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The mammalian gut is inhabited by a massive and complicated microbial community, in which the host
achieves a stable symbiotic environment through the interdependence, coordination, reciprocal con-
straints and participation in an immune response. The interaction between the host gut and the
microbiota is essential for maintaining and achieving the homeostasis of the organism. Consequently, gut
homeostasis is pivotal in safeguarding the growth and development and potential productive perfor-
mance of the host. As metabolites of microorganisms, short chain fatty acids are not only the preferred
energy metabolic feedstock for host intestinal epithelial cells, but also exert vital effects on antioxidants
and the regulation of intestinal community homeostasis. Herein, we summarize the effects of intestinal
microorganisms on the host gut and the mechanisms of action of short chain fatty acids on the four
intestinal barriers of the organism, which will shed light on the manipulation of the intestinal com-
munity to achieve precise nutrition for specific individuals and provide a novel perspective for the
prevention and treatment of diseases.

© 2022 Chinese Association of Animal Science and Veterinary Medicine. Publishing services by
Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Undoubtedly, as with all multicellular organisms, humans and
microorganisms coexist. The human body (skin, urinary system,
reproductive system, gastrointestinal system) harbors plenty of
bacteria, fungi, viruses, and archaea. Microorganisms living in the
adult gut include bacteria, fungi, protozoa, archaea and some vi-
ruses, numbering over 10 trillion, more than 10 times the number
of cells in the adult body (Felizardo et al., 2019). The total genome is
approximately 150 times larger than the human genome, with
bacteria (anaerobes bacteria) making up the majority, and colons
contain 70% of the body's microorganisms (Qiao et al., 2014). With
it being such a massive organ, the gut affords a place for
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microorganisms to colonize. Over a long period of co-evolution, gut
microbes and hosts have equally selected each other, establishing a
mutually beneficial relationship. On the one hand, the host pro-
vides a stable and nutrient-rich living environment for microbes
and enables selective colonization for some microbes; on the other
hand, these microbes and their metabolites not only affect the
development of the host mucosal immune system, angiogenesis,
repair, and renewal of the intestinal epithelium as well as main-
tenance of intestinal function, but also impact the expression of
host genes and the regulation of host lipid metabolism (Tremaroli
and B€ackhed 2012; Flint et al., 2012). Short chain fatty acids
(SCFA), as a bacterial fermentation terminal product with multiple
metabolic features, are crucial energy sources for the intestinal
microbiota and host intestinal epithelium cells (IEC), which could
maintain intestinal acid-base balance, inhibit the growth of
harmful pathogens, modulate the host intestinal immunity, and
thus reduce inflammatory responses. SCFA not only serve in the
intestine where commensal bacteria reside, but also have a critical
role in improving the barrier capacity of the organism's intestine
and resisting invasion by foreign pathogens (Sadler et al., 2020).

This paper reviews the metabolic mechanism of SCFA as a mi-
crobial metabolite with multiple physiological functions and the
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).
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mechanism of action on the four intestinal barriers (mechanical
barrier, microbial barrier, chemical barrier and immune barrier),
especially in shaping and improving the processes of intestinal
microbiota and IEC through G-protein coupled receptors (GPCR)
mediated immune pathways and histone deacetylase inhibitor
(HDACI), which provides a theoretical basis for further exploration
and development of precise nutrition for specific individuals and
provide a novel perspective for the prevention and treatment of
diseases (colitis, type II diabetes, obesity, etc).

2. Composition of intestinal microorganisms

The human intestine is a diverse ecosystem, accommodating
trillions of microbial species. The human intestine contains about
1014 bacteria with more than 500 species (Sender et al., 2016),
including about 105 microorganisms in the upper region of the
small intestine, approximately 103 to 107 microorganisms in the
ileum, and beyond 1012 microorganisms in the colon (Turnbaugh
et al., 2007). These commensal bacteria form a complex trophic
network that supports their survival and shapes the physiological
environment and immune response of the intestinal system. In
recent years, scholars have discovered that human intestinal mi-
crobes contain about 500 to 1,000 species of bacteria and about
two million genes with 30 to 40 intestinal species accounting for
more than 99% of the total bacterial population (Lynch and
Pedersen, 2016).

The dominant phyla in the human intestine are Firmicutes and
Bacteroidetes (more than 90%), but also contain the Proteobacteria,
Actinobacteria, Verrucomicrobia, Fusobacteria and Cynobacteria
with lower proportions (Adak and Khan, 2019). Healthy adult and
infant intestinal microbes are relatively stable at the phyla level
compared to the older, while specific microbiota at genus and
species levels change depending on geography, environment, diet
and age (Lynch and Pedersen, 2016; Adak and Khan, 2019) (Fig. 1).
The composition of gut microbes varies widely among individuals,
but similarities exist in the dominant bacteria. Arumugam et al.
(2011) first proposed the definition of enterotype. Wu et al.
(2011) found from a study of microbiota in healthy volunteers
Fig. 1. Composition and functions of intestinal microorganisms. With the advanced study
including involvement in neuroimmunomodulation, organism metabolism (lipid and bile a
croorganisms could modulate receptors and make a substantial contribution to the developm
by changes in diet, environment, and nutrient composition. Source: Ch�enard et al., (2020); G
Zeng et al., (2019); Pan et al., (2018); Biesalski (2016); Huang et al., (2019); Mu et al., (2015
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that enterotypes were closely linked to long-term diet and could be
divided into 2 enterotypes, protein and animal fat (Bacteroides) and
carbohydrates (Prevotella). Since the development of novel
sequencing technologies that allow for more accurate analysis, the
gut microbiome research community has generally questioned the
traditional concept of gut phenotype and its study, emphasizing the
necessity of redefining enterotypes as they may be continuous
rather than discrete (Cheng and Ning, 2019). However, the sup-
porters have suggested that the enterotypes are valid in describing
the structure of the intestinal microbial community and have po-
tential application in guiding clinical practice. Therefore, they have
advocated the rational use of the enterotype concept to harmonize
the different perspectives (Costea et al., 2017). Also, the microbial
composition of the gut is extremely complex, which is influenced
by numerous factors. According to recent studies, genotype, diet,
age, disease, and lifestyle could affect the diversity of the micro-
biota (Conlon and Bird, 2015; Boulang�e et al., 2016; Yatsunenko
et al., 2012; Ob�on-Santacana et al., 2019). Among the above-
mentioned factors affecting the microbiota, dietary factors play a
decisive role, which is also verified by Ocvirk et al. (2020) and;
O'Keefe et al. (2015). Besides, the article of Chewapreecha (2014)
titled “Your gut microbiota are what you eat” detailed strong evi-
dence of the close relationship between microbiota and diet. The
intestinal microbes affect almost every organ system of the host
and are interdependent and co-evolve with the host. The high
adaptability of microorganisms to changes in host lifestyles illus-
trates that human behaviour impacts not only the exterior envi-
ronment, but also the interior of our environment (Nagpal et al.,
2016; Weinstock, 2012).

2.1. Major role of microbiota in the intestine

Intestinal microbes are interconnected with host metabolism
and perform a central role in the intestine (Fig. 1). Numerous
scholars have documented the central role of microbiota in
participating in immune modulation (Ch�enard et al., 2020; Gao
et al., 2018), modulating the metabolism of lipids (Dentin et al.,
2004; Sheng et al., 2018; Schoeler and Caesar, 2019) and bile
of gut microorganisms, scholars have observed diverse roles of gut microorganisms,
cids), the synthesis of DNA and vitamins. Moreover, the fermentation products of mi-
ent of clinical drugs. However, the colonization of gut microbes is primarily influenced
ao et al., (2018); Filosa et al., (2018); Schoeler and Caesar (2019); Molinaro et al., 2018;
); Li et al., (2015); Feng et al., (2020); Conlon et al., (2015); Strandwitz (2018).
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acids (Rowland et al., 2017; Molinaro et al., 2018; Zeng et al., 2019)
as well as neuromodulation (Filosa et al., 2018). In particular, the
microbiota plays a pivotal role in affecting the intestinal barrier
function of the organism.

