multivariate analyses
were selected as characteristic biomarkers for further analysis.
To identify different DNA methylation prognostic molecule
subtypes in WT, the k-means algorithm was used to perform
unsupervised hierarchical clustering of the CpG sites, which were
identified as independent prognostic factors in the multivariate
analysis. The k-means clustering algorithm randomly selects K
objects as the initial clustering center. Euclidean distances are
used to calculate similar distances between samples, and k-means
are used to perform clustering. The cumulative distribution
function (CDF) was used to judge the optimal cluster number.
The k-means algorithm was realized by the “kmeans” function in
the ConcensusClusterPlus R packet.

Clinical Characteristics and Molecular
Assay Data for Molecular Subtypes
Based on previous clustering results, the clinical characteristics
and differential analysis of methylation levels were analyzed for
each subgroup. The overall survival (OS) curve of the WT
subgroups defined by the DNA methylation modification
levels was constructed using the Kaplan-Meier method, and a
logarithmic rank test was used to determine significant
differences among clusters. Histograms were drawn with the
ggplot package to reflect the characteristics of DNA
methylation subgroups according to age, sex, tumor stage,
event, and histological type.

Genome Annotations and Pathway Analysis
of Prognosis-Associated Sites
Genome annotations of all independent prognosis-associated
CpG sites we identified were performed to obtain the genes in
which these CpG sites are located. The genome annotation files
were obtained from the methylation data in the TARGET
database. To determine the relevance and correlations between
DNA methylation levels and gene expression levels, we extracted
gene expression profiles from the downloaded data and generated
an expression profile heat map. Finally, Gene Ontology (GO)
enrichment analysis and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analysis were
performed on the genes corresponding to these CpG sites
using clusterprofile package in R software. GO and KEGG
pathways with p-values less than 0.05 were considered significant.

Screening of Specific CpG Sites Between
Molecular Subtypes
To study the differences between WT classifications, based on
methylation modification levels, we analyzed the differences in

312 CpG sites across different subtypes. False discovery rate
(FDR) and fold change (FC) values for the corresponding
CpG sites in each subtype were calculated, in turn. FDR <0.05
and |log2FC| > 1 were set as the thresholds for identifying unique
CpG sites in each cluster. Subsequently, we screened out the CpG
sites that showed differences across different subtypes for
subsequent model construction. In addition, differences in the
frequencies of each methylation site in each subtype were
examined. The site was obtained showing only one subtype
difference, which was conducted as the specific CpG sites
voiced in this subtype. To further express differences in the
CpG sites between the different subtypes, heatmaps of
differentially expressed CpG sites were generated using the
“ComplexHeatmap” package (Gu et al., 2016).

Construction of the Prognosis Prediction
Model
Using the identified specifically CpG sites, a prognostic prediction
model was constructed based on the multivariate Cox regression
analysis. The expression of each gene and its coefficient, which was
determined using the Cox hazard ratio (HR), were multiplied to
calculate a risk score for each patient. The WT cohort was
categorized into high- or low-risk groups divided by the median
risk score. Survival analysis, performed in the “survival” R package,
showed the OS of patients with different risk scores, including those
with different clinical characteristics. The sensitivity and specificity
of the model were evaluated using receiver operating characteristic
(ROC) curves and area under the curve (AUC) analyses. Univariate
and multivariate Cox regression models were applied to investigate
independent prognostic factors.

DNA Methylation Data Were Used to
Estimate Immune Cell Infiltration
To evaluate the potential correlation between methylation and
immune infiltration in WT, the infiltration levels of each tumor-
infiltrating immune cell (TIIC) type were calculated by the in-
silico deconvolution of DNA methylation data in the “EpiDISH”
R package (Teschendorff et al., 2017). The immunological cell
levels of 7 cell subtypes (B cells, CD4+ T cells, CD8+ T cells,
natural killer [NK] cells, monocytes, neutrophils, and
eosinophils) were evaluated based on the 450 k DNAm array.
The histogram and violin plot display the composition of
invading immune cells for every sample, allowing for the
effective comparison of the relative proportions of immune
cells between the high-risk and low-risk groups. The Wilcoxon
test was applied to compare the immune cell scores between the
two groups. A p-value less than 0.05 was considered significant.

