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Abstract

Trends in HIV virulence have been monitored since the start of the AIDS pandemic, as studying HIV virulence informs our
understanding of HIV epidemiology and pathogenesis. Here, we model changes in HIV virulence as a strictly evolutionary
process, using set point viral load (SPVL) as a proxy, to make inferences about empirical SPVL trends from longitudinal HIV
cohorts. We develop an agent-based epidemic model based on HIV viral load dynamics. The model contains functions for
viral load and transmission, SPVL and disease progression, viral load trajectories in multiple stages of infection, and the
heritability of SPVL across transmissions. We find that HIV virulence evolves to an intermediate level that balances
infectiousness with longer infected lifespans, resulting in an optimal SPVL,4.75 log10 viral RNA copies/mL. Adaptive viral
evolution may explain observed HIV virulence trends: our model produces SPVL trends with magnitudes that are broadly
similar to empirical trends. With regard to variation among studies in empirical SPVL trends, results from our model suggest
that variation may be explained by the specific epidemic context, e.g. the mean SPVL of the founding lineage or the age of
the epidemic; or improvements in HIV screening and diagnosis that results in sampling biases. We also use our model to
examine trends in community viral load, a population-level measure of HIV viral load that is thought to reflect a population’s
overall transmission potential. We find that community viral load evolves in association with SPVL, in the absence of
prevention programs such as antiretroviral therapy, and that the mean community viral load is not necessarily a strong
predictor of HIV incidence.
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Introduction

Virulence can be defined as the severity of disease caused by a

pathogen; the virulence of a pathogen may evolve within a host

population as the rates of transmission and host mortality

are balanced by natural selection. For HIV, virulence can be

defined as the rate of disease progression in the absence of

antiretroviral treatment. Understanding if HIV virulence has

evolved will inform our understanding of HIV epidemiology and

pathogenesis, as increases in HIV virulence would result in more

rapid disease progression [1–4], the earlier initiation of antiretro-

viral therapy [5], and an increased per-contact transmission risk

[6–10].

The estimation of epidemic trends in HIV virulence includes

the measurement and analysis of proxy markers for HIV disease

progression, with set point viral load (SPVL) the most prognostic

single marker of the time to AIDS after HIV infection [1–4].

While exact definitions of SPVL vary, it is generally the HIV

plasma RNA viral load after the resolution of acute infection, but

within 6 months to two years after seroconversion (and prior to

initiation of antiretroviral therapy). We previously completed a

meta-analysis of 8 published studies of population-level trends in

SPVL; our meta-analysis found a positive summary trend (0.013

log10 copies/mL/year, P = 0.07) [11], consistent with increased

virulence of HIV. However, the studies also showed large variation

in SPVL trends (range: 20.013 to 0.035 log10 copies/mL/year)

[11].

The causes of this variability remain unexplained, but may

include estimation methods (clinical or statistical) or differences

among the HIV cohorts (and associated local epidemics) in which

trends were studied. These cohorts contain primarily men of

European descent with HIV subtype B infections. Our previous

analysis of study parameters in these 8 cohorts (including

transmission risk group frequency, sample size, length, calendar

year time period, seroconversion lag, and sampling lag) showed

that only seroconversion lag was associated with SPVL trend; i.e.,

shorter periods between the last negative and first positive HIV-1

antibody tests were correlated with increased SPVL trends. It

followed that for the 6 of 8 studies in the meta-analysis that were

prospective seroconverter cohorts, the summary SPVL trend was

0.018 log10 copies/mL/year, 38% greater than the summary trend

of 0.013 copies/mL/year for all eight cohorts (including both

seroconverter and seroprevalent cohorts). However, this explana-

tion for variation in SPVL trends is insufficient, as trends from
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seroconverter cohorts are still highly variable (range: 20.002 to

0.035 log10 copies/mL/year) [11].

Positive trends in mean population SPVL (HIV virulence) may

reflect the process of viral adaptive evolution in the human

population; recent modeling studies [12,13] have proposed the

existence of an evolutionarily optimal SPVL of 4.52 log10 copies/

mL, defined as the viral load that balances transmission

probability with infected lifespan. For example, low SPVL will

result in lower infectivity but more total transmissions (due to

greater life expectancy), whereas high SPVL will result in high

infectivity but fewer total transmissions (due to decreased life

expectancy). The proposed optimal SPVL of 4.52 log10 was

qualitatively consistent with mean SPVL levels found in the

Amsterdam Cohort Study (4.36 log10 copies/mL) [12] and the

Zambian Transmission Study (4.74 log10 copies/mL) [9]. Mean

SPVLs in the studies included in our meta-analysis were also

qualitatively similar to 4.52, albeit with a wider range (from 4.25 to

5.2 log10 copies/mL). An even greater range in population viral

loads was seen in a review of 57 studies, where medians ranged

from 3.7 and 5.6 log10 copies/mL and the overall median was 4.45

log10 copies/mL [14]. These 57 studies were not studies of SPVL

distributions, specifically; however, viral loads in the asymptomatic

period are generally stable and likely to be close to SPVL [15,16].

We have developed a stochastic, agent-based HIV evolutionary

and epidemic model based on the dynamics of HIV viral load.

This model is unique for HIV epidemic models in that it allows for

the viral virulence phenotype (set point viral load) to change over

the course of an epidemic. The model contains known functions

related to viral load trajectories in acute, chronic and disease

stages, viral load and transmission probability, SPVL and disease

progression rate, and the heritability of SPVL across transmission

pairs. These components provide an evolutionary framework in

which a balance is achieved between efficient transmission and

slow disease progression. This type of evolutionary structure for

HIV transmission potential was proposed by Fraser [12].