2.2. Intestinal microorganisms and mucous layer

The surface of IEC is coated with a mucus layer, which is a
physical barrier on the surface of epithelial cells and the first
defence line of the mechanical barrier for the intestinal mucosa.
The intestinal mucus layer is primarily composed of mucin (MUC)
secreted by goblet cells, which is highly glycosylated and poly-
merized. Still, its structural patterns in the small intestine and colon
are quite different. The mucus layer on the surface of the small
intestine is single-layered and discontinuous and does not fully
cover the surface of the epithelial cells of the small intestine. The
mucus layer of the colon is classified into two layers; the outer layer
is thinner and looser in structure, which is accessible to bacteria,
and the inner layer is thicker and denser in construction, which is
hardly penetrated by bacteria (Johansson et al., 2008). Scholars
have shown that while colon bacteria are not commonly in direct
contact with IEC, alterations in dietary structure (especially dietary
fibre deficiency) can contribute to dysbiosis of intestinal microor-
ganisms and intestinal inflammation (Colitis) (O'Keefe, 2019; Ob�on-
Santacana et al., 2019), causing themucus layer to thin or disappear,
so then bacteria or their metabolites can cross the mucus layer on
the surface of the intestinal mucosa and adhere to IEC, directly or
indirectly inducing damage to IEC, resulting in a decreased me-
chanical barrier function of the intestinal mucosa and alternation in
mucosal biomarkers of cancer risk (O'Keefe et al., 2015; Souza et al.,
2005). Johansson et al. (2014) demonstrated that peoplewith active
ulcerative colitis have a penetrable inner mucus layer, which cor-
responds to a mouse model of MUC2 deficiency, and have bacteria
that is in contact with the epithelium directly, which then pro-
gresses to colitis. Therefore, people with active ulcerative colitis are
probably linked with a deficiency of MUC2 protein. Interestingly,
the study revealed that in the intestine of mice with a higher
abundance of Erysipelotrichi, the bacteria were unable to penetrate
the mucus and enter the mucosal layer, while in the intestine of
mice with a higher abundance of Proteobacteria and TM7, bacterial
translocation occurred frequently, indicating that intestinal bacte-
ria may directly influence the production and quality of intestinal
mucus (Jakobsson et al., 2014).

In addition, the diversity of bacteria and their metabolites also
affect the formation of the mucus layer and undermine the mucus
layer junction (Souza et al., 2005). A study revealed that sulfide
produced by sulfate-reducing bacteria dissolved the MUC polymer
network and thinned the mucus layer, which could be penetrated
by the MUC-degrading bacterium Akkermansia municiphila and
grew in it further to destroy the network structure of the mucus
layer (Ijssennagger et al., 2015). The toxins released by Bacteriodes
fragilis have a protein hydrolase-like effect, degrading MUC pro-
teins and damaging the mucus layer structure (Rhee et al., 2009).
Recently, Birchenough et al. (2016) identified a type of “sentinel”
goblet cells located at the top of the colonic gland that can be
perceived by Toll-like receptors on these cells when bacteria or
their metabolites cross the mucus layer, triggering other goblet
cells to discharge MUC2 to flush the invading bacteria and their
metabolites back into the intestinal lumen and secrete abundant
mucus to protect the IEC. The Paneth cells supply a niche for small
intestinal stem cells in the intestinal crypts (Sato et al., 2010), which
contain a multitude of endoplasmic reticulum and Golgi complexes
with powerful protein secretion functions. The major proteins
secreted by Paneth cells are bactericidal peptides such as a-
defensins, lysozyme, secretory group IIA phospholipase A2,
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regenerating insulin-derived proteins regenerating islet-derived 3b
(REG3b) and REG3g, and angiogenin 4 (Bevins and Salzman, 2011).
Bacterial metabolites like lipopolysaccharides, cytosolic acids,
cytosolic acyl dipeptides, and lipid A are capable of stimulating the
secretion of defensins from Paneth cells in the small intestine,
which resist the invasion of intestinal microorganisms and exert a
protective effect on IEC (Ayabe et al., 2000; Johansson and Hansson,
2011). The abnormal function of Paneth cells, like a mutation of the
nucleotide-binding oligomerization domain 2 (Nod2) gene and
abnormal function of the unfolded protein response (UPR) tran-
scription factor X-box-binding protein 1 (XBP-1), causes the
weakening of bacterial stimulation of Paneth cells, reduces the
production of MUC and antibacterial substances, and a vast popu-
lation of bacteria invades the epithelial cells and breaks the intes-
tinal mucosal barrier (Kobayashi et al., 2005; Kaser et al., 2008).

2.3. Intestinal microorganisms and IEC

The IEC are the principal structural basis of the barrier of the in-
testinal mucosa. After the intestinal microorganisms and their toxic
metabolites cross themucus layer, theyadheredirectly to the IEC. The
findings of an animal experiment demonstrated that Escherichia coli
CBL2 and Shigella CBD8 showed extremely strong adhesion to IEC,
mediating intestinalMUC secretion and tight junctiondamage,while
Bifidobacteriumbifidum IATA-ES2 promoted the production of che-
mokines and metalloproteinase inhibitors, contributing to the pro-
tection of the intestinal mucosa (Cinova et al., 2011). Moreover, the
secretory immunoglobulin A (sIgA), which is co-assembled by IgA,
synthesized by plasma cells and secreted by IEC, could recognize the
intestinal microorganisms on the surface of the intestinal mucosa,
especially gram-negative bacilli, wrap the bacteria and close the
binding site specific for them to the IEC, inhibiting their adherence to
the IEC. Meanwhile, it could also identify and bind the toxins in the
intestinal tract, forming immune complexes, and eventually, being
swallowed and removed by phagocytes (Corth�esy, 2013). The colonic
epithelial cells specifically express the Ly6/PLAURdomain containing
8 (Lypd8)protein, which in combinationwith the flagellum of Gram-
negative bacteria inhibits bacterial motility, preventing the bacteria
from entering the interior of the mucus layer, reducing their
attachment to the epithelial cells and serving to protect the intestinal
mucosal barrier. The impairments in slgA and Lypd8 protein
expression due to various factors will eventually increase the adhe-
sion of bacteria to the intestinal epithelium (Okumura et al., 2016).
The bacteria could be detected directly by the corresponding re-
ceptors on the IEC membrane and cytosolicized into endocytosis, or
through theirmetabolites activating cellular signallingpathways that
trigger cytoskeletal rearrangement to encapsulate the bacteria for
endocytosis. For instance,Yersiniahasa class ofproteins that combine
with integrins on the IEC membrane to cause cytoskeletal actin
rearrangement by activating tyrosine kinase, and the bacteria are
cytosed into the cell. Studies have revealed that toxin A produced by
Clostridium difficile deacetylated tubulin proteins, disrupting the
microtubular structure of IEC and affecting the integrity of the in-
testinal mucosal barrier. Simultaneously, potassium acetate inter-
vention reduced the toxin A-mediated cytotoxic effect and improved
the damaged intestinal mucosal barrier function (Lu et al., 2016).