RESULTS

Identification of Characteristic CpG Sites
According to the Prognosis of WT Patients
The univariate Cox proportional hazards regression model was
performed using the R package “survival” to analyze each
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methylation site and survival status, with the significance
threshold established at p < 0.001. We obtained 2,092 sites
with significant prognostic effects, the top 20 of which are
shown in Table 1. Sex, age, event, tumor stage, and
histological type were also applied to the univariate Cox
analysis, which revealed the following: sex (p � 0.04858), age
(p � 0.7567), event (p � 0.004160), tumor stage (p � 0.004708),
and histological type (p � 0.2603). The 2,092 CpG sites identified
in the proportional hazards model were introduced into the
multivariate Cox proportional risk regression model to select
independent prognostic biomarkers, which included sex, age,
event, tumor stage, and histological type as covariates. As a
result, 312 significant CpG sites independent of other clinical
information were obtained for further prognostic subgroup
analysis (Supplementary Table S1).

Identification of Four Clinical Subtypes
Among WT Patients According to
Consensus Cluster Analysis
All samples in the cohort were classified by the unsupervised
hierarchical clustering of the 312 prognosis-related sites
(Figure 1A). Further surveillance of the CDF delta area curve
revealed that the clustering result was stable when the selection
was 4, as the changing trends in the CDF AUC began to moderate
when more than four classes were used (Figure 1B). Based on the
similar methylation levels, k � 4 was demonstrated to be the most
appropriate choice, dividing the WT patient cohort into four
clusters. The result of stable clustering was divided into four
clusters to establish a consensus matrix graph based on the results
of consistent clustering. A color-coded heatmap was constructed
to demonstrate a clearly defined 4-block configuration, displayed
as blue blocks arranged along the diagonal line on a white
background (Figure 1C). The consensus matrix shows that

when K is 4, the differences within the clinical typing groups
are small, but the differences between groups are large.
Furthermore, the heatmaps were generated using DNA
methylation data and classification according to sex, age,
event, tumor stage, and histological type (Figure 1D). Sites
located in different categories displayed different methylation
patterns. CpGs beta values in the range from 0 to 0.2 were defined
as low methylation and those from 0.8 to 1 as high methylation.
The heatmap analysis revealed that most of the CpG sites were
low methylation levels. We further examined the prognostic
status of distinct WT subtypes. Kaplan-Meier analyses
demonstrated that Cluster one had the best prognosis, whereas
Cluster two was associated with the worst prognosis (Figure 1E),
suggesting that a favorable prognosis may be associated with
higher levels of DNA methylation. The age, event, sex,
histological type, and tumor stage distributions were analyzed
for the four molecular subtypes (Figures 1F–J). Different
methylation types revealed differences in age, event, sex,
tumor stage, and histological type, indicating that DNA
methylation can be used as a biomarker for the clinical
classification of WT in children. The Cluster one subtype was
associated with younger age and were all classified as FHWT,
which may explain the good prognosis associated with this group.
These findings indicated that the methylation spectrum could be
used to explain the etiology of WT and contribute to the
development of the best clinical treatment plan.

Gene Expression and Pathway Enrichment
Analysis of CpG Sites With Prognostic
Implications
We further analyzed the differences in 312 CpG sites across
each WT subtype and mapped the 305 genes associated with
these CpG sites. 52.56% of the methylation sites were derived

TABLE 1 | The top 20 among 2,092 independent prognostic methylation sites.

