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The calponin homology (CH) domain is one of the most common modules in various
actin-binding proteins and is characterized by an α-helical fold. The CH domain plays
important regulatory roles in both cytoskeletal dynamics and signaling. The CH domain
is required for stability and organization of the actin cytoskeleton, calcium mobilization
and activation of downstream pathways. The CH domain has recently garnered
increased attention due to its importance in the onset of different diseases, such as
cancers and asthma. However, many roles of the CH domain in various protein functions
and corresponding diseases are still unclear. Here, we review current knowledge about
the structural features, interactome and related diseases of the CH domain.

Keywords: actin cytoskeleton, CH-domain-containing proteins, α-helix, tubulin, calmodulin, tropomyosin,
transgelin-2, cancer

INTRODUCTION

Actin is an essential cytoskeletal protein that plays a critical role in multiple cellular processes
(Pollard and Goldman, 2018). Actin monomers are assembled into different filamentous structures
to form the actin cytoskeleton, which is a highly dynamic structure that regulates many cell
processes such as adhesion, spreading and migration. Actin cytoskeletal dynamics require the
coordinated action of many different actin-binding proteins (ABPs) (Garcia-Ponce et al., 2015).
Since the discovery of actin-binding proteins, such as α-actinin and filamin, filamin in the 1970s
(Lazarides and Burridge, 1975; Shizuta et al., 1976), more than 160 different members have been
identified (Lappalainen, 2016; Kuhn and Mannherz, 2017). Calponin is an ABP that is expressed in
smooth muscle and multiple types of non-muscle cells (Liu and Jin, 2016). The calponin homology
(CH) domain, first identified at the N-terminus of calponin, is a common peptide module of
approximately 100 residues and its precise number varies from protein to protein (Castresana and
Saraste, 1995; Korenbaum and Rivero, 2002; Gimona and Winder, 2008). Sequence alignment of
the CH domain shows that the residues of tryptophan (W) in helix I and aspartate (D) in helix
VI are the most-conserved residues, while the consensus motif DGXXLXXL appears in helix III
(Figure 1A; Gimona and Winder, 2008). The CH domain has been identified in a variety of proteins
(CH-domain-containing proteins, CCPs), whose functions range from actin cross-linking to signal
regulation (Gimona and Winder, 2008). Three types of CH domains have been described mainly
based on their functions (Gimona et al., 2002; Korenbaum and Rivero, 2002). The type 1 CH
domain (CH1) has the intrinsic ability to bind to F-actin. The type 2 CH (CH2) domain binds
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in tandem with CH1 and is required to facilitate high-affinity
binding of F-actin. The type 3 CH domain (CH3) usually
acts as a single CH domain in several ABPs and signaling
proteins. Despite similarity of the secondary structure with the
other types of CH domains, the CH3 domain shows functional
diversity due to its ability to interact with many different proteins
(Stradal et al., 1998).

Recent studies have reported that CCPs, including molecule
interacting with CasL (MICAL), leucine-rich repeats and
calponin homology containing 4 (Lrch4), smoothelin-like 1
(SMTNL1) and transgelin-2, exhibit an unappreciated functional
variety and play important roles in the onset of various diseases
(Table 1; Yin et al., 2018; Min et al., 2019). However, the precise
role of how the CH domain confers various protein functions to
drive such diseases is still unclear. In this review, we summarize
the structural features, binding partners and diseases related
to the CH domain.

THE STRUCTURE OF THE CH DOMAIN

Understanding common CH domain structural features can help
to elucidate the functions of CCPs. The CH domain is mainly α-
helical and the strictly conserved residues in α-helices constitute
an invariant hydrophobic core (Korenbaum and Rivero, 2002).
The tertiary structure of the CH domain is compact and
maintained by a network of hydrophobic interactions (Bramham
et al., 2002). The CH domain contains six α-helices in total,
including a core of four α-helices (I, III, IV, and VI) and two
short helical structures (II and V, Figure 1A). A 310-helical turn is
also present in the loop between helices IV and V. Three helices
of the CH domain of calponins (III, IV, and VI) form a triple-
helix bundle, and helix I binds at a right angle across the surface
provided by helices III and VI (Figure 1B). Unlike the majority of
the CH domains, which are generally located at the N-terminus of
proteins, the single CH2 domain of SMTNL1 is at its C-terminus.
Nuclear magnetic resonance data show that the CH2 domain of
SMTNL1 adopts the same α-helical fold as other CH domains
and the most notable difference is the “KTKKK” cluster in the
final helix (Ishida et al., 2008). The cluster “KTKKK” is unique
in SMTNL1 and may be the potential site for ubiquitinylation
(Ishida et al., 2008).