Additionally, IEC are mainly differentiated from stem cells
located in the intestinal mucosal crypts, and all IEC are renewed
and shed once in approximately 2 to 5 d. The stem cells in the in-
testinal mucosal crypts continuously replenish the shed epithelial
cells through proliferation and differentiation. Some bacteria and
their virulent metabolites could stimulate the IEC to proliferate and
shed rapidly, thereby destroying the integrity of the intestinal
mucosal barrier (Sellin et al., 2009). It has been discovered that IEC
infected by bacteria could accelerate the proliferation and shedding
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of IEC regulated by the Wnt/b catena signalling pathway, which
indicates that IEC may act as self-protectors by shedding. In
contrast, several bacteria inhibit the proliferation and shedding of
IEC, depriving them of shedding as a form of self-protection (Sellin
et al., 2014), such as Shigella effector molecule lpaB, which induces
the proliferation process of IEC to freeze in the G2/M phase (Iwai
et al., 2007). Also, Non-LEE effector B (NleB) is a protein produced
by E. coli that directly targets the death receptor signalling complex
and associates with the “death domain” of various DD-containing
proteins including tumor necrosis factor (TNF) receptor, Fas cell
surface death receptor (FAS), receptor-interacting protein kinase
(RIPKI), tumor necrosis factor receptor type 1-associated death
domain (TRADD) and Fas-associated via death domain (FADD), ul-
timately arresting the IEC in the G1/2 cell cycle and retarding cell
proliferation, and causing the disruption of the intestinal barrier
when these bacteria are combined with the IEC to reduce the
protective effect of their proliferation and shedding (Li et al., 2013a;
Morikawa et al., 2010).

2.4. Intestinal microorganisms and tight junction

The tight junction is the major intercellular junction situated at
the apical part of the epithelial cells and surrounds the cells in a
hoop-like manner, tightly joining adjacent epithelial cells
together, preventing the passage of toxic macromolecules and
microorganisms, and protecting the intestinal mucosal barrier.
Tight junction could be classified into structural and functional
proteins, the main structural proteins are occludin, claudin and
junctional adhesion molecule (JAM) and the primary functional
proteins are zonula occludens-1 (ZO-1), ZO-2, ZO-3, Cingulin and
Zonulin (Heinemann and Schuetz, 2019). The secretion system is a
transport system that transfers toxic proteins synthesized by
bacteria outside the bacteria or inside the host cells. In this way,
enterobacteria transmit the virulent proteins generated by them
to the IEC, affecting the expression and localization of the tight
junction proteins. For example, E. coli transports NleA proteins
into the cell by the type 3 secretion (T3SS) system leading to
disruption of tight junction proteins (Thanabalasuriar et al., 2013).
Similarly, Shigella flexner interferes with the expression of the
tight junction proteins ZO-1, Clini, and occludin via T3SS. Studies
have shown that Helicobacter pylori delivered effector proteins
encoded by cytotoxicity-associated gene A to IEC through the type
4 secretion system, which inhibited ERK and protease-activated
receptor-1 signalling pathways and interfered with the expres-
sion and localization of tight junction (Sakaguchi et al., 2002;
Gerlach and Hensel, 2007). Also, some enzymes or toxic proteins,
such as hemagglutinin/protease and ZO toxin, which activate
intracellular signalling pathways and lead to mislocalization of
tight junction proteins, are secreted directly into the extracellular
gaps by enterobacteria, disrupting the intestinal mucosal barrier
(Di Pierro et al., 2001; Schmidt et al., 2007).

Ethanol and acetaldehyde are importantmetabolites of intestinal
bacteria. Dietary glycans are fermented by intestinal bacteria to
produce ethanol, which is converted to acetaldehyde by bacteria-
produced ethanol dehydrogenase (Ferreira et al., 2012). An in vitro
study stimulated caco2 cells with low concentrations of 0.2% ethanol
and observed that upregulation of CLOCK and period circadian
regulator 2 (PER2) protein expression was accompanied by an in-
crease in intestinal barrier permeability, while specific silencing of
CLOCK and PER2 significantly inhibited ethanol-induced intestinal
barrier hyper-permeability (Swanson et al., 2011). In contrast, acet-
aldehyde was shown to have an inhibitory effect on protein tyrosine
phosphatase activity, while decreased tyrosine phosphorylation
levels of ZO-1 and adhesion protein resulted in downregulation and
redistribution of tight junctionprotein expression (Atkinson andRao,
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2001; Sheth et al., 2007) and detachment from the cytoskeleton
(Suzuki et al., 2008). Additionally, pathogenic bacteria or bacterial
metabolites like indole-3-acetic acid (Hendrikx et al., 2018) and
indole-3-propionic acid (Venkatesh et al., 2014) stimulate inflam-
matory cells to produce numerous inflammatory factors, such as
interferon-g (IFN-g) and TNF-a, which both detach tight junction
proteins from the cytoskeleton of intestinal epithelial cells via MLCK
and Rho associated coiled-coil containing protein kinase 1 (ROCK)-
mediated pathways and downregulate the expression of tight junc-
tion proteins (Utech et al., 2005; Zeissig et al., 2007).

Certain tight junctions which are expressed by IEC possess the
role of bacterial toxin receptors. Claudin3 and claudin4 are the first
identified enterotoxin (CPE) receptors for Clostridium perfringens
enterotoxin, and when bound to claudin3 and claudin4, CPE dis-
engages from tightly linked protein chains, disrupting the integrity
of the intestinal mucosal mechanical barrier (Katahira et al., 1997).
The binding of CPE to claudin family proteins has also been shown
to exert cytotoxic and perforin effects (Veshnyakova et al., 2012).
C. difficile transferase (CDT) induces adhesion of C. difficile to cells
and leads to cytoskeletal collapse and eventual cell death. The
lipolytic-stimulated lipoprotein receptor LSR is thought to be a
recognition receptor for CDT (Kuehne et al., 2014), and LSR was
shown to be a tight junction-associated protein present at the
junction of the three epithelial cells (Masuda et al., 2011;
Papatheodorou et al., 2011). Of note, recent studies have identified
that the side effects of some drugs on the intestine are also medi-
ated through microbial modulation. As the long-term use of the
gastroenteritis treatment drug colistin damaged the intestinal
barrier, in the conventional mouse model, colistin caused signifi-
cant impairment of the intestinal mucosa and tight junction pro-
teins while decreasing Enterobacter spp. and increasing
Enterococcus spp. but this phenomenon was not observed in germ-
free (GF) mice (Wang et al., 2013). In summary, intestinal micro-
biota and their metabolites modulate intestinal mucus, tight junc-
tion proteins and IEC, which in turn affect the functional
homeostasis of the intestinal barrier.

2.5. Microbiota imbalance and organism disease

Over recent decades, researchers have conducted extensive
studies on the relationship between gut microbes and intestinal
diseases of the organism (Johansson et al., 2014; O'Keefe et al.,
2019; Ocvirk et al., 2020). Gut microbes as environmental factors
impact host metabolism and are associated with the development
of metabolic diseases such as obesity, fatty liver and type II diabetes
(Yamashiro, 2017; Sommer and B€ackhed, 2013; Adak and Khan,
2019). Previous studies combined with GF animal models and
colony transplantation techniques have revealed that gut microbes
act as important regulators of host metabolism (Dalile et al., 2019;
Velagapudi et al., 2010). B€ackhed et al. (2004) used a transgenic GF
mouse model to find a direct link between gut microbes and host
lipid metabolism. GF mice transplanted with gut microbes showed
a 57% increase in total lipid content and a 61% increase in epidid-
ymal fat pad weight. Microbial colonization increased hepatic lipid
deposition and upregulated the expression of key genes for hepatic
lipid de novo synthesis in GF mice. Interestingly, GF mice colonized
by obese individuals showed higher body fat deposition and energy
uptake than GF mice colonized by normal individuals (Turnbaugh
et al., 2006). GF mice have been reported to resist high-fat diet-
induced obesity, possibly due to their higher fatty acid oxidation
capacity in the liver and muscles (B€ackhed et al., 2007). Similarly,
insulin sensitivity and glucose tolerance were enhanced in GF mice
compared to conventionally fed mice (Rabot et al., 2010). Moreover,
specific gut microbial deficiency (mainly Streptococcaceae, lacto-
bacilli, Bacteroidetes, and Clostridium-other) increased glycogen
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content and enhanced insulin sensitivity in the liver of mice (Ley
et al., 2005; Turnbaugh et al., 2006; Chuang et al., 2012). The
above studies suggest that the systemic and tissue-specific gluco-
lipid metabolism of the host may be determined by its gut micro-
bial structure. Recent in vivo studies have revealed that microbial
metabolites and related signalling pathways play an important role
in mediating the metabolism of gut microbes on their hosts
(Krajmalnik-Brown et al., 2012).