ID HR 95% confidence down limit 95% confidence upper limit p Value

cg23356505 0.000161815 5.91E-06 0.004433355 2.37E-07
cg06046705 4.13E+31 2.63572E+19 6.48E+43 3.75E-07
cg18376163 77628309593 4712054.035 1.27888E+15 4.16E-07
cg00150882 9.11207E+11 21300801.06 3.89797E+16 4.16E-07
cg01607897 5.00E-60 4.87E-83 5.13E-37 4.40E-07
cg25456549 6.87E+20 4.67282E+12 1.01E+29 5.72E-07
cg03140678 4.06E-50 1.76E-69 9.40E-31 5.76E-07
cg14101501 2.91E+46 1.12E+28 7.55E+64 7.60E-07
cg26036806 1.31E+32 2.02732E+19 8.46E+44 8.93E-07
cg17251433 327.5474238 32.42261519 3309.027178 9.20E-07
cg08435936 2.62E+52 2.83E+31 2.42E+73 9.57E-07
cg11059651 9.14E+37 5.99E+22 1.40E+53 9.58E-07
cg12693634 5.18E+44 6.14E+26 4.37E+62 1.01E-06
cg04940109 1.78884E+14 318289556.7 1.01E+20 1.18E-06
cg00829406 1.35E+24 1.84622E+14 9.83E+33 1.63E-06
cg07904475 357,527.8872 1844.815012 69289435.17 1.95E-06
cg13945578 1.48635E+12 14182073.28 1.55776E+17 2.01E-06
cg10425506 2.54E+25 8.31148E+14 7.77E+35 2.05E-06
cg10945313 1.16366E+14 147945445.7 9.1528E+19 2.93E-06
cg08521800 7.59E+21 5.07045E+12 1.14E+31 2.95E-06

HR:hazard ratio.
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from the gene body, while 47.44% of the methylation sites were
derived from regulatory regions of thees gene. The expression
data of genes associated with specific CpG sites were extracted
from the TARGET database and used to plot a heat map of the
gene expression spectrum (Figure 2A). Because biologically
relevant processes may be affected by epigenetic regulation at

these candidate CpG sites, we examined the potential
functional significance of genes associated with the
independent prognostic CpG sites. The biological functions
and pathways were explored using GO gene sets and KEGG
datebase as background, respectively. Figures 2B–E shows that
the genes associated with specific CpG sites were primarily

FIGURE 1 | Consensus clustering of different DNA methylation prognostic subgroups, survival analysis and clinical features in Wilms tumor. (A) Consensus
clustering cumulative distribution function (CDF), with k � 2 to 9. (B) Relative changes in the CDF area curve for k � 2 to 9. (C) Clustering heatmap for k � 4. (D) The
methylation heatmap for 312 sites in four clusters. (E). Kaplan-Meier survival analysis of the four clusters. Different proportions of ages (F), event (G), sex (H), histological
types (I), and stage scores (J) in the four clusters. FHWT: favorable histology Wilms tumor; DAWT: diffuse anaplastic Wilms tumor.
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FIGURE 2 |Gene annotations and functional enrichment analysis. (A) The heatmap of methylation modification levels for 305 corresponding genes associated with
different CpG sites. The results of enrichment analyses for these 305 genes. (B) The top 10 significant GO-BP results. (C) The top 10 significant GO-CC results. (D) The
top 10 significant GO-MF results. (E) The nine significant signaling pathways from the KEGG analysis. GO: gene ontology; BP: biological processes; CC: cellular
components; MF: molecular functions; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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concentrated in biological pathways that were strongly related
to tumors, such as the p53 signaling pathway and Rab GTPase
binding.

Identification of Specific CpG Sites
Between Subtypes
To identify unique CpG sites that were specific to each subtype,
we set the FDR to 0.05 and the logFC to 1, which resulted in the
identification of 15 subtype-specific CpG sites. All of the specific
CpG sites associated with each DNA methylation cluster are
displayed on the left-hand side of Figure 3, which shows that
Cluster one contained the most subtype-specific CpG sites, most
of which were hypomethylated. However, few specific CpG sites
displayed hypermethylation, and no specific CpG sites were
detected for Cluster 4. The right-hand side of Figure 3 shows
the degree of methylation observed at all specific CpG sites. Other
clusters were associated with a few specific CpG sites, most of
which were hypermethylated.

Establishment of Prognostic Prediction
Models
First, to determine the predictive abilities of specific CpG sites, the
specific CpG sites in Cluster one associated with the best
prognostic outcomes were assessed. These CpG sites were
constructed a prognostic signature. However, because of the

large number of these CpG sites, this signature was not
deemed to be ideal for clinical detection. Therefore, a
multivariate Cox regression analysis was performed by
applying the “survival” package in R software to construct and
optimize the model and to further reduce the range of evaluated
CpG sites while maintaining a high degree of accuracy. Stepwise
model selection was further performed, using the Akaike
Information Criterion (AIC) to avoid over-fitting, to select the
final list of sites. Then, in the analysis of the multivariate Cox
proportional hazards model, the value of the weighted coefficient
was determined by the regression coefficient for the
corresponding sites. The risk score model was evaluated using
a formula based on the results of the multivariate regression
analysis, as follows:

The risk score formula for this model was (−78.14 ×
expression value of cg23671665) + (19.30 × expression value
of cg06207852) + (−49.39 × expression value of cg14346208).