FUNCTIONAL REGULATION OF THE CH
DOMAIN

Changes in the linker and flanking regions of the CH domain
regulate the configuration of the domains, thus influencing
functional regulation and affinity for their interaction partners.
A hinge (GLQQTN) in the linker region between the CH1-
CH2 domain of dystrophin acts like a swivel to allow these
conformational transitions (Fealey et al., 2018). After the linkers
of the dystrophin and utrophin tandem CH domains were
swapped, the dystrophin tandem CH domain with an utrophin
linker (DUL) showed a 2-fold higher binding affinity compared
to that of the dystrophin tandem CH domain, while the utrophin

tandem CH domain with a dystrophin linker (UDL) had a
50% lower binding affinity than the utrophin tandem CH
domain (Bandi et al., 2015). A chimera containing the CH1-
CH2 domain from utrophin and the linker region from filamin
A had a significantly higher actin-binding affinity (KD = 0.7 µM)
than wild-type utrophin (KD = 19 µM) (Harris et al., 2019).
Moreover, the N-terminal flanking region of the CH domain
influences the binding of F-actin. After truncation of a flanking
region of utrophin (MAKYGEHEASPDNGQNEFSDIIKSRSD),
the binding affinity for F-actin was significantly decreased by
approximately 2-fold in HeLa and HEK293T cells (Harris et al.,
2019). However, in vitro co-sedimentation assays (not in live
cells) showed that the same truncated utrophin binds to F-actin
30 times weaker than the full-length protein (Singh et al., 2017).

BINDING PARTNERS OF THE CH
DOMAIN

The functional diversity of different CH domains is a result of
different binding partners including actin, tubulin and signaling
proteins as described below (Galkin et al., 2006).

Binding With Actin and Tubulin
The exact mechanisms regulating binding between actin and
the CH domain are still unclear. This process is associated with
complex factors, including the CH domain number (single or a
tandem pair), conformational differences, and flanking sequences
(Galkin et al., 2010; Harris et al., 2019). The CH domain mainly
acts in tandem pairs for F-actin binding (Sjoblom et al., 2008).
Cryo-electron microscopy data revealed that the CH1 domain of
human filamin A contributed to F-actin binding without direct
CH2 and actin interactions (Iwamoto et al., 2018). Binding of
the CH1-CH2 domain and actin is mechanically regulated via
closed or open conformations (Shams et al., 2016). The CH1
domain contains the main actin-binding sites, however, one of
the binding sites of CH1 is buried within the CH1-CH2 interface
and only becomes accessible in the open conformation (Borrego-
Diaz et al., 2006). Therefore, the CH2 domain serves as a locator
domain to position the true actin-binding motifs, including the
regulation of CH1 binding with actin, prevention of actin clashes
and stabilization of the actin-binding domain (Galkin et al., 2006;
Iwamoto et al., 2018). Co-sedimentation assays showed that the
binding to F-actin by a single CH1 domain of human utrophin
was about 5-fold weaker than that of the CH tandem pair, while
both binding constants were 1000-fold stronger than that of the
single CH2 domain (Singh et al., 2014).

Residue mutations can also affect binding between the CH
domain and F-actin. For example, the CH2 domain mutation
(L253P) of β-III-spectrin caused opening of the CH1-CH2
domains and promoted the N-terminal region of CH1 to become
α-helical, thus enhancing approximately 1000-fold the actin-
binding affinity (Avery et al., 2017a). In contrast, a single cysteine
mutation (C10S before the CH1 domain or C188S in the middle
of the CH2 domain) did not affect the structure or stability of
the CH1-CH2 domain of dystrophin (Singh and Mallela, 2012).
However, the K237E mutation in CH2 of α-actinin decreased the
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FIGURE 1 | Structural characteristics of the CH domain. (A) Sequence alignment, schematic of the secondary structure elements and the binding sites of CH
domain for actin and signaling proteins. The conserved residues among the three CH domains are colored. Schematics of the secondary structure elements of CH
domain and binding sites are also included. UniProt identifiers for CH1 (α-actinin), CH2 (MICAL, Molecule interacting with CasL) and CH3 (calponin-1) are P12814,
Q8TDZ2, P51911. (B) The tertiary fold of the calponin CH domain (PDB: 1H67). The CH domain contains in total six α-helices. Helices III and VI are approximately
parallel, while helix IV is lying oblique aside. The structural model was generated by UCSF Chimera. Abbreviations: αPIX: Cdc42/Rac1-specific guanine nucleotide
exchanging factor; CaM: calmodulin; ERK: extracellular signal-regulated kinase; MT-2: metallothionein-2; TPM: tropomyosin; TSG12: a specific transgelin-2 agonist.