With in-depth studies, the connection between microbiota
species and host metabolism has been unveiled. This connection is
illustrated by the enhancing abundance of Firmicutes, the
decreased abundance of Bacteroidetes as well as the increased ratio
of Firmicutes to Bacteroidetes which evidenced that alterations in
intestinal microbiota composition were associated with body mass
index (Sutoyo et al., 2020; Fadieienko et al., 2021). However,
inconsistent reports exist (Schwiertz et al., 2010; Duncan et al.,
2008), which is probably linked with the difference in test sub-
jects and test environment samples. Studies have identified that
Acfinobacteria and Tenericutes are positively associated with liver
lipid content. The Coriobacteriaceae in the Acfinobacteria are
extremely associatedwith liver fat, glucose and glycogen levels, and
the metabolism of heterologous substances (Claus et al., 2011).
Research also confirmed that the genera Barnesiella and Roseburia
are correlated with hepatic fat content and lipid synthesis-related
gene expression (Le Roy et al., 2013). Research in humans and ro-
dents has shown that Akkermansia muciniphila abundance is
negatively correlated with overweight, obesity and diabetes
(Everard et al., 2013; Karlsson et al., 2012). This bacterium plays a
vital role in fat deposition, inflammation and glucose metabolism
(Lukovac et al., 2014; Derrien et al., 2004). Faecalibacterium praus-
nitzii is less abundant in the guts of obese individuals and type II
diabetic patients (Karlsson et al., 2012; Remely et al., 2014), and
F. prausnitzii was found to reduce intestinal permeability and
enhance insulin sensitivity in obese mice (Martín et al., 2015). In
addition, studies have indicated that the mechanisms of microbiota
involved in the pathogenesis of type II diabetes may be associated
with various factors, such as low chronic inflammation in the body
(Donath et al., 2009), production of SCFA (Breton et al., 2016), and
activation of nuclear receptor signalling pathways (Li et al., 2013b).
Therefore, modifying the gut microbiological environment by
intervening in the microbiota holds promise as a new tool in the
prevention and treatment of type II diabetes and obesity.
3. SCFA overview

SCFA are fatty acids consisting of six carbon or less, such as ac-
etate, propionate, isobutyrate, butyrate, isovalerate, valerate, iso-
caproate and caproate, which are mainly generated by anaerobic
bacteria in the colon fermenting starch, starch-like, and non-starch
polysaccharides (NSP, the main component of dietary fibre), even
though SCFA can be generated naturally by the host metabolic
pathway, particularly in the liver (Tan et al., 2014). Acetate, propi-
onate and butyrate are the major SCFA, accounting for approxi-
mately 90% to 95% of SCFA in a molar ratio of 60:25:15, respectively
(Alexander et al., 2019; Tazoe et al., 2008). Precisely as no unique
bacteria hydrolyze all nutrient substrates, no unique bacterial
fermentation of carbohydrates generates all three SCFA. Therefore,
the type and distribution of SCFA in the gut reflect the metabolic
collaboration of different microbial types. Studies in recent years
have implicated the type and structure of the diet (Ob�on-Santacana
et al., 2019; O'Keefe et al., 2015; O'Keefe et al., 2019), the diversity
and number of host gut microorganisms (Ocvirk et al., 2020), and
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the timing of nutrients passage through the intestine, as factors
affecting the production of SCFA and its related metabolic disease
(Alexander et al., 2019).

3.1. The production of SCFA

The acetate is a product of fermentation by various bacteria
and is manufactured from pyruvate by the acetyl-coenzyme A or
Wood-Ljungdahl pathway (Ragsdale and Pierce, 2008). Propio-
nate is the primary metabolite of Bacteroidetes fermentation and
is generated from succinate conversion to methylmalonyl-CoA by
the succinate pathway or produced from acrylate via the acrylate
pathway using lactate as a precursor (Hetzel et al., 2003) (Fig. 2).
Also, deoxyhexose like fucose and rhamnose can be used as a
substrate for the synthesis of propionic acid via the propanediol
pathway (Koh et al., 2016; Scott et al., 2006). Butyrate, the primary
metabolite of the Firmicutes, was formed by the condensation of 2
acetyl-CoA molecules, then reduced to butyryl-CoA, which was
converted to butyric acid by phosphotransferase and butyrate
kinase (Ait-Belgnaoui et al., 2014; Ragsdale and Pierce, 2008).
Butyryl-CoA was also convertible to butyrate via the acetyl-CoA
transferase pathway, and some microorganisms in the intestine
used both lactate and acetate to synthesize butyrate (Duncan
et al., 2002), thus preventing lactate accumulation and stabiliz-
ing the intestinal environment. Butyrate could also be synthesized
from proteins using the lysine pathway, which further indicates
that microorganisms in the intestine could adapt to nutrient
conversion and thus maintain the synthesis of SCFA (Louis et al.,
2004; Vital et al., 2014).

3.2. The absorption and transportation of SCFA

The absorption of SCFA generated in the intestine is carried out
by diffusion of lipid-soluble forms, SCFA/HCO3

- ion exchange and
active transport by a transporter carrier (Ritzhaupt et al., 1998).
There are two modes of absorption by transport carriers: 1) via
sodium-coupled monocarboxylate transport proteins (SMCT1,
encoded by solute carrier family 5, member 8 [SLC5A8]), and 2) via
a low-affinity monocarboxylate transporter protein-coupled to Hþ

(MCT1, encoded by SLC16A1). Butyric acid is utilized primarily by
colonic epithelial cells as an energy substance, while other
absorbed SCFA flow into the portal vein (Goncalves et al., 2011).
Propionic acid is metabolized in the liver and at low concentra-
tions in the peripheral circulation, while acetic acid is at high
concentrations in the peripheral circulation. A significant
expression of MCT1 and SMCT1 was observed in the colons of
humans, mice and rats, respectively, and the expression levels
were higher than those in the ileum (Iwanaga et al., 2006). For
ruminants, a result of quantitative Western-blot analysis revealed
that the levels of MCT1 protein were superior in the proximal
colon than in the small intestine (Kirat et al., 2006). SMCT1, on the
other hand, was detected principally in the proximal and distal
colon and the parietal membrane of the ileal intestinal epithe-
lium. Moreover, GF mice could improve the reduced SMCT1
expression in the colon and ileum through bacterial recoloniza-
tion of the intestine (Cresci et al., 2010).

The expression of MCT1, a significant transporter protein for
butyric acid uptake in IEC, was induced by butyric acid and car-
bohydrates. Studies have revealed that the expression levels of both
the MCT1 gene and its protein increased with increasing sodium
butyrate concentration and culture time when different concen-
trations of sodium butyratewere incorporated into cultured human



Fig. 2. The synthesis pathways of short-chain fatty acids (SCFA) and the primary role in carbohydrate and lipid metabolism. The microbial transformation of dietary fiber in the
hindgut leads to the synthesis of the SCFA (mainly acetate, propionate and butyrate). The acetate is produced from pyruvate by the acetyl-coenzyme A (CoA) or W-L pathway.
Propionate is formed from deoxyhexose via the propanediol pathway or from phosphoenolpyruvate via the succinate pathway or the acrylate pathway. Butyric acid is produced by
synthesizing two molecules of acetyl-CoA to yield acetyl-CoA, then converted to butyryl-CoA by b-hydroxybutyryl-CoA and crotonyl-CoA. PST ¼ phosphotransacetylase;
AK ¼ acetokinase; W-L ¼Wood-Ljungdahl; ME-COA ¼ methylmalonyl-CoA; PO ¼ pyruvic oxidase; PT ¼ phosphotransferase; BK ¼ butyrate kinase; TCA ¼ tricarboxylic acid cycle;
MVA ¼ mevalonic acid; b-HBA ¼ b-hydroxybutyric acid; HMG-CoA ¼ b-hydroxy-b-methylglutaryl-coenzyme A. Source: Ragsdale and Pierce (2008); Hetzel et al. (2003); Scott et al.
(2006); Louis et al. (2004); Duncan et al. (2002).
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small IEC in vitro, and a notable increase in the maximum rate of
sodium butyrate uptake was noticed, but there was no change in
the Michaelis constant, indicating that the increased sodium
butyrate uptake was achieved through increasing the expression of
MCT1 on the cell membrane (Cuff et al., 2002). Also, research in
isolated porcine colonic mucosa culture revealed that the direct
effects of butyrate resulted in upregulation of MCT1 mRNA
expression (Tudela et al., 2015).