The methylation modification levels for these CpG sites
were obtained from the TARGET queue and substituted into
the model for calculation. Patients were ranked on the basis of
the calculated risk score. From the performance shown in
Figure 4A, the risk score was primarily distributed in the range
of −10 to 0, with increasing scores indicating greater risk.
Increasing risk scores were associated with significant
decreases in the OS of the patients due to WT (Figure 4B).
Increasing risk scores were associated with the decreased
methylation of cg23671665, a gradual decrease in the

FIGURE 3 | The specific CpG sites associated with different DNA methylation prognostic subtypes. Heat map for the modification levels of these CpG sites is
shown on the right. The red and blue represent hyper/hypomethylated CpG sites, respectively.
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FIGURE 4 | Construction of the prognosis prediction model using specific CpG sites in Wilms tumor. (A) The distributions of risk scores. (B) Correlation between
risk score and overall survival. (C) Significant differences were found for the methylation pattern between the high- and low-risk groups. (D) The survival difference was
based on Kaplan-Meier analysis between high-risk-score and low-risk-score groups. (E) The result of ROC analysis for the Wilms tumor cohort, indicating the prediction
efficiency of the prognostic signature. ROC: receiver operating characteristic.
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methylation of cg14346208 decreased, and a gradual increase
in the methylation of cg06207852, in addition to a decrease in
OS (Figure 4C). The samples were divided into a high-risk
group (risk score > median score) and a low-risk group (risk
score < median score), with the median risk score used as the
grouping threshold, to explored differences in prognosis
between the two groups. The prognosis of the high-risk
group was significantly worse than that of the low-risk
group, as shown in Figure 4D (p � 1.017e−07). The AUC
value of the prognostic signature model was 0.802, whereas the
AUC values of all other models were <0.7, indicating that this

model has the best prognostic prediction efficiency
(Figure 4E).

The Independent Prognostic Value of the
Risk Score
To determine whether the risk score could serve as an
independent prognostic predictor for WT, univariate and
multivariate Cox regression analyses were performed. The
univariate analysis revealed that sex (p � 0.049, HR: 1.730,
95% confidence interval [CI]: 1.004–2.982), event (p � 0.004,

FIGURE 5 | The prognostic analysis of risk score and different clinical features. (A) Univariate analysis was used to identify factors associated with OS. (B)
Multivariate analysis was performed to reveal independent prognostic factors. Kaplan–Meier survival analysis for high- and low-risk groups according to different clinical
features, including age (C, D), sex (E, F), event (G, H), histologic type (I, J), and stage (K, L). OS: overall survival; FHWT: favorable histology Wilms tumor; DAWT: diffuse
anaplastic Wilms tumor.
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HR: 2.247, 95% CI: 1.292–3.909), stage (p � 0.005, HR: 1.569,
95% CI: 1.1148–2.145), and risk score (p < 0.001, HR: 2.718,
95% CI: 1.805–4.094) were significantly associated with OS
(Figure 5A). After correction for other confounding factors,
sex (p � 0.031, HR: 1.921, 95% CI: 1.061–3.477), event (p <
0.001, HR: 3.785, 95% CI: 2.022–7.088), histological type (p <
0.001, HR: 4.354, 95% CI: 2.184–8.676), and risk score (p <
0.001, HR; 2.323, 95% CI; 1.581–3.414) were independent
predictive factors for OS in the multivariate Cox regression
analysis (Figure 5B).