Our primary aims are to understand both the underlying causes

of empirical SPVL trends and also the variation among

populations/cohorts in the estimation of these trends (rather than

variation in SPVL among individuals e.g., [15,17], or the relative

contributions of viral genetic and environmental factors to SPVL

variation [13]). To do this, we estimate the temporal changes in

SPVL that can result from adaptive viral evolution in human

populations, and we assess deviations from these trends related to

virologic parameters such as initial mean SPVL, maximum per-

contact transmission rate, or epidemic stage. We also examine the

effects of potential sampling biases due to improvements in the

rates of HIV diagnosis, changes in cohort recruitment procedures,

or earlier initiation of ART after diagnosis—biases that were not

explicitly considered by the studies of empirical SPVL trends

described in the meta-analysis.

A secondary aim is to understand trends in HIV community

viral load (CVL). CVL is typically defined as the arithmetic or

geometric mean (or median) of all reported individual viral loads

(individuals diagnosed and sampled, with detectable viral load) in a

specific community. CVL is considered to be a heuristic proxy for

overall transmission potential (and level of HIV-associated health

care) in a given community [18–21]. Thus, the ability to accurately

assess trends in CVL is critical for prevention programs that

promote reduced population viral load and transmission potential

as a measure of effectiveness: CVL needs to be a robust and

informative metric for comparisons through time, meaningfully

related to HIV epidemiological parameters that are important to

the public health community. However, recent work has described

potential pitfalls in the relationship between CVL and transmission

potential (e.g., issues of sampling bias, population context, and

ecological fallacy) [22]. In our analysis, we focused on the potential

evolutionary context of trends in CVL: there are similarities

between the estimation of SPVL and CVL trends, and we

hypothesize that understanding biases related to SPVL trends will

inform our understanding of CVL trends. Overall, we expect our

model will improve our understanding of HIV epidemics and the

virologic metrics that are used to study them.

Materials and Methods

We have constructed a stochastic agent-based HIV epidemic

model that simulates viral load dynamics within and between

individuals. The model has four main components: 1) the

distribution of set point viral load (SPVL) in a population of

HIV-infected individuals linked via a sexual contact network (the

population component) [12,14,23]; 2) the predictive relationship

between HIV viral load and the per-contact viral transmission rate

[6–10]; 3) the predictive relationship between SPVL and the rate

of disease progression [1–4,16]; and 4) the partial heritability of

SPVL across transmission pairs (the viral genotype plays a role in

determining SPVL) [24–27]. These components were embedded

within a simple model for a sexual contact network. The model

includes fixed parameters (with estimates following from previous

studies, when possible) and variable parameters (with unknown or

uncertain estimates that we varied to evaluate their effects on

epidemic and evolutionary output) (Table 1). The underlying

model was written in C with a front-end written in R.

Distribution of set point viral load within a population
This component includes HIV-uninfected people, HIV-infected

people, and people who have died of AIDS. Each simulation starts

with N total HIV-uninfected and infected individuals at time zero,

with each infected individual (of n total HIV-infected individuals)

provided a SPVL value following from a Gaussian distribution

with user-defined mean and variance, with the variance parameter

following published estimates [12,14]. Entry of new (uninfected)

individuals into the population is at a constant input rate such that

Author Summary

Virulence can be defined as disease severity; virulence of a
pathogen may evolve as the rates of host mortality and
transmission are balanced. HIV virulence trends are
estimated using set point viral load, a proxy for the rate
of HIV disease progression. To assess the capacity for HIV
virulence to evolve and to place published virulence trends
in an evolutionary context, we developed an evolutionary
model based on HIV viral load dynamics. Our model
reveals that HIV virulence evolves to an optimal set point
(,4.75 log10 copies/mL) similar to levels seen in natural
populations. In comparing published trends to model-
based trends, we infer: a) published trends are consistent
with HIV adaptation to the human population; and b)
variation among published trends may be explained by
epidemic context or by sampling biases resulting from
improvements in HIV screening and diagnosis. We also
assess trends in HIV community viral load, defined as the
mean viral load of all reported viral loads in a community,
and thought to reflect a population’s transmission poten-
tial. We find that community viral load evolves in
association with set point, in the absence of prevention
programs like antiretroviral therapy, and does not neces-
sarily predict HIV incidence.

Modeling Population Trends in HIV Viral Loads
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the population, in absence of HIV infection, will stay at its initial

value. Infected individuals may die of their HIV infections

according to formulas given below. Further model details are

given in Text S1.

Epidemic simulations
We ran epidemic simulations for 100 years, in discrete time-

steps of one day. For each model run we tracked individual viral

load trajectories, infected lifespan, sexual partnerships and

transmission histories, and epidemic growth or decline, and we

estimated population measures of AIDS mortality, SPVL trends

and heritability. The mean, median, and variance of SPVL in the

population could be calculated directly at any day in a simulated

epidemic. Likewise, the mean, median, and variance of commu-

nity viral load (CVL) could be calculated at any day using the viral

load from each currently alive and infected individual. We

conducted sensitivity analyses on each parameter from Table 1,

but focused on: the rate of viral load increase in the asymptomatic

period (s from Equation 1 in Text S1); the rate of disease

progression (maximum time to AIDS after infection, Dmax from

Equation 2 in Text S1); and the maximum daily rate of

transmission in the asymptomatic period (Bmax in Equation 3 in

Text S1).

To examine the potential for adaptive evolution of HIV

virulence, we examined 10 replicate epidemic simulations for

three different values of initial population mean SPVL (3.5, 4.5,

and 5.5 log10 copies/mL). Trends in SPVL were calculated by

regressing against the times of infection recorded for each

individual (each individual had individual-specific SPVL and time

of infection).

Null distributions of 20-year SPVL trends
We sought to place published SPVL trends in the context of

results from our epidemic model. To do this, we created

hypothetical null distributions of SPVL trends for epidemics with

initial mean SPVL values equal to 3.5, 4.5, or 5.5 log10 copies/

mL. For each of the 10 replicate runs for each initial mean SPVL,

we randomly chose 100 separate 20-year time periods with

replacement; we chose 20-year periods as most empirical estimates

of SPVL trends cover 20-year periods. From each of these 20-year

time periods we estimated a univariate linear regression of SPVL

by calendar year of infection. This created a distribution of 16103

possible observed SPVL trends (100 20-year periods from 10

replicate model runs) for any given set of model parameters, where

only the starting random number seed and the randomly chosen

20-year period were different between trend estimates.