4. SCFA and intestinal barriers

The intestinal barrier is a crucial barrier of the organism against
invasion by foreign pathogens, including the mechanical, chemical,
immune andmicrobial barriers. Disruption of the integrity of any of
these barriers would lead to metabolic dysfunction of the body and
affect the health of the intestine, which in turn results in a decre-
ment in animal production performance (Camilleri et al., 2012).

4.1. Moderating effect of SCFA on mechanical barriers

It is an essential mission of intestinal microorganisms to
maintain intestinal mucosal homeostasis, providing them with a
suitable long-term habitat. Different microorganisms are
involved in maintaining intestinal epithelial barrier integrity
through cell-to-cell junctions and the ability to promote
epithelial repair (Slifer and Blikslager, 2020). The intestinal
mucosal mechanical barrier consists of IEC, the tight junction
between epithelial cells and the mucus layer covering the surface
of IEC. The abnormal intestinal mucosal mechanical barrier in-
creases intestinal permeability and translocation of pathogenic
microorganisms and their metabolites into the portal system,
which eventually triggers chronic low-grade inflammation in the
liver, resulting in the development of non-alcoholic fatty liver
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disease, liver fibrosis, cirrhosis and other liver diseases (Slifer
and Blikslager, 2020). Currently, the mechanism of damage to
the mechanical barrier of the intestinal mucosa is poorly known,
but the evidence is mounting that enhancing the expression of
tight junction-related proteins plays an imperative role in
maintaining the intestinal mechanical barrier in animals and
inhibiting pathogenic invasion into the organism (Fig. 3). A study
demonstrated that 4 mmol/L butyrates promoted the relative
expression of occludin and ZO-1 mRNA in IPEC-J2 cells and pro-
moted the relative expression of claudin-1 mRNA in rat cdx2-IEC
cells, decreased intestinal permeability and increased intestinal
villus height in mice (Ma et al., 2012; Wang et al., 2012). Tong
et al. (2016) revealed that propionic acid increased the expres-
sion of intestinal tight junction proteins ZO-1, occludin, and
cadherin, which promoted intestinal function. Also, SCFA acti-
vated the AMPK pathway to upregulate the expression of ZO-1 in
intestinal epithelial cells, enhancing the transmembrane resis-
tance (TER) of epithelial cells and protecting the integrity of the
intestinal barrier (Voltolini et al., 2012), but excessive concen-
tration resulted in cytotoxicity (Han et al., 2015). Wang et al.
(2018) found that sodium butyrate improved intestinal
morphology, increased jejunal TER expression, decreased fluo-
rescein isothiocyanate-labeled dextran 4 kDa (FD4) expression
(TER and FD4 are essential indicators of extracellular perme-
ability and intestinal barrier), ameliorated intestinal damage
caused by weaning stress, and enhanced intestinal barrier
function in weaned piglets. Huang et al. (2015) discovered that
sodium butyrate significantly increased the expression of
occludin protein in the jejunum and colon of weaned piglets, and
reduced diarrhea by decreasing intestinal permeability, which
was in agreement with the study of Bai et al. (2010).

Therefore, SCFA regulate the mechanical barrier of the animal
intestine mainly by promoting the expression of genes related to



Fig. 3. Main effects of short-chain fatty acids (SCFA) on the mechanism barrier. SCFA protect the integrity of the mechanical barrier by enhancing the gene expression of intestinal
tight junction proteins Occludin, zonula occludens (ZO), and claudins to promote contraction of tight junctions, desmosomes, and gap junctions, and reduce diarrhea by decreasing
intestinal permeability. JAM ¼ junctional adhesion molecule. Source: Ma et al. (2012); Tong et al. (2016); Slifer and Blikslager (2020); Huang et al. (2015).
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the tight junction proteins claudin, occludin and ZO in the intestine
and reducing the permeability of the intestine, thus improving the
mechanical barrier function of the animal intestine.

4.2. Moderating effect of SCFA on the microbial barriers

The intestinal microorganisms of monogastric animals are
generally classified into three categories regarding their abundance
in the intestinal tract and their relationship with the host: the first
is the beneficial microbiota (Bifidobacterium, Lactobacillus), which
has nutritional and immunomodulatory roles in the intestine; the
second is the opportunists (E. coli, Enterococcus), which may cause
damage to the organism when the intestinal microecological bal-
ance is disrupted; and the third is the pathogenic microorganisms
of variable species and population (Clostridium Welchii, Pseudo-
monas aeruginosa), which may cause disease in the organismwhen
their population exceeds the standard level (Mitsuoka, 2000; Ma
and Liu, 2016) (Fig. 4).

After SCFA enter the animal intestine, a part of them dissociates
to produce Hþ for lowering pH, while another part enters the host
and bacterial cells by free diffusion in the undissociated form (Hsiao
and Siebert, 1999). The lipopolysaccharide of the bacterial outer
membrane is a defensive barrier for bacteria, which effectively
prevents large molecules or antibiotics from entering the bacterial
cells. SCFA could enter the periplasmic space through the outer
membrane pore proteins, and then protonate with the lipopoly-
saccharide carboxyl and phosphate groups of the bacterial outer
membrane from the rear, thus weakening the defence of the bac-
terial outer membrane; with the gradual dissociation of the bac-
terial outer membrane lipopolysaccharide and protein (Alakomi
et al., 2000). With the gradual dissociation of bacterial outer
membrane lipopolysaccharide and protein components, the
integrity of the bacterial outer membrane is destroyed, and the
bacterial contents leak out, thus triggering bacterial death and
achieving the purpose of bacterial inhibition (Brul and Coote, 1999).

The pKa value of SCFA is a dissociation constant that responds to
the dynamic equilibrium of SCFA, when the pH of the external
environment is larger than the pKa value of the SCFA, the SCFA
dissociate Hþ to neutralize to maintain a dynamic equilibrium
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(Ricke, 2003). SCFA enter the interior of bacterial cells by free
diffusion, but some studies have shown that the transmembrane
transport of SCFA could also be achieved through channels in
bacterial cell membrane proteins in the bacterial cell membrane.
Since the bacterial cell interior is neutral or basic, the pKa value is
larger than that of SCFA (Gadde et al., 2017). According to the dy-
namic equilibrium equation of organic acids:
RCOOH#Hþ þ RCOO�, SCFA dissociate Hþ and acid ions RCOO�,
and the dissociated ions are unable to be discharged outside the cell
by free diffusion (Maurer et al., 2005), so the Hþ accumulates in
large quantities inside the bacterial cell, causing a decrease in the
pH of the cell. As the bacteria urgently need to restore the original
neutral or alkaline environment for the normal functioning of the
cell, they consume a massive amount of ATP to excrete Hþ from the
cell by active transport, affecting the energy required for normal
growth and metabolism of the bacteria, forming a kind of energy
competition (Gadde et al., 2017). As the RCOO� produced by
intracellular dissociation of SCFA continues to increase, the intra-
cellular osmotic pressure gradually rises, and to balance the
elevated osmotic pressure, bacteria must exclude negatively
charged ions from the cell, forcing them to expel precursors or
cofactors necessary for their own growth, thus affecting normal
bacterial growth (McLaggan et al., 1994). It was shown that when
the concentration of CH3COO� produced by the dissociation of
acetic acid in E. coli cells was gradually increased from 8 mmol/L at
the beginning to 250 mmol/L, the negatively charged glutamate ion
(Glu�) in bacterial cells was reduced by nearly 80%, and the growth
rate of E. coli was also significantly reduced, which indicates that
E. coli releases the negatively charged Glu� by maintaining intra-
cellular osmotic pressure homeostasis, resulting in fewer nutrients
for their own growth and slower growth rates (Roe et al., 1998). In
addition, Hþ is pumped outside the cell via membrane transport
proteins in bacterial cells and Kþ is pumped into the cell via ion
channels, a process that further elevates the increase in intracel-
lular osmotic pressure, ultimately causing overloading of the cell
membrane, membrane structural cleavage, and leakage of contents,
triggering bacterial death (Alakomi et al., 2000).