In the subgroup analyses, we further explored the
prognostic differences between patients with high- and low-
risk scores according to different clinical features, including
age, sex, event, histological type, and stage. As shown in
Figure 5C-L, the Kaplan–Meier survival analysis
demonstrated that survival was remarkably reduced among
high-risk patients compared with low-risk patients for male
patients (p < 0.001), female patients (p < 0.001), those aged
≤6 years (p < 0.001), those with relapse (p < 0.001), diffuse
anaplastic WT (DAWT; p � 0.029), FHWT (p < 0.001), WT
stages I–II (p � 0.003), and WT stages III–IV (p � 0.003).
However, no significant discrepancy in OS rate was observed
between high- and low-risk patients among patients with no
relapse or progression (p � 1) or among patients aged
6–18 years (p � 0.093), which may be associated with the
small sample size. These results suggested that the prognosis
signature can predict the prognosis of patients accurately
across various clinical features.

Association Between the Risk Score and
the Composition of TIICs
We attempted to investigate the relationship between the risk
score and diverse immune infiltrating cells in the tumor
microenvironment of WT. By using two distinct DNAm
reference matrices to examine the discrepancies in the ratios
of seven types of immune cells between the high-risk group and
the low-risk group, the specific cell types driving differential
methylation were identified. The outcomes of the seven
immune cell subsets are revealed in Figure 6A, which shows
that B cells and CD4+ T cells were relatively abundant in cancer
tissues, whereas CD8+ T cells were not expressed in cancer tissues.
The only immune cells that were significantly different between
groups divided by risk score were B cells. Specifically, B cells (p �
0.039) were present at higher proportions in the low-risk group
than in the high-risk group (Figure 6B).

DISCUSSION

The incidence of WT, the most commonly identified tumor that
arises from the kidney in children, has steadily increased over
time, with a disproportionate increase observed among male
children (Nakata et al., 2020). Increasing evidence suggests
that a greater than 90% 5-years survival rate can be achieved
among children diagnosed with WT after receiving active
anticancer treatments (Szychot et al., 2014), such as upfront

FIGURE 6 | Variations in the immune cell infiltration between high-risk-score and low-risk-score groups. (A) Histogram of estimated immune cell compositions
obtained using EpiDISH. (B) The violin plot output, showing the compositions and differences in invading immune cells between the high risk score and low risk score
groups.
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nephrectomy, as described by the Children’s Oncology Group
(COG), and nephrectomy following chemotherapy, as described
by the studies reported by the International Society of Pediatric
Oncology (SIOP). However, many therapeutic challenges remain
to be resolved. There are still some WT patients whose survival
rate is less than 90% (Dome et al., 2015). WT survivors continue
to have a higher risk of developing chronic health and late
mortality beyond that anticipated for the general population
(Suh et al., 2020). Child survivors of WT are more likely to
require special education or present with mental health concerns
(Foster et al., 2021). Childhood cancer survivors are at increased
risk of adverse adjuvant therapy effects, as the administration of
systematic chemotherapy may influence the development of
cardiovascular conditions (Mulrooney et al., 2009).
Consequently, clinically viable biomarkers are necessary to
better distinguish between high and low risk WT patients,
which can aid clinicians in the clinical strategies and accurate
treatment ofWT. This is very valuable for avoiding overtreatment
and reducing related complications.

Currently, increasing evidence suggests that a series of gene
methylations may be associated with the development and
progression of WT. Moreover, patients who present with the
genome-wide dysregulation of DNA methylation have been
associated with high-risk histology tumors and the occurrence
of relapse (Foster et al., 2021), indicating that abnormal DNA
methylation, either alone or in combination with the existing
surveillance methods, may serve as a potential epigenetic
biomarker or therapeutic target for WT patients. Currently,
CpG sites that have been shown to be associated with
potential WT pathogenesis include Wilms tumor 1 (WT1)
(Brzezinski et al., 2021), WTX (Pelletier et al., 1991), TP53
(Rivera et al., 2007), and 11p15 (Andrade et al., 2014), and the
methylation of some of these genes can be detected in peripheral
blood (Fiala et al., 2020). In recent studies, methylation patterns
have been studied and recommended as a potential method for
disease classification and prognostic assessment. However, in big
data samples from patients with WT, whether these methylation
signatures have clinical significance in tumor classification,
survival, and prognosis has remained uncertain.