The HIV epidemics of European and North American

countries are younger than 100 years; the first introduction of

HIV to the US is estimated to have occurred in 1969 [28] with

introductions to Europe following. Empirical SPVL trends have

been estimated most often using data from approximately 1985

to 2010 [29]. This may affect our choice of an appropriate

Table 1. Parameters of the model and standard initial values.

Parameter Value

Initial overall population size 75000

Initial number of infected 500

Average number of partners per person 0.9

Minimum duration of any relationship, days 1.0

Maximum duration of any relationship, days 1.0

Probability that a couple will have sex, per day 1.0

Maximum number of concurrent partners 1.0

Natural death rate, per day 0.0001

Maximum transmission rate, per day, asymptomatic stage 0.0025 [12,13]

Viral load at half maximum transmission rate, copies/mL 13938 [12,13]

Hill coefficient, transmission rate 1.02 [12,13]

Shape parameter, transmission rate 3.46 [12,13]

Maximum time to AIDS, days 9271 [12,13]

Time to half maximum time to AIDS period, days 3058 [12,13]

Hill coefficient, time to AIDS 0.41 [12,13]

Viral load at time zero, copies/mL 100

Viral load at peak viremia, copies/mL 1.06107 [6,60]

Time to peak viremia, days 21 [6,60]

Total time of acute infection, days 91

Total time of AIDS before death, days 91

Viral load at AIDS, copies/mL 5.06106

Average SPVL at time zero, log10 copies/mL 4.5 [12,13]

Variance of log10 SPVL 0.8 [14]

Mutational variance, annual 0.01

Viral load progression rate, natural log, annual 0.01 [15,16]

Heritability of SPVL across transmissions 0.5 [25,26]

doi:10.1371/journal.pcbi.1003673.t001

Modeling Population Trends in HIV Viral Loads
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null distribution for SPVL trends produced by our model.

To accommodate this uncertainty we created separate null

distributions, each spanning a different subset of the complete

100-year simulated epidemics: a) all 100 years of the model output;

b) years 10–100 of the model output, under the assumption that

European and North American subtype B epidemics began

,1970, which, as studies of empirical SPVL trends began

sampling at the earliest in 1984, leaves a ,10-year window of

the HIV epidemic that was not sampled by cohorts; c) years 0–40

of the model output, under the assumption that because empirical

studies of SPVL trends include years up to ,2010, this represents

the first 40 years of the subtype B epidemic (,1970 to 2010); and

d) years 10–40, the most restrictive null, meant to reflect the

empirical sampling years ,1980 to 2010.

Recreation of sampling biases
Two distinct types of sampling biases may potentially result

from the fact that HIV viral loads in primary infection are higher

in symptomatic individuals [30,31]: a trend in mean SPVL may

result from improvements over time in referral or cohort

recruitment practices [32], or improvements over time in

diagnostic techniques and identification of new HIV infections

[33]. For example, if rapid progressors are more readily identified

and diagnosed as the epidemic progresses, and these individuals

initiate ART before set point is measured, then fewer individuals

with (relatively) high SPVL will be sampled as the epidemic ages.

This is a bias caused by earlier diagnosis and ART initiation, and

may lead to inferred trends of decreasing virulence. Alternatively,

if increased diagnosis and recruitment of newly infected individ-

uals is associated with improvements in referral or cohort

recruitment, but does not lead to earlier ART initiation, biased

sampling in the opposite direction may result. In this case,

relatively more symptomatic individuals would be sampled, and

trends of increasing virulence may be inferred. (We recognize that

increased and earlier diagnosis not leading to earlier ART

initiation is not consistent with current clinical practice; however,

most published studies of HIV virulence trends included sampling

years from the 1980s and 1990s.)

We recreated the above types of biased sampling in simulated

epidemics as follows: 1) we divided randomly chosen 20-year

epidemic periods (used to estimate SPVL trends) into individuals

infected in years 1–10 versus years 11–20; 2) from the latter

subpopulation (years 11–20), we created subsamples that included

individuals with SPVLs either greater or less than SPVL = 5.0

log10 copies/mL (http://aidsinfo.nih.gov/guidelines/archive/

adult-and-adolescent-guidelines); 3) depending on the type of

sampling bias to be recreated, we randomly selected a portion of

individuals to be removed from either the ‘‘SPVL.5.0’’ or

‘‘SPVL,5.0’’ subsamples (Figure S1).

Community viral load trends
For each day in a simulated epidemic, we calculated community

viral load (CVL) as the mean and median viral load of all HIV-

infected individuals who were currently in day 45 or greater of

their infection (one half of the time to reach set point; with the

length of acute infection set to 90 days in our standard parameter

settings). This threshold is meant to mimic empirical estimates of

CVL, where the majority of individuals in early acute infection are

unsampled and do not contribute to CVL estimates.

Results

We developed a stochastic, agent-based, HIV evolutionary and

epidemic model based on viral dynamics. Within this model,

variation in SPVL across individuals is due to viral and other (host

and environmental) factors. This provides an evolutionary

framework based on viral transmission potential [12,13] that

determines the population trends in virulence and results in an

evolutionary balance between virulence (disease severity) and

transmission, as SPVL governs the rate of disease progression (the

length of the asymptomatic period) and the transmission rate

(based on individual viral load, which follows from SPVL as

infections progress). Our primary goal is to understand the

underlying causes of empirical SPVL trends and also the variation

among cohorts/populations in the estimates of these SPVL trends.