The continuous accumulation of RCOO� alters the homeostatic
environment inside the bacterial cell, which in turn interferes with



Fig. 4. Main effects of short-chain fatty acids (SCFA) on the microbial barrier. SCFA protonate with the lipopolysaccharide carboxyl and phosphate groups of the bacterial outer
membrane from the posterior, which weakens the defence of the bacterial outer membrane and undergoes dissociation, leading to disruption of cellular integrity. The COOH�

generated by SCFA dissociation also causes an imbalance of osmotic pressure inside the bacteria. Furthermore, SCFA could achieve bacterial inhibition by interfering with bacterial
DNA and protein synthesis processes as well as triggering the host cell to produce the antimicrobial peptide. Source: Alakomi et al. (2000); Brul and Coote (1999); McLaggan et al.
(1994); Roe et al. (1998); Alakomi et al. (2000); Rasch (2002); Roe et al. (2002); Jakubowski (2019).
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a range of physiological and biochemical properties inside the
bacteria. Studies have shown that SCFA interfere with DNA repli-
cation in E. coli by inhibiting ribonucleic acid reductase, which is
required for DNA synthesis, thereby inhibiting bacterial growth
(Rasch, 2002). SCFA not only affect DNA synthesis, but also reduce
the efficiency of glucose utilization by bacteria by altering their
metabolic pathways. In addition, SCFA inhibit bacterial growth by
blocking or altering some key enzymes or synthetic pathways. It
was shown that E. coli K-12 treated with acetic acid showed a sig-
nificant increase in homocysteine content and a decrease in
methionine content in E. coli K-12, which is a precursor substance
for the synthesis of methionine, indicating that the addition of
acetic acid blocked the pathway of methionine synthesis from
homocysteine, resulting in the inhibition of bacterial growth (Roe
et al., 2002). In addition, the accumulation of homocysteine in the
cells also has a toxic effect on bacteria, which stunts bacterial
growth. It was shown that SCFA trigger the production of a certain
antimicrobial peptide by the host cell itself through activation and
modulation of the host immune system (Jakubowski, 2019).

The antimicrobial peptide achieves bacterial inhibition by lysing
the bacterial cell membrane, causing leakage of the contents and
bacterial death (Brogden, 2005). Since the antimicrobial peptide
originates from the host itself, the pathogenic bacteria are also less
likely to develop drug resistance, enhancing the safety of the host
cells themselves (Schwab et al., 2007). It was shown that formic
acid induced the expression of P2, a derivative peptide of human
bactericidal/permeability-enhancing protein (Barker et al., 2000).
Schwab et al. (2007) also showed that sodium butyrate significantly
increased the expression of human beta-defensin-2 (HBD-2) during
the translational phase. Additionally, 0.25 mmol/L and 0.5 mmol/L
sodium butyrate significantly increased the relative expression of
tracheal antimicrobial peptide (TAP) and b-defensin genes in cows,
while the abundance of Staphylococcus aureus in host cells was
reduced by nearly 50%. However, the exact mechanism of organic
acid-induced antimicrobial peptide production in host cells to
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achieve bacterial inhibition is not clear, so further studies may be
needed in the future.

In conclusion, SCFA mainly inhibit the growth of harmful bac-
teria by releasing Hþ, lowering intestinal pH, competing for energy,
forming antimicrobial peptides, and blocking the biosynthesis of
harmful bacteria with the aim of achieving intestinal micro-
ecological balance.

4.3. Moderating effect of SCFA on chemical barriers

The intestinal chemical barrier mainly consists of the mucus
layer covering the IEC. Intestinal microorganisms, a host inflam-
matory mediator and intestinal secretions (gastric acid, glycopro-
teins, digestive enzymes, etc.) could affect the intestinal chemical
barrier (Fig. 5) (Johansson et al., 2008; Gaudier et al., 2009). MUC
exists as the most dominant molecule in the mucus layer. It effec-
tively prevents harmful macromolecules from entering the
epithelial cell layer and serves an essential role in the intestinal
chemical barriers. SCFA activate inflammatory vesicles in IEC, pro-
mote the production of anti-inflammatory factors, upregulate the
gene expression of MUC1, MUC2, MUC3 and MUC4 in the intestine
and the secretion of pancreatic enzymes in the pancreatic fluid,
therefore, strengthening the intestinal chemical barrier function
(Singh et al., 2014; Sun et al., 2017).

Gaudier et al. (2004) suggested that butyrate specifically regu-
lates the expression of MUC genes in intestinal cupped cells at the
transcriptional level, and upregulates the expression of MUC2,
MUC3 and MUC5AC genes. The regulation of different mucin
genes by butyrate is additional, and the expression of the MUC3
gene is regulated by butyrate, which is probably through the his-
tone deacetylase (HDAC) pathway. In contrast, MUC2 and MUC5AC
gene regulation may involve butyrate metabolites. Diao et al.
(2019) reported that administration of SCFA by gavage to weaned
piglets lowered the expression of the pro-apoptotic genes Bax and
Caspase-3, decreased the apoptotic index of cells, and stimulated



Fig. 5. Main effects of short-chain fatty acids (SCFA) on the chemical barrier. SCFA activate inflammatory vesicles in IEC, promote the production of anti-inflammatory factors,
upregulate the gene expression of mucin-1 (MUC1), MUC2, MUC3 and MUC4 in the intestine. SCFA could trigger the secretion of a-defensins or certain antimicrobial peptides from
small intestine Paneth cells to finish the inhibition of foreign pathogens. Source: Singh et al. (2014); Sun et al. (2017); Takakuwa et al., (2019).
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the expression of the intestinal MUC1 and MUC2 genes via the
MAPK signalling pathway to enhance the chemical barrier func-
tions of the intestine. Bai et al. (2010) reported that SCFA increased
the expression of the phosphatase gene (phosphatase and tensin
homologue deleted on chromosome 10, PTEN) and enhanced the
chemical barrier function of IEC by promoting the expression of
MUC2, inducing the differentiation of cancer cells through the
PTEN/phosphoinositide3-kinase (PI3K) signalling pathway. Also, a
recent study revealed that butyric acid could trigger the Paneth
cells from the small intestine to induce the a-defensin secretion
(Takakuwa et al., 2019).

So, the regulation of the chemical barrier by SCFA was mainly
achieved by promoting the expression of MUC-related genes,
triggering the Paneth cells to secrete defensin, reducing the
apoptotic index of intestinal cells and increasing the enzymatic
activity of intestinal secretions. Additionally, SCFA regulate
chemical barrier MUC-related genes through multiple signalling
pathways to reinforce the chemical barrier function of the animal
intestine.