Consequently, we conducted this study to determine the
detailed epigenomic classification of WT according to the
methylation pattern. CpG sites associated with prognosis were
obtained and classified by sex, age, event, tumor stage, and
histological type. Expression data for 312 independent
prognosis-associated CpG sites (p < 0.05) corresponding to
WT patients were obtained from the TARGET database and
subjected to unsupervised clustering analysis. We obtained a
detailed classification of the WT epigenomes by applying
cluster analysis. WT can be divided into four distinct
molecular subgroups, among which Cluster one showed the
best prognosis, which may be associated with the
characteristics of younger age, a lower stage, and better tissue
type by comparison of clinical information in different
subgroups. As a consequence, the classification scheme can be
used for the molecular stratification of individual tumors, which
may allow clinicians to reassess patient treatment strategies and
clarify the biological mechanisms underlying the occurrence and

development of WT. The integration of prognosis-related CpG
sites can generate more accurate results and facilitate preferable
risk stratification. A scoring system based on methylation can be
applied to clinical practice to stratify risk in patients with early
WT. A risk score was established to predict the prognosis of WT
patients and guide decisions regarding the application of adjuvant
therapy. We identified three CpG sites that were specific to
Cluster one in WT and established a prognostic risk score-
based model according to the methylation status of these three
sites. The results of AUC analysis among theWT cohort indicated
the correctness and reliability of the prediction model. The risk
score remained an effective independent predictive factor even
when the model was corrected for other factors (p < 0.05).

Increasing studies have shown that TIICs in WT are related to
the initiation and prognosis of WT (Maturu et al., 2017; Fiore
et al., 2021; Stahl et al., 2021). Oleinika et al. found that immune
dysregulation contributes to the pathogenesis of many kidney
diseases, regardless of antibody involvement (Oleinika et al.,
2019). Therefore, the exploration of immune infiltration in
WT remains necessary and may affect the outcomes of
immunotherapy. Although the mechanism of B cells in WT
remains unclear, our study suggested a significant correlation
between decreased B lymphocyte infiltration and increased risk
score. A pronounced decrease in the B lymphocyte numbers was
observed in the high-risk score group (p � 0.039). B lymphocytes
perform a variety of immunological functions, which play
important roles in the production and secretion of antibodies
during humoral immunity (Franchina et al., 2018). Some studies
have suggested that B lymphocytes may exert an anti-tumor
effect, whereas others have shown that B lymphocytes are tumor-
promoting (Tsou et al., 2016; Largeot et al., 2019). In one study of
metastatic melanoma and renal cell carcinoma, tumor-infiltrating
B lymphocytes played an active role in anti-tumor immunity
(Helmink et al., 2020). Similar studies have found that the
presence of peritumoral B lymphocytes correlates with healthy
long-term survivorship following WT (Eckschlager et al., 2009).
Importantly, due to their involvement in the release of cytokines
and other mechanisms, B lymphocytes are likely capable of
interacting with the components of both immune cells and
non-immune cells in the tissue microenvironment (Largeot
et al., 2019). The observation of antibodies directed against
tumor antigens in many cancer patients suggests that B
lymphocytes may potentially produce antibodies that promote
tumor clearance (Reuschenbach et al., 2009). B lymphocytes also
produce several cytokines and chemokines, which recruit other
immune cells. Memory B lymphocytes may act as antigen-
presenting cells (APCs), inducting tumor-specific T cells to
promote anti-tumor immunity. Therefore, future studies
should examine the feasibility of using the tumor regulatory
potential of B lymphocytes to improve WT immunotherapy.

Inevitably, this study is associated with some innate
limitations that must be addressed. First, this study was
performed as a retrospective study based on the results of a
single-institutional publicly available online database, sample size
limitation with no other database cohorts available for validation.
Moreover, most of the WT patients in the target database were
white. The limited racial diversity represented by the data may
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bias the results toward outcomes that are specific to the white
population. Additionally, it is necessary to further investigate the
regulatory mechanisms to confirm the functions of these CpG
sites and their effects on tumor immune microenvironment.

CONCLUSION

We classified WT into four prognostic subgroups based on the
TARGET methylation spectrum, which efficiently identified
high-risk WT patients. A prognostic methylation risk score
was developed that was significantly associated with the
unfavorable clinical outcomes, indicating that this prognostic
signature might be used to guide clinicians in devising
reasonable treatment plans and evaluating their efficacy.
However, further independent studies and large scale
prospective studies are needed to validate and advance this
hypothesis.
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