Model validation
For model runs of 100 years with standard parameter values

(Table 1), we found the following: epidemic growth, starting from

500 HIV-infected individuals in an initial population size of

75,000 (infected and uninfected), varies across initial mean SPVL

values. Runs with intermediate (4.5) and high (5.5) initial mean

SPVLs resulted in faster rates of epidemic growth; these resulted in

.35,000 HIV-infected individuals before year 20 (Figure 1A).

Kaplan-Meier survival curves stratified by quartiles of SPVL were

consistent with published survival analyses from two separate

cohorts [3,12] (Figure S2). The estimated heritability of SPVL

across transmission pairs were consistent with empirical estimates

of SPVL heritability [24–27], and decreased over the course of

simulated epidemics as variance in SPVL decreased (Figure S3).

Population variation in SPVL and VL were consistent with

empirical estimates: a recent meta-analysis reported interquartile

ranges (IQR) for 51 studies of population viral loads [14] with an

average IQR of ,1.0 log10 copies/mL; IQRs of SPVL for our

model were 0.9, 0.86, and 0.84 log10 copies/mL for new infections

taking place in years 25, 50 and 75 of simulated epidemics,

respectively (Figure S4).

Frequency of transmissions from early HIV infection
For a standard epidemic run (Table 1), ,5% of all infections

(over 100 year epidemic simulations) took place while the source

partner was in ‘‘early HIV infection’’ (defined as 3 months, up to

Fiebig stage V [34]), although this frequency was higher (,10%)

in the early stages of simulated epidemics (Figure S5). Changing

the definition of ‘‘early HIV infection’’ to include the entire first

year of infection increased the frequency of early infection

transmissions to ,20% of all transmissions (and this frequency is

higher, ,25%, if only simulated epidemic years 10 to 40 (,1980

to 2010) were considered) (Figure S5).

Set point viral load evolves to an optimal level
We found that SPVL evolves toward a equilibrium value of

approximately 4.75 log10 copies/mL, regardless of the mean

SPVL of the founding population of infected individuals (at time

zero) (Figure 1B). Variability across 10 replicate model runs (with

only the random number seed changed) in SPVL trends was

minimal (Figure 1B). This SPVL is slightly higher than the 4.52

optimal SPVL predicted by Fraser [12] and Shirreff [13], as well

as the 4.45 overall median of 57 studies reported by Korenromp

[14].

Empirical trends are similar to model-based trends
We next compared empirical SPVL trends to results from our

model by producing null distributions of 20-year linear SPVL

trends. Figure 2A shows the different null distributions for model

runs with founder mean SPVLs of 3.5, 4.5, and 5.5 log10 copies/

mL, using all 100 years of simulated epidemics. Broadly, trends

Modeling Population Trends in HIV Viral Loads
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Figure 1. Variation across replicate simulated epidemics. A. Epidemic size over time. Epidemic runs with each initial SPVL were repeated 10
times, each run with a different random number seed. B. Population mean set point viral load (SPVL; log10 HIV RNA copies/mL at the end of acute
infection) over time, using a locally weighted polynomial regression curve (Lowess fit = 0.1). Mean SPVL evolves toward 4.75 log10 copies/mL.
doi:10.1371/journal.pcbi.1003673.g001
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estimated from epidemics with initial mean SPVL = 3.5 were

positive and trends from epidemics with initial mean SPVL = 4.5

or 5.5 were negative (Figure 2A). Interestingly, the distribution for

epidemics with starting mean SPVL = 4.5 included mostly

negative trends despite the optimal SPVL equal to ,4.75

copies/mL, due to transient increases in virulence early in

epidemics, before the number of susceptible individuals begins to

decrease (Figure 1B) [13,35]. We compared the empirical SPVL

trends to these null distributions, and the magnitudes of the

empirical trends were similar to (and therefore consistent with) the

model-based trends. The majority of these trends were located to

the far right (positive) side of the distributions (SPVL trends.0.01

log10 copies/mL/year) (Figure 2A). (95% confidence intervals for

the empirical trends are overlaid on null distributions created from

model years 0 to 100 in Figure S6A.)

Founding HIV lineages may have had low virulence
When we compared empirical SPVL trends to potentially more

appropriate null distributions (produced by sampling only years 0

to 40, or years 10 to 40, of simulated epidemics), the empirical

trends were even more similar to model-based trends. Specifically,

the larger empirical trends (.0.01 log10 copies/mL/year) were

consistent with the median trends from null distributions for

simulated epidemics with initial mean SPVL = 3.5 (Figure 2B).

Thus, the larger empirical trends may be unbiased measures of

adaptive viral evolution in populations where the initial founding

viral lineages contained low virulence. The median SPVL trend

for the null distribution produced from sampling from years 10 to

40 of epidemics with initial mean SPVL = 3.5 was 0.0073 log10

copies/mL/year (Figure 2B), compared to a median SPVL trend

of 0.0011 log10 copies/mL/year when sampling from years 0 to

100. (95% confidence intervals for the empirical trends are shown

overlaid on null distributions created from model years 10–40 in

Figure S6B.)

The affect of sampling biases on empirical SPVL trends
We simulated two types of sampling biases to begin in the latter

half of 20-year time periods: 1) earlier ART initiation; and 2)

increased rates of diagnosis (without associated earlier ART

initiation). Hypothetically, these sampling biases may result in

linear SPVL trends that are decreased and increased relative to

true trends, respectively. Indeed, simulating these biases on model

output resulted in incorrect estimates of the true evolutionary

trends in SPVL (Figures 3A and 3B). Figure 3A shows incremental

positive shifts in SPVL trend distributions that result from

increased sampling biases (by increasing the proportion of the

HIV-infected population that is be affected by, in this example,

increased rates of diagnosis without associated earlier ART). For

this specific example (which included only simulated epidemics

with initial mean SPVL = 3.5), the medians of biased SPVL trends

were significantly different from the median of the true trend

distribution (unbiased median = 0.0011; 10% removed medi-

an = 0.0028; 50% removed median = 0.0129 log10 copies/mL/

year). Similar shifted distributions, though in the opposite

direction, were found for biases due to earlier ART initiation.