open conformation strength of the CH domain and increased
actin-binding affinity (Shams et al., 2016).

Whether a single CH domain binds actin is still controversial.
By constructing calponin without C-terminal tandem repeats, the
resulting protein with the CH domain failed to bind to actin
(Gimona and Mital, 1998), suggesting that a single CH domain
is neither sufficient nor necessary for the binding of F-actin
(Gimona and Mital, 1998). However, new findings showed
opposite results within cells. Transgelin-1 interacted with actin
via its CH3 domain, while the C-terminal tandem repeats were
dispensable for actin-binding in smooth muscle cells (Matsui
et al., 2018). While the wild-type transgelin-1 or transgelin-1
without the C-terminal tandem repeats both displayed fibrous
patterns, the truncated protein with deletion of the CH3 domain
showed diffuse patterns after separate transfection into A7r5
smooth muscle cells (Matsui et al., 2018).

The CH domain can also bind other cytoskeletal proteins such
as tubulin. The end-binding protein 1 (EB1) is the first example
of a single CH domain that can associate with tubulin (Hayashi
and Ikura, 2003). A truncated version of EB1 containing only
the CH domain co-sedimented with tubulin (Hayashi and Ikura,
2003). In contrast, the mutation K89E within α-helix IV, close
to the hydrophobic cleft of the CH domain, abolished tubulin
binding (Hayashi and Ikura, 2003). Deletion of the N-terminal
207 amino acid region of Hec1 (i.e., Hec1 without CH domain)
resulted in failure of chromosomes alignment at the spindle
equator during mitosis in PtK1 cells (Guimaraes et al., 2008).
By contrast, deletion of only the N-terminal 80 amino acid tail
of Hec1 (i.e., Hec1 with the CH domain) did not affect protein
function. These findings together suggested that the CH domain

of Hec1 is required for efficient binding of tubulin (Guimaraes
et al., 2008). These new evidences clearly show the distinctive
binding mechanisms of the CH domains with actin and tubulin,
highlighting the need for further investigation into the functional
mechanisms of these binding patterns.

Binding With Signaling Proteins
Besides its ability to bind to actin and tubulin, the CH
domain can participate in signal transduction by binding
to different protein partners such as extracellular regulated
kinase (ERK) and calmodulin (Figure 1A). The CH domain
of calponin was identified as the binding site for ERK by
sequencing chymotryptic fragments of calponin (Leinweber et al.,
1999). Calponin thus facilitates the formation of signaling
complexes with ERK and other kinases, such as protein kinase
C (Leinweber et al., 2000). SMTNL1 can also interact with
signaling proteins, including calmodulin and tropomyosin. The
sequence IQELYRSLVQK in the α-helix VI of the SMTNL1
CH2 domain is the binding site for calmodulin and the KD
obtained by isothermal titration calorimetry was 2.7 × 10−6

M (Ishida et al., 2008). SMTNL1 can be phosphorylated by
protein kinase A (PKA) at Ser301, which lies upstream of
the CH domain, and this phosphorylation strongly enhances
the ability of SMTNL1 to associate with tropomyosin (Ulke-
Lemee et al., 2017). However, the exact binding region between
SMTNL1 and tropomyosin that may affect the modulation
of muscle contractile activity is still uncertain (Ulke-Lemee
et al., 2010). Removal of the CH2 domain or expression of
the CH2 domain of SMTNL1 alone did not enable binding
with tropomyosin, suggesting that the CH2 domain is not
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sufficient to mediate binding but is involved in the regulation
of the binding affinity for tropomyosin (Ulke-Lemee et al.,
2010). However, the study further shows that a portion of
the N-terminal intrinsically disordered region (1–341 residues)
of SMTNL1 forms intramolecular contacts with its C-terminal
CH domain, SMTNL1 thus interacts with tropomyosin at
residues 421–436, which encompasses the entirety of α-helix
V and the beginning of α-helix VI of the CH2 domain
(MacDonald et al., 2012).