4.4. Moderating effect of SCFA on immune barrier

The intestinal mucosa is responsible for recognizing various
food and microbial antigens, which makes the intestine have the
largest number of immune cells (Fig. 6). The intestinal mucosal
epithelial cells not only recognize pathogens on the surface of
pathogenic microorganisms but also identify some microbial me-
tabolites. The SCFA produced by the metabolism of intestinal mi-
croorganisms are recognized and regulate the intestinal mucosal
immune response process by regulating the functions of intestinal
mucosal immune and non-immune cells and influencing the dif-
ferentiation, recruitment and apoptosis of cells (Sadler et al., 2020;
Vinolo et al., 2011a, 2011b; ; Li et al., 2018b). Wang et al. (2018)
revealed that the supplementation of sodium butyrate lowered
the levels of histamine, trypsin-like, TNF-a, IFN-g and interleukin-6
(IL-6) in the jejunal mucosa of weaned piglets, which may be
accomplished through the c-JUN NH2-terminal kinase (JNK)
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signalling pathway. Also, Carretta et al. (2016) discovered that
butyrate induces Ca2þ flow, phosphorylates p38 protein kinase
(p38 MAPK) and extracellular regulated protein kinase (ERK1/2),
promotes neutrophil degranulation and extracellular traps (a
defence mechanism of innate immunity consisting of DNA and
granule proteins) formation, modulates neutrophil function and
affects the response of innate immunity.

SCFA also work on intestinal immunity through 2 different
mechanisms. The most important of these is the activation of
cellular receptors leading to cell proliferation or differentiation, and
secondly, SCFA act as HDAC inhibitors.

4.4.1. GPCR pathway
The GPCR are expressed in a variety of cell types, including

immune cells and IEC, and SCFA activate signal transduction
pathways that regulate immune responses by binding to cell sur-
face GPCR (such as GPR43, GPR41) and GPR109A, where GPR43 and
GPR41 were activated by acetate, propionate and butyrate, and
GPR109A is activated by butyrate (Russo et al., 2019). The GPCR
serves as a receptor for SCFA; the ligand affinity of GPR43 is the
same for acetate and propionate, both of which are superior to that
of butyrate. Propionate ranked highest in the ligand affinity of
GPR41, followed by butyrate and acetate was the lowest. The pri-
mary sites of GPR43 expression were IEC, immune cells, and adi-
pocytes; GPR41 was expressed in a variety of cells, including
smooth muscle cells, IEC, enteroendocrine cells, and neuronal cells
(Le Poul et al., 2003). GPRl09A is principally expressed in colonic
epithelial cells, colonic cells, hepatocytes, adipocytes and immune
cells. It is involved in adipocyte differentiation and lipid storage to
adjust the energy homeostasis of the organism, as well as partici-
pating in SCFA in an intestinal-mediated inflammatory response
and immune response activation (Singh et al., 2014; Kim, 2018;
D'Souza et al., 2017).

SCFA exert anti-inflammatory roles in the intestinal mucosa by
activating GPCR in IEC and immune cells. Among these cells, in-
flammatory responses could induce SCFA to activate the expression
of GPCR (Singh et al., 2014). Monocytes and neutrophils, as innate



Fig. 6. Main effects of short-chain fatty acids (SCFA) on the immune barrier. SCFA protect the intestinal immune barrier by lowering the levels of tumor necrosis factor a (TNF-a),
interferon-g (IFN-g) and interleukin (IL)-6, activating the expression of G-protein coupled receptors (GPCR) to participate in the intestinal-mediated inflammatory and immune
response, inhibiting the lipopolysaccharide-induced activation of nuclear factor kappa B (NF-kB), promoting potassium ion (Kþ) efflux and hyperpolarization in intestinal epithelium
cells (IEC) as well as IL-18 formation, suppressing histone deacetylase (HDAC) and downregulating the expression of pro-inflammatory cytokines. Moreover, SCFA could improve the
intestinal integrity by inhibiting the Toll-like receptor 4 (TLR4) signalling pathway. Source: Wang et al. (2018); Kim (2018); D'Souza et al. (2017); Thangaraju et al. (2009); Macia et al.
(2015); Li et al. (2018b); Rooks and Garrett (2016); Wen et al. (2012); Hayashi et al. (2013); Wu et al. (2017).
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immune cells, could activate adaptive immune responses by
crossing the epithelial barrier, recognizing and eliminating antigens
secreted by cytokines/chemokines, preventing pathogens from
invading. The SCFA induced neutrophil chemotaxis and prolifera-
tion of regulatory T cells (Treg cells) by binding to GPR43 (Smith
et al., 2013). In both the dextran sulfate colitis model and the T-
cell metastatic enteritis model, the GPR43-mediated SCFA reduced
the inflammatory response by enhancing the frequency and func-
tion of forkhead box P3 (FOXP3) Treg cells (Smith et al., 2013;
Maslowski et al., 2009). The elevated histological scores, neutrophil
infiltration, and increased expression levels of pro-inflammatory
cytokines in the intestinal mucosa of the knockout GPR43 mice
demonstrated the involvement of the SCFA/GPCR pathway in pro-
moting inflammation. Activation of GPR41 and GPR43 could
mediate the effect of acetate on IL-6 and IL-8, while butyric and
propionate affect the content of IL-6 (Trompette et al., 2014).

The SCFAmay alsomaintain the organism's health by modulating
the inflammatory response at other sites through GPR41. Studies
have reported that SCFA inhibited dendritic cells (DC) proliferation
and ameliorated allergic respiratory inflammation inwild-typemice,
but this phenomenon was not present in knockout GPR41 mice (Li
et al., 2018a). Moreover, the SCFA induced Treg cell differentiation
and production of the inflammatory cytokine IL-10 by mediating the
activation of GPR109A, thereby reducing the prevalence of colitis and
colon cancer in Niacr1�/� mice (Singh et al., 2014). In the IEC model,
butyrate inhibits lipopolysaccharide-induced activation of nuclear
transcription factor-kB (NF-kB) by triggering GPR109A in mouse
colonocytes, which supresses the expression of intercellular cell
adhesion molecule-1 (ICAM-1) and vascular cell adhesion protein 1
(VCAM-1) (Thangaraju et al., 2009). The secretion of inflammatory
factors such as IL-2, IL-6 and TNF-a by inflammatory cells was
blocked. SCFA could also interact with GPR109A and GPR43 on IEC to
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promote potassium ion (Kþ) efflux and hyperpolarization in IEC and
increase IL-18 formation, which maintains intestinal homeostasis
(Macia et al., 2015).

Nevertheless, the SCFA not only have beneficial effects on host
physiology, but also aggravate the disease. In an experimental renal
disease model, excess SCFA have been proven to promote T cell-
mediated inflammation of renal tissue with urethritis and hydro-
nephrosis (Park et al., 2016; Sivaprakasam et al., 2016). Collectively,
these studies demonstrated that GPCR are cell-specific and
modulate host immunity in conjunction with SCFA, providing
robust evidence for maintaining intestinal integrity by suppressing
inflammation through the SCFA/GPCR pathway (especially GPR43
and GPR109A).

4.4.2. SCFA as HDACI
The enzyme-controlled histone post-translational modifications

(HPTM) are fundamental to the modulation of gene expression, the
foremost of which is the acetylation of histones controlled by
acetyltransferases (HAT) and deacetylases (HDAC). Histone deace-
tylation is a prevalent mode of gene expression regulation. HDAC is
a class of proteases that catalyzes such reactions and exerts an
essential function in the structural modification of chromosomes
and modulation of gene expression (Yuille et al., 2018).