A more appropriate null distribution to assess sampling
biases

Figure 3A shows the effect of sampling biases on null

distributions produced from years 0 to 100 of simulated epidemics.

As noted above, a more appropriate null distribution may be a

time period from simulated epidemics that reflects the expected

sampling times of HIV subtype B epidemics; this can be years 10

to 40 of simulated epidemics, reflecting approximately years 1980

to 2010. When this narrowed time period is used to recreate

potential sampling biases, the effects on SPVL trend distributions

are distinct than those seen when using the full 100 years of

simulated epidemics: the median trend values increase significantly

with more increased sampling biases (unbiased median = 0.0073;

10% removed median = 0.0094; 50% removed median = 0.0208

log10 copies/mL/year), but all distributions overlapped extensively

(Figure 3B). In effect, with this narrow null distribution it is more

difficult to distinguish between adaptive viral evolution and

sampling biases as possible explanations for the empirical SPVL

trends.

SPVL trends at different epidemic stages (biases due to
evolutionary context)

An assumption inherent to many studies of HIV virulence is

that SPVL trends will be linear. This assumption is likely false, as

epidemic growth or decline is affected by the availability of

susceptible individuals (among other factors); epidemics may not

experience constant linear growth, and thus evolutionary pressures

on the virus may shift over the course of an epidemic.

Furthermore, processes of HIV evolution, including natural

selection and genetic drift, can be affected in complex ways by

changes in the viral effective population size (measured in this

context most simply as prevalence). We examined the distribution

of SPVL slopes in progressing stages of simulated epidemics

(Figure 4A). For simulated epidemics with varying initial mean

SPVLs (3.5, 4.5, and 5.5 log10 copies/mL), the distribution of

slopes changed over time, as more extreme slopes (further away

from zero) occurred in the first 20 years of epidemics, and all

distributions converged to near zero as the epidemic entered years

40 and greater. This suggests that if the empirical SPVL trends are

due to adaptive viral evolution, then we can hypothesize that

local/regional epidemics (represented by national HIV cohort

populations) with increasing SPVL were founded by viruses of low

virulence (SPVL,3.5).

Sensitivity to parameter values
We tested whether model output was sensitive to the parameters

of the viral load functions. We initially focused on: 1) the viral load

progression rate in chronic infection; 2) the maximum rate of

progression to AIDS; and, 3) the maximum daily rate of

Figure 2. A. Empirical SPVL trends overlaid onto distributions of simulated 20-year trends. Distributions of linear SPVL trends (log10 HIV
RNA copies/mL/year) were estimated from 100 randomly sampled 20-year time periods for 10 replicate simulations for each initial mean SPVL = 3.5,
4.5 or 5.5 log10 HIV RNA copies/mL (creating 1000 total 20-year trends for each initial mean SPVL). Empirical (published) annual linear SPVL trends are
overlaid (arrows and references). References with asterisks are seroprevalent cohorts; all others are seroconverter cohorts. B. Selection of an
appropriate null changes the distribution of simulated SPVL trends. Separate null distributions, each spanning a different subset of the
complete 100-year simulated epidemics: all 100 years of the model output; years 10–100 of the model output, as European and North American
subtype B epidemics began ,1970, and studies of empirical SPVL trends began sampling at the earliest in 1984, leaving a ,10-year window of the
HIV epidemic not sampled by the cohorts; years 0–40 of the model output, as the empirical studies of SPVL trends include years up to ,2010, so this
represents the first 40 years of the subtype B epidemic (,1970 to 2010); and years 10–40, reflecting the empirical sampling years ,1980 to 2010.
doi:10.1371/journal.pcbi.1003673.g002
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transmission in the asymptomatic period. Variation in the rate of

viral load increase and in the rate of disease progression had only

minor effects on epidemic growth and the evolution of virulence

(Figures S7 and S8). Variation in the maximum transmission rate

(Bmax) had large effects on epidemic growth and the early pattern

of evolution toward optimal SPVL (Figure S9). With higher

maximum transmission rates, the epidemic size increases more

rapidly and virulence (SPVL) increases; these increases in SPVL

were transient, however, as the supply of susceptible individuals

soon declines and limits further epidemic growth. The evolution-

arily optimal SPVL remains equivalent across different values of

Bmax. This pattern of increasing virulence in the early stage of the

epidemic followed by decreasing virulence as susceptible supply

declines might be expected [35] and was also observed in the

simulations of Shirreff [13].

Model simulations with Bmax following directly from Fraser [12]

(Bmax = 0.001044 per day) resulted in epidemic growth that was

slow relative to expectations from empirical HIV epidemic data.

As Bmax in Fraser [12] and Shirreff [13] was the maximum

transmission rate estimated for serodiscordant couples within HIV

cohorts [9], and likely an underestimate of the transmission rate in

the general population [12], we increased Bmax for our standard

runs (e.g., Figures 1 to S7) to Bmax = 0.0025 per day. Increasing

Bmax allowed more accurate recreation of HIV epidemic growth

rates; this did not affect the optimal HIV SPVL, but variation in

Bmax did affect the rate at which SPVL changes in the early

epidemic, with higher Bmax associated with early increases to

higher SPVL (Figure S9). In addition to the viral load progression

rate, the maximum rate of disease progression, and the maximum

transmission rate, we examined the effects of variation in other

model parameters on SPVL trends. However, the time to peak

viremia, the peak viral load in acute infection, the length of acute

infection, the viral load at AIDS, the heritability of SPVL at time

zero, and the mutational variance of SPVL all had minimal

impacts on optimal SPVL.