For other CCPs, the N-terminal 53–271 residues of affixin that
cover the CH1 domain but not the CH2 domain are the binding
sites of Cdc42/Rac1-specific guanine nucleotide exchanging
factor (αPIX), as shown using co-immunoprecipitation assays
(Mishima et al., 2004). Transgelin-2 with a CH3 domain is
a receptor for extracellular ligands such as metallothionein-2
(Crunkhorn, 2018; Yin et al., 2019). The small compound TSG12,
which was identified through molecular docking by targeting
46–63 residues of the CH3 domain of human transgelin-2
(QPGRENFQKWLKDGTVLC) induced dephosphorylation
of myosin phosphatase-targeting subunit 1 (MYPT1)
(Yin et al., 2018).

THE ROLE OF CH DOMAINS IN VARIOUS
DISEASES

CCPs, including MICAL1/2, Lrch4 and SMTNL1, have been
shown to play crucial roles in various diseases as discussed
below. A summary of the involvement of CH domains in various
diseases is shown in Table 1.

MICAL1/2
MICAL1/2 contains a CH2 domain and oxidizes methionine
residues of actin to disassemble F-actin into G-actin (Grintsevich
et al., 2016). The MICAL1/2 CH2 domain is connected to the
monooxygenase domain, and Arg530 in the CH2 domain is
the key residue mediating interaction with the monooxygenase
domain (Kim et al., 2020). MICAL1/2 can also regulate

actin dynamics and cell morphological changes via the CH2
domain through interacting with other signaling proteins
(Hung et al., 2010).

Studies have shown that MICAL proteins are closely related to
neural diseases and cancers. MICAL expression is substantially
elevated in oligodendrocytes and in meningeal fibroblasts during
spinal cord injury, suggesting an involvement of MICAL in
neuronal regeneration (Pasterkamp et al., 2006). Targeting
MICAL may provide a new therapeutic option for cancer
treatment (Yoon and Terman, 2018). For example, deletion of
MICAL1 substantially reduced cell proliferation in the breast
cancer cell lines MCF-7 and T47D (Deng et al., 2018). Over-
expression of MICAL2 in MCF-7 cells augmented the level
of epidermal growth factor receptor (EGFR) in the plasma
membrane, thus enhancing cell migration (Wang et al., 2018).
In contrast, silencing MICAL2 in MDA-MB-231 cells degraded
EGFR and inhibited cell migration (Wang et al., 2018). MICAL2
gene expression was significantly increased in aggressive primary
gastric and renal cancers (Mariotti et al., 2016). MICAL2
knockdown caused a reduction in viability and loss of motility
and invasion in 786-O kidney cancer cells, suggesting that
MICAL2 might be a promising target for anti-metastatic therapy
(Mariotti et al., 2016).

Lrch4
Lrch4 is a plasma membrane protein abundantly expressed in
the spleen and thymus, containing a single-pass transmembrane
domain with nine leucine-rich repeats and a CH3 domain in
its ectodomain (Aloor et al., 2019). Recent data showed that
Lrch4 did not interact with ezrin, radixin and moesin (ERM) in
drosophila S2 cells, suggesting that the CH3 domain of Lrch4
may not bind with the FERM domain of ERM (Foussard et al.,
2010). The function of the CH3 domain in Lrch4 is still unclear
(Aloor et al., 2019).

Lrch4 is a novel Toll-like receptor (TLR) accessory protein as
Lrch4 knockdown attenuated TNFα secretion induced by various
TLR ligands (Aloor et al., 2019). Therefore, Lrch4 has been
considered a broad-spanning regulator of the innate immune

TABLE 1 | CH-domain-containing proteins involved in the onset and progression of different diseases.