Overexpression of HDAC leads to a decrease in histone acetyla-
tion, which inhibits gene expression (Fellows et al., 2018). In
addition to its anti-inflammatory effects as a signalling molecule
extracellularly, SCFA act as HDACI upon entering the cell via
transporter proteins, which are involved in modulating the
expression of genes that contribute to the pathogenesis of many
diseases (Grabarska et al., 2013), among which butyrate was
considered to represent the most effective HDACI amongst SCFA
(Xiong et al., 2016; Chriett et al., 2019).
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SCFA acts on monocytes and neutrophils by inhibiting HDAC,
reducing the production of pro-inflammatory tumour necrosis
factor by the cells and leading to inactivation of NF-kB and down-
regulation of the expression of pro-inflammatory cytokines such as
IL-2, IL-6 and IL-8 (Li et al., 2018b; Rooks and Garrett 2016; Glauben
et al., 2006; Wen et al., 2012; Hayashi et al., 2013). An investigation
into humans has revealed that butyrate differentiates monocyte-
derived macrophages by inhibiting HDAC3 and augmenting anti-
microbial function (Schulthess et al., 2019). Likewise, SCFA
increased histone acetylation via HDAC inhibition, regulated
mammalian target of rapamycin (mTOR), and induced IL-10
expression in T cells and regulatory B cells (Bregs) by boosting
the activity of the mTOR complex, enhancing glucose oxidation and
creating acetyl coenzyme A. The mTOR-S6 kinase (S6K) pathway is
crucial for the differentiation of T lymphocytes (Sun et al., 2018; Luu
and Visekruna 2019). Therefore, unlike the GPR41 or GPR43 path-
ways, SCFA promote the differentiation of T lymphocytes into
effector T cells and Treg by suppressing HDAC (Park et al., 2015).
HDAC could prevent the degradation of FOXP3 by influencing the
acetylation of FOXP3, and SCFA also increased FOXP3 gene expres-
sion in Treg cells by suppressing HDAC, preventing proteasomal
degradation and enhancing the stability and activity of FOXP3,
which stopped the inflammatory response (Smith et al., 2013;
Arpaia et al., 2013). On the other hand, in a murine model study, it
was identified that acetylation of FOXP3 contributed to its binding
to the IL-2 promoter region, resulting in the inhibition of endoge-
nous IL-2 secretion, which can inhibit IFN-g production by Treg
cells. Meanwhile, SCFA cause a decrease in the expression of crucial
DC regulators through the inhibitory effect of HDAC, which results
in the attenuation of DC development (Merad et al., 2013; Chang
et al., 2014).

For HPTM, except acetylation, there are other post-translational
modifications such as methylation, propionylation, crotonylation,
butyrylation and 2-hydroxyisobutyrylation (Kebede et al., 2017;
Goudarzi et al., 2016). The latest research indicated that histone
crotonylation directly stimulates transcription in amore substantial
way than histone acetylation (Wei et al., 2017), and the SCFA are
essential for the process of crotonylation, with the ability to link
crotonyl-CoA to histone lysine residues (Sabari et al., 2015). Addi-
tionally, antibiotic treatment of mice resulted in decreased levels of
intestinal luminal and serum SCFA with depletion of intestinal
microbiota, causing increased expression of HDAC2 in the intestine
and a significant decrease in histone crotonylation (Kelly et al.,
2018). SCFA (main butyrate) promote histone crotonylation by
inhibiting the decrotonylase activity of HDAC in colonic epithelial
cells. The analysis of the levels of crotonylation in the murine colon,
brain, liver, spleen and kidney tissues revealed that it was highest in
the intestine, especially in the small intestine and the crypt portion
of the colon and followed in the brain and serum, which indicated
that crotonylation could occur not only in the intestine but also be
expressed in distal tissues (brain and serum) (Fellows et al., 2018).

4.4.3. Toll-like receptor
IEC serve not only as a physical barrier to the intestinal mucosa

but also as a signalling node in the internal and external environ-
ment, mediating interactions between the lamina propria micro-
biota and immune cells through intercellular communication,
chemokine and cytokine signalling (Peterson and Artis, 2014).
Activation of TLR by IEC in response to microbial antigen stimula-
tion regulates immune function, maintaining the balance of the
intestinal microorganisms and preventing microbial and toxin at-
tacks on the intestine (Abreu, 2010). The TLR are abundantly
expressed in a multitude of intestinal cells, and the most significant
presence of TLR in the intestine are TLR2, which recognizes bac-
terial lipoproteins, lipoteichoic acid and TLR4, which recognizes the
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lipopolysaccharide component of the cell wall of Gram-negative
bacteria, and TLR5, which identifies most motile bacterial flagellin
in the colon. Upon activation, they produce inflammatory cytokines
and chemokines triggering the immune response (Park et al., 2015).
Yet, in response to bacterial stimulation, TLR could mediate the
innate immune response and inflammatory response in IEC. It has
been demonstrated that butyrate could reduce the expression of
TLR4 and the production of inflammatory cytokines in IEC (Liu et al.,
2014). Xiao et al. (2018) discovered that butyrate could stabilize the
intestinal environment by upregulating TLR4 expression by treat-
ing human colon cancer cells and mouse colon cancer cells with
butyric acid. Besides, several studies indicated that the SCFA
inhibited autoimmune hepatitis induced by Freund's complete
adjuvant by sustaining the integrity of the small intestine. Wu et al.
(2017) revealed that sodium butyrate reduced the production of IL-
6 and TNF-a by inhibiting the TLR4 signalling pathway, which
protected against liver and small intestine injury. Therefore, the
role of SCFA in protecting the intestinal immune barrier, reducing
the inflammatory response and preserving the immune homeo-
stasis of the organism is substantial.

4.4.4. Others possible mechanism
Olfactory receptor 78 (OLFR78) is also one of the receptors for

SCFA and was activated by acetate and propionate, but not by
butyrate (Pluznick, 2014). The OLFR78 is expressed by vascular
endothelial cells and the most abundant expression occurs in the
renal vasculature. SCFA activate this receptor after being reab-
sorbed in the kidney (Natarajan and Pluznick, 2014). Currently, it
has been determined that this receptor mainly triggers the release
of epinephrine, which raises blood pressure. Still, other functions of
this receptor have not been identified, and studies have speculated
that it is probably also engaged in mediating the energy meta-
bolism of the organism.

Thus, SCFA regulate the immune function of animals through
multiple pathways, promoting the development of immune organs,
the activity of immune substances, enhancing the expression of
anti-inflammatory cytokines, reducing the expression of pro-
inflammatory cytokines, as well as strengthening the antioxidant
capacity, thus reinforcing the immune barrier function of animals.
Additionally, since SCFA are volatile compounds with short half-
lives and rapid metabolism in organisms, the concentration of
SCFA affects their inhibitory effect on HDAC. Only high concentra-
tions of SCFA could exert an impact on HDAC. Nevertheless,
whether SCFA inhibit HDAC directly or indirectly through pathways
such as GPCR is influenced by various factors such as concentration,
receptors, transport carriers, and the type of cells or tissues being
affected. It is expected that the results of these studies will support
the theoretical search for disease treatment options and determine
the importance of SCFA as HDAC inhibitors (Schilderink et al., 2013).

5. Conclusions

The interaction between the host and SCFA forms a stable in-
testinal environment. There are both direct and indirect in-
teractions due to their complex mechanisms of action and the
impact of environmental factors on the intestinal tract. SCFA
contribute to regulating the immune response and play an anti-
inflammatory role by activating GPCR receptors and inhibiting
HDAC. As a microbial metabolite with multiple physiological
functions, SCFA exert an influential regulatory role on the intestinal
health and immune function of the organism. However, it is still
obscure whether exogenous supplementation of SCFA could inhibit
the proliferation of harmful bacteria in the intestinal tract of ani-
mals, and whether it could affect the development of IEC and
strengthen the anti-inflammatory ability of the host. Therefore, it is
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indispensable to understand whether the SCFA affect the host im-
mune cells through interaction with microbiota and how the
mechanism of activation in the process of disease development and
transformation is essential to maintain the host intestinal health,
growth and development of the organism, as well as to dig into new
ideas for the prevention and treatment of diseases.
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