Community viral load trends
In our simulated epidemics the mean CVL, measured as the

mean or median of log10-transformed VL of all infected (and

sampled) individuals in a population at a given time, changed over

time (Figure 4B). (Mean and median CVL are nearly identical in

our simulations.) Community viral load evolved in association with

SPVL: CVL trends were influenced by the initial mean SPVL of

the founding population, and annual trends in mean/median

CVL were qualitatively similar to annual SPVL trends. Mean

CVL was consistently lower than mean SPVL due to frailty bias

(individuals with low SPVLs were included in CVL estimates more

often than individuals with high SPVLs) (Figure 4B). The variance

around the mean CVL decreased over the first half of the model

runs before stabilizing around 0.3 log10 copies/mL. The

distribution of all viral loads in our simulations was qualitatively

similar to the expected distribution proposed by Miller [22] for a

population sample of ‘‘detectable viral loads from individuals not

on treatment.’’

We assessed the hypothesis that CVL is a heuristic measure of a

population’s overall transmission potential, i.e., that mean CVL is

positively associated with incidence [18–20]. First, for complete

100-year epidemic simulations, with initial mean SPVL values of

3.5, 4.5 and 5.5 log10 copies/mL, we compared yearly values of

mean CVL to annual incidence (infected/susceptible) for each

year (Figure 5A). Over this extended timescale, mean CVL and

annual new infections were significantly correlated only for initial

SPVL = 3.5 (Spearman’s rho = 0.56, P-value = 1.86209; for initial

SPVL = 4.5, rho = 0.11, P-value = 0.293; for initial SPVL = 5.5,

rho = 0.12; P-value = 0.254).

Next, we modified this model-based comparison of CVL and

incidence in order to make comparisons more equivalent to the

10-year timescales of empirical observations of CVL [18–20]. We

created a data set containing all 10-year time periods from the

100-year simulated epidemics, each created with a sliding window

of length 10 years with increment of one year. For each of these

10-year periods, we estimated Spearman’s rho and P-value

between yearly CVL and new infections (Figure 5B). A minority

of 10-year time periods from each epidemic (each initial mean

SPVL) contained significant (P,0.05) associations between yearly

mean CVL and number of infections, and the direction of

association (Spearman’s rho) alternated between positive and

negative over the course of the epidemic (Figure 5B). These

simulations were run in the absence of prevention programs such

as antiretroviral therapy, yet suggest that mean CVL is not

necessarily a strong predictor of HIV transmission potential.

Discussion

We developed a stochastic agent-based HIV evolutionary and

epidemic model that allows for the virulence phenotype, defined

by the set point viral load, to change over time. The model is based

on viral dynamic functions of transmission, disease progression,

and heritability, but retains standard HIV epidemic model output

such as prevalence, incidence and the proportion of transmissions

occurring during different stages of infection. With this model we

addressed questions related to HIV virulence evolution, sampling

biases, and epidemic context, and explored how viral dynamic

parameters affect SPVL trends and epidemic growth. We also

addressed questions about the relationship between community

viral load and incidence, in order to assess the use of community

viral load as a useful public health metric.

Set point viral load trends
Our model shows that HIV virulence, using set point viral load

as a proxy, can adaptively evolve in a host population. This result

is consistent with previous work [12,13], in both evolutionary

processes (adaptation of HIV virulence to optimize transmission

potential) and patterns (optimal SPVL ,4.75 log10 copies/mL). It

is also consistent with studies showing HIV adaptation to the

human population in response to both cellular [36,37] and

humoral [38,39] responses over the course of the epidemic.

To assess the published empirical trends in SPVL, we created

hypothetical null distributions of 20-year linear trends in SPVL

and placed the empirical trends within these distributions. Because

local epidemics with published SPVL trends may have unique

epidemic and evolutionary contexts, particularly the SPVL

(virulence) of the founding viral strain, we created null distribu-

Figure 3. The effect of sampling biases on the estimation of model-based SPVL trends. A. Comparison of distribution of 20-year linear
SPVL trends estimated from unbiased (black lines, initial mean SPVL = 3.5; grey lines, initial mean SPVL = 4.5) and biased (dotted lines, multiple colors
representing multiple sub-sampling levels) data sets. The underlying distributions are produced from years 0 to 100 from simulated epidemics.
Removing subsets (%) of all individuals (a schematic representation of the biased sampling process is shown in Figure S1A) results in a distribution of
linear trends with a median SPVL trend of greater magnitude than the unbiased trends. B. Comparison of distribution of 20-year linear SPVL trends
estimated from unbiased and biased data sets, but with the underlying distributions produced from years 10 to 40 from simulated epidemics.
doi:10.1371/journal.pcbi.1003673.g003
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tions of SPVL trends for simulated epidemics with initial

SPVL means of 3.5, 4.5 and 5.5 log10 copies/mL. Notably, the

simulated and empirical trends are within the same magnitude

(between 20.02 to 0.03 log10 copies/mL/year), which suggests

that adaptive HIV evolution may explain observed trends in HIV

virulence.

What explains the variation among empirical trends? The

placement of the empirical SPVL trends spans the three null

distributions; yet, five (out of eight) lie within the upper distribution

(.0.01 log10 copies/mL/year) of the simulated trends (Figures 2A).

If we narrow our null distribution to years 10 to 40 of simulated

epidemics to better reflect the years 1980 to 2010 of European and

North American subtype B epidemics, the empirical trends of

greater magnitude appear more consistent with model-based

trends; these empirical trends are consistent with these epidemics

being founded by viral populations of low virulence (virulence less

than the optimal level) (Figure 2B). We know from the respective

publications that 4 of these 5 empirical trends belong to HIV

cohorts with initial mean or median SPVLs less than our model-

predicted optimal SPVL (,,4.75): 3.6 [40], 4.19 [41], 4.3 [42],

and 4.4 [43] log10 copies/mL (the first sampling period for these

studies was most often a 2 to 5-year period starting in 1985; this

would correspond to a time approximately between years 15 to 20

in our simulated epidemics). It is essential for future work to

compare simulated adaptive evolution of SPVL to real epidemic

data, using phylodynamic analysis to reconstruct epidemic

histories overlaid with empirical and simulated SPVL trends.