Name Domain type Main expression Related diseases References

α-actinin CH1-CH2 Muscle cells Glomerulosclerosis congenital macrothrombocytopenia,
hypertrophic cardiomyopathy

Mills et al., 2001; Haywood et al., 2016;
Murphy et al., 2016

β-III-Spectrin CH1-CH2 Purkinje cells, dendritic cells Spinocerebellar ataxia Ikeda et al., 2006; Avery et al., 2017b

Dystrophin CH1-CH2 Muscle cells Muscular dystrophy Dumont et al., 2015

Filamin A CH1-CH2 Nervous system, muscle cells Otopalatodigital syndromes, cardiac valve disease,
breast cancer

Norris et al., 2010; Tian et al., 2013;
Lah et al., 2016

SMTNL1 CH2 Smooth muscle tissues Cerebral arteriovenous malformations Ulke-Lemee et al., 2011

MICAL CH2 Nervous system Spinal cord injury, breast cancer, kidney cancer Pasterkamp et al., 2006; Deng et al.,
2018

Calponin-1 CH3 Smooth muscle cells Hypertension, breast cancer Blascke de Mello et al., 2019; Wang
et al., 2020

Lrch4 CH3 Spleen and thymus Infection Jha et al., 2010

Transgelin-2 CH3 Smooth muscle cells, immune cells Asthma, systemic lupus erythematosus Kiso et al., 2017; Yin et al., 2018

CH, calponin homology; Lrch4, leucine-rich repeats and calponin homology containing 4; MICAL, molecule interacting with CasL; SMTNL1, smoothelin-like 1.
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response and a potential molecular target in inflammatory
diseases (Aloor et al., 2019). Lrch4 was identified by mass
spectrometry to be differentially expressed in macrophages 24 h
after infection with Mycobacterium avium subsp hominissuis (Jha
et al., 2010). Microarray analysis showed that the gene expression
of Lrch4 was up-regulated by 1.6-fold in lipopolysaccharide-
stimulated dendritic cells in inflammation (Ceppi et al., 2009).

SMTNL1
Smoothelin-like 1, which contains a CH2 domain in the
C-terminal region, is a novel member of the smoothelin
protein family (Borman et al., 2004). Deletion of the CH2
domain can significantly change the intracellular localization
of SMTNL1 (from distributed longitudinally on F-actin
to diffuse distribution in the cytoplasm) in rat vascular
smooth muscle cells suggesting that the CH2 domain
is critical for F-actin binding (Ulke-Lemee et al., 2010).
Experiments with truncated recombinant proteins showed
that the CH2 domain was essential for SMTNL1-associated
smooth muscle relaxation because the CH2 domain alone did
not cause relaxation in rabbit ileum smooth muscle strips
(Borman et al., 2009).

Smoothelin-like 1 can modulate muscle contractility, and its
biological activity may involve interaction with the contractile
actin machinery (Ulke-Lemee et al., 2010). One of the target
genes of SMTNL1 is MYPT1 (high expression of MYPT1
is associated with the contraction of smooth muscle), and
SMTNL1 knock-out increased MYPT1 protein expression
by 30- to 40-fold in neonatal mice (Lontay et al., 2010).
SMTNL1 interacts with myosin phosphatase in the cytoplasm,
however, when phosphorylated at Ser301 in response to
PKA/PKC, SMTNL1 translocates into the nucleus where it
may activate transcription factors driving MYPT1 expression
(Lontay et al., 2010). The gene expression of SMTNL1
was also significantly increased by approximately 4-fold in
human cerebral arteriovenous malformations, suggesting that
the elevated level of SMTNL1 may decrease MYPT1 expression

to relax brain blood vessels and thus contribute to this lumen
disorder (Yao et al., 2019).

CONCLUSION AND PROSPECTS

The CH domain displays high structural conservation, but shows
diverse biological functions. The indispensable flanking regions
and/or intrinsically unfolded protein modules may contribute
to orchestrating CH domain functions. However, when
comparing cell-based experiments with in vitro experiments
using recombinant proteins only, it should be noted that due
to the complexities of the cellular environment, other factors
could be coming into play and distorting the results. With
newly discovered proteins that interact with CH domains, some
of the diverse functions have now been elucidated. However,
many other binding proteins and functions certainly remain
to be discovered, thus warranting further research into CH
domain biology. Given that numerous CCPs, such as MICAL
and transgelin-2, have been identified as promising therapeutic
targets in diseases, it will be important to investigate in the
future whether compounds can be designed to specifically
target CH domains and thus improve the outcome of
certain diseases.
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