Recreation of cohort-specific sampling biases
While our model results suggest that adaptive evolution may

explain empirical trends, and that epidemic context may explain

variation in empirical trends, we also assessed whether trends and

variation among trends could be the result of cohort-specific

sampling biases. To do so, we recreated two types of simple biases:

improvements in diagnosis that result in increased sampling of

high virulence individuals; or earlier ART initiations that result in

decreased sampling of high virulence individuals. We found that

the empirical SPVL trends are consistent with biased trends

resulting from improved diagnosis of symptomatic cases. Whether

this particular type of sampling bias may explain the empirical

trends—as opposed to being explained by adaptive evolution—

requires study of specific cohort clinical and community practices.

Diagnosis of symptomatic individuals without earlier ART

initiation is not consistent with clinical practice; it is unclear what

the strength of this bias could be over time in HIV cohorts, and it

is likely that both of the potential biases recreated here do exist (to

some relative degree) in every HIV cohort.

We can try to infer, using data from the meta-analysis of

observed SPVL trends [11] and our model output, which potential

type of sampling bias is stronger in the empirical data. The meta-

analysis contained 8 studies of SPVL trends, 6 of which were

prospective cohorts that estimated virulence trends using only

SPVL data from individuals with an estimated date of HIV

infection. These seroconverter cohorts are less vulnerable to sampling

biases, because individuals enter the cohort uninfected. In the

meta-analysis, the summary SPVL trend for all eight cohorts

(including both seroconverter and seroprevalent cohorts) was

0.013 log10 copies/mL/year, 38% lower than the summary trend

of 0.018 seen for the six seroconverter cohorts. A discrepancy

between trend estimates in this direction (decreasing SPVL trend)

is consistent with a sampling bias caused by earlier ART initiation

in the seroprevalent cohorts. (i.e. the lower SPVL trends in the

seroprevalent cohorts could be explained by a sampling bias

caused by earlier ART initiation in those populations). This

hypothesis is consistent with decreasing clinical thresholds for

ART initiation (http://aidsinfo.nih.gov/guidelines/archive/adult-

and-adolescent-guidelines).

Community viral load trends
The use of community viral load as a population-level metric of

HIV transmission potential has been proposed [18–21]. To date

few studies, empirical or modeling, have assessed this proposition

thoroughly [22]; for CVL to be a useful tool for public health

inferences, it must accurately and precisely reflect HIV epidemi-

ological parameters of interest. There are similarities between the

estimation of SPVL and CVL trends—we hypothesize that

understanding the underlying causes or sampling biases related

to SPVL trends can inform our understanding of CVL trends.

With our model, we attempted to evaluate the possible affects of

HIV epidemic and evolutionary context on trends in mean CVL.

Our findings suggest the relationship between CVL and incidence

is not straightforward, yet is strongly modulated by epidemic

context, including: 1) the initial mean SPVL of an epidemic; and 2)

the epidemic stage in which the CVL and incidence relationship is

evaluated. As shown in Figure 5B, significant associations between

CVL and incidence can be identified in simulated epidemics, but

there are both positive and negative associations. In this scenario

CVL is not a robust population-level metric of HIV transmission

potential. However, our estimate of CVL does not include

individuals on ART with depressed viral loads and thus does not

perfectly coincide with real world applications. Nevertheless, our

model shows that attempts to infer transmission potential from

CVL can give highly misleading results, as CVL is influenced by

both historical and evolutionary factors.

Caveats and future additions
The global HIV pandemic is one of multiple separate epidemics

that can be stratified by viral genotype (subtypes or circulating

recombinant forms) [44,45], and by human population (e.g.,

transmission risk group, geography) [46,47]. Our model is not

designed to recapitulate the entire global pandemic, but rather

local epidemics containing a single subtype. The disease progres-

sion function of our model is based on subtype B data; it is possible

that the relationship between SPVL and disease progression is

different across subtypes [48–52], but the disease progression

function likely holds for different risk groups within local subtype B

epidemics (e.g., heterosexual sex, men who have sex with men, or

injecting drug use within subtype B epidemics). The transmission

function of our model is based on serodiscordant heterosexual

couples with counseling [9]; as discussed above, using Bmax from

Fraser [12] that saturates at viral loads results in slower epidemic

growth rates. Elevating this rate to perhaps better reflect

Figure 4. A. Distributions of SPVL trends change as simulated epidemics progress. More extreme SPVL trends occur very early in simulated
epidemics (the first 20 years). Boxplots of linear SPVL trends estimated from 100 randomly sampled 20-year time periods; thick line = median; box
edges = quartiles; whiskers = minimum and maximum trends. B. Trends in mean community viral load and mean set point viral load are
related. Mean community viral load can evolve over time in the absence of HIV prevention programs. Community viral loads are estimated for each
day using viral load measurements from each infected and alive individual, except for those individuals who have been infected less than 45 days
(acute infection lasts for 3 months days in these simulations).
doi:10.1371/journal.pcbi.1003673.g004
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transmission rates in the general population results in more

realistic growth rates but a similar level of optimal virulence.

Additionally, SPVL is known to vary among hosts due to host

genetics (HLA type) [53]; our model does not distinguish among

individuals in their susceptibility to infection or host effect on

SPVL (which can influence transmission and disease progression).

Nor does our model allow for variation within individuals in viral

reproductive rate; i.e., in our model all viral lineages within a single

person are assumed to contain the same viral genetic factors for

viral reproduction and SPVL/virulence. When this is not the case,

and virions within a host are allowed to vary in reproductive rate,

it is theoretically possible that different evolutionary trends in

relation to optimal SPVL may be seen [54].

Our model includes simple demographic and sexual mixing

terms, which we believe are sufficient to address the issues explored

in this paper. A notable result from our model epidemics was the

relatively low frequency of transmissions from ‘‘early HIV infection’’

relative to other published estimates [55]. For our standard epidemic

runs, ,10% to 25% of infections took place while the source partner

was in ‘‘early HIV infection’’ (with ‘‘early HIV infection defined as

either the duration of acute infection or the first year of infection,

respectively). Further work will clarify whether our low estimates

suggest that behavioral or network parameters (rather than strictly

viral dynamics, as included in our model) are the likely source of the

high contribution of early HIV infection to onward transmission that

is reported elsewhere. An additional possible cause of the high

reported frequencies of transmission in early HIV infection are viral

genetic factors associated with increased transmissibility in early

infection [56–59]; our model does not provide viruses with stage-

specific transmission probabilities.

We plan to extend our model and analysis by comparing

virulence trends among populations with more complex sexual

mixing patterns, and among populations with varying sample

fractions at different stages of an ART treatment cascade. We

hope this epidemic modeling approach based on viral dynamics

will be a useful tool in the prediction or evaluation of potential

outcomes of prevention programs.

Supporting Information

Figure S1 Recreation of simple SPVL sampling biases.
The schematic illustrates two types of potential sampling biases, each

reconstructed within a 20-year period (randomly-selected from a larger

100-year epidemic). Each 20-year period is divided into two 10-year

periods, with the second 10-year period sub-sampled to recreate a

sampling bias that may occur as an HIV epidemic progresses within a

clinic, cohort, region or country. The blue region illustrates a sampling

bias caused by improved diagnosis of symptomatic cases in the 2nd 10-

year period (symptomatic cases are associated with higher viral loads;

SPVLs.5.0 log10 copies/mL). In this case, one will not sample a

greater portion of individuals with low set point viral loads as the

epidemic progresses, which we simulate by removing a portion of the

individuals with SPVL,5.0 log10 copies/mL in the 2nd 10-year period

(light blue circles). This would lead to an higher estimated rate of SPVL

change over time. The green region illustrates a sampling bias caused

by increased rates of earlier ART initiation to symptomatic individuals

in the 2nd 10-year period. In this case there are fewer people with

higher SPVLs to sample, which we simulate by removing a portion of

the individuals with SPVL.5.0 log10 copies/mL in the 2nd 10-year

period (light green circles). This would lead to an lower estimated rate

of SPVL change over time.

(TIF)

Figure S2 Kaplan-Meier survival curves for quartiles of
SPVL.

(TIF)

Figure S3 Heritability of SPVL between source and
recipient transmission pairs. Linear regression coefficients of

donor and recipient SPVLs estimated for each year of a 100-year

simulated epidemic (initial mean SPVL = 4.5 and initial user-

defined heritability parameter h2 = 0.5 (Equation 6)). Estimates of

SPVL heritability decrease over the course of the epidemic, as

expected with decreasing variance in SPVL. Inset plot is recipient

SPVL by source SPVL at year 40 of a simulated epidemic.

(TIF)

Figure S4 Example of set point viral load change over
time. Initial (founder) set point viral load is 4.5 log10 copies/mL.

Smoothed lined represents mean SPVL over time, using a locally

weighted polynomial regression curve (Lowess fit = 0.1).

(TIF)

Figure S5 Frequency of transmission by stage of
infection, by epidemic stage. Frequency of transmissions

that occur when the transmitter is in early HIV infection, with

early infection defined as either acute infection (3 months in our

standard model runs) or the first year after infection.

(TIF)

Figure S6 Confidence intervals of the empirical SPVL
trends. A. Confidence intervals are placed on top of model-

produced null distributions produced using years 0 to 100 of the

simulated epidemics. Shown are null distributions from multiple

runs with initial population mean SPVLs of 3.5, 4.5 and 5.5 log10

copies/mL (see Figure 2A). B. Confidence intervals are placed on

top of model-produced null distributions produced using years 10

to 40 of the simulated epidemics. Shown are null distributions

from multiple runs with initial population mean SPVLs of 3.5, 4.5

and 5.5 log10 copies/mL (see Figure 2B).

(TIF)

Figure S7 Viral load increase rate and epidemic growth
and set point change. A. Infected individuals and B. Mean set

point viral load over time. Variation in the annual rate of viral

load increase (natural log) show only minor effects on epidemic

growth or evolutionarily optimal set point viral load.

(TIF)

Figure S8 Increased disease progression rates result in
increased epidemic growth and decreased optimal set
point viral load. A. Infected individuals and B. Mean set point

viral load over time. Variation in the maximum rate of disease

progression (Dmax from Equation 2) from initial infection to AIDS

significantly affects epidemic growth and evolutionarily optimal set

point viral load.

(TIF)

Figure 5. Mean community viral load is not linearly or consistently associated with annual incidence. A. Plot of yearly estimates of
mean community viral load versus annual incidence, for 100 years of a simulated epidemic. B. Distributions of P-values for Spearman correlations
between mean community viral load and incidence, by year, for 10-year periods from the same 100 year epidemic, from a sliding window of 10 with
one year increments. Shown are a plot of CVL and incidence for a 100-year simulated epidemic, Spearman correlation coefficients between CVL and
incidence for each overlapping 10-year period, and P-value for each Spearman correlation test. Significant associations between CVL and incidence
can be positive or negative, depending on epidemic context.
doi:10.1371/journal.pcbi.1003673.g005
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Figure S9 Increased viral transmission rates result in
increased epidemic growth but similar set point dynam-
ics. A. Infected individuals and B. Mean set point viral load over

time. Variation in the annual rate of transmission (Bmax in

Equation 3) significantly affects epidemic growth (due to changes

in the number of susceptible individuals), but does not affect the

evolutionarily optimal set point viral load (although it changes the

shape of SPVL change).

(TIF)

Text S1 Additional detailed description of the model.
(DOCX)
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