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tracking of deep cells such as SP neurons during development. It 
will also be of interest to evaluate whether changes in neuronal 
function occur over the course of aging. For example, the neocor-
tex shrinks during normal aging due primarily to atrophy of cells 
and the neuropile (vs. neuronal loss – Freeman et al., 2008). Future 
studies of individual cellular and neuronal network function during 
aging may reveal other examples of serial neuronal multi-tasking.

Differential expression of genes plays a major role in neuronal 
development and functional differentiation not only from early 
embryonic stages (Hevner, 2006; Mallamaci and Stoykova, 2006; 
Mehler and Mattick, 2007; Taniura et al., 2007; Webster et al., 2006; 
Zimmermann, 2006) but also into senescence (Burger et al., 2007; 
Chu et al., 2002; Liu et al., 2009). These changes can be programmed 
to occur at defi ned stages or can be triggered by local signals, by 
environmental inputs or in a neuronal activity-regulated manner. 
Such temporally modulated regulation of gene expression can 
play a role in target recognition and path-fi nding, synaptogenesis, 
refi nement of synaptic connections (Waites et al., 2005) as well as 
in cell death (Jansen et al., 2007; Lindsten et al., 2005). In addition, 
other infl uences such as sensory or motor activity, cognition, stress, 
infectious agents and traumatic events can alter gene expression 
patterns in the brain throughout life (Alfonso et al., 2005; Licino 
et al., 2007; McClung and Nestler, 2008).

PROPOSAL OF RE-SPECIFICATION OF NEURONAL 
PROPERTIES DURING DEVELOPMENT
We propose that certain types of neurons can undergo a temporal 
re-specifi cation of function over the lifespan. Specifi cally, we sug-
gest that the population of cortical subplate (SP) neurons does so 
although it is not known whether individual neurons in that cohort 
of cells change their function or if the surviving SP cells represent a 
sub-population that has different functions at different stages of the 
life cycle. Although we propose a long term type of multi-tasking 
over the lifespan, there may be other types of neuronal multi-tasking 
operating over shorter time scales. For example, within minutes, as 
information is being processed, neuromodulators and recent bouts 
of activity could unmask emergent functional properties such as 
regulation of gene expression leading to differential functions of 
individual neurons within the neuronal circuit within which the cell 
is embedded. Recording of electrical activity from large populations 
of interacting neurons will be required while following individual 
neurons’ activity profi les for extended periods with tetrode arrays 
(Schmitzer-Torbert et al., 2005) to directly test these ideas. Current 
technology can apply in vivo optical monitoring of the dynamics of 
the structure of dendrites, spines and axons although this approach 
is generally limited to superfi cial cortical layers (Kerr et al., 2007). 
New advances in imaging technology will be required for similar 
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of inputs from the SP cells through a competitive process (Friauf 
et al., 1990; Kanold et al., 2003). If the SP cells are lesioned, the 
thalamic axons fail to innervate their correct target areas (Chun 
and Shatz, 1989; McConnell et al., 1989, 1994) and cortical colum-
nar organization does not develop normally (Kanold et al., 2003). 
Thus, these neurons contribute to establishing functional cortical 
architecture during development. After performing those functions, 
most of these cells die (Al-Ghoul and Miller, 1989; Chun and Shatz, 
1989; Wood et al., 1992).

SURVIVING SUBPLATE NEURONS
The SP neurons appear to play an important but fl eeting role in 
orchestrating early cortical development. However, although most 
of these cells die soon after the innervation of the cortical plate by 
thalamic axons and the retraction of the SP neurons’ axons that 
innervate layer 4, many of them (10–20%) survive (Chun and Shatz, 
1989; Torres-Reveron and Friedlander, 2007). These cells remain 
throughout development into adulthood as a compressed band 
along the bottom of layer 6 (cortical layer 6b or cortical layer 7 or 
subgriseal cells – Valverde et al., 1989; Vandevelde et al., 1996; Reep 
and Goodwin, 1988; Clancy and Caullier, 1999) and as dispersed 
interstitial neurons scattered in the white matter. It is a matter of 
considerable interest to know the fate of this group of surviving cells 
– are they quiescent, do they serve a role in guidance in the postnatal 
brain as they did prenatally or do they take on an entirely new func-
tion? If they change their function and/or connectivity, this suggests 
a form of temporal pleiotropy for these cells. As these SP cells are 
greatly reduced in number during development, it is possible that 
they serve no major functional role after this period. However, this 
seems unlikely and there are other examples of numerically small 
neuronal types that contribute in important ways through processes 
such as numerical expansion of target innervation by axonal and 
synaptic divergence (retinogeniculocortical Y-cells – Friedlander 
and Martin, 1989; Friedlander et al., 1985); strategically positioned 
or particularly strong synaptic outputs (climbing fi bers – Shinoda 
et al., 2000); or potent neuromodulatory outputs (Landgraf and 
Neumann, 2004; Rygh et al., 2006). Thus, the fact that many of 
these cells are lost during development should not exclude the pos-
sibility that the remaining population of these cells, although rela-
tively small in sheer number may play some additional important 
role in cortical information processing. In order to evaluate such 
a hypothesis, it is necessary to directly evaluate the anatomical and 
electrophysiological properties of this reduced cohort after their 
initial role in cortical development and after the elimination of the 
majority of cells have occurred.

Figure 1 illustrates an example of a surviving white matter neu-
ron located below the primary visual cortex of a postnatal day 20 rat 
that has been patched in a brain slice preparation with a biocytin 
fi lled micropipette and subsequently processed for biocytin and 
stained with cresyl violet.

Note that the cell’s dendrites are oriented along the white mat-
ter below layer 6. An example of a surviving SP neuron located 
along the bottom of layer 6 that was also patched in a brain slice 
preparation and fi lled with biocytin is shown in Figure 2. The inset 
illustrates that the cell responds to a sustained direct depolarizing 
input with a non-decrementing train of action potentials similar 
to cortical interneurons.

However, after differentiation to a particular phenotype, little 
change is thought to occur in each neuron’s fundamental proper-
ties such as their anatomical projections, location, position, chemical 
neurotransmitter, and the functions of the cell within the framework 
of the particular network where it resides. For example, a glutamater-
gic cortico-thalamic neuron that projects from layer 6 of the primary 
visual cortex to the dorsal lateral geniculate nucleus may alter compo-
sition and properties of its ion channels and neurotransmitter recep-
tor subunits over the course of development but remain essentially 
the same cell “type” – an excitatory feedback visual relay pyramidal 
neuron processing visual information with particular receptive fi eld 
properties that innervates the LGN and cortical layer 4.

EARLY ROLE OF SUBPLATE NEURONS IN CORTICAL 
DEVELOPMENT
Pleiotropy (the ability of a single gene to infl uence multiple phe-
notypic traits) is well established (Fraser and Marcotte, 2004). 
Neurons can express pleiotropic genes or respond to pleiotropic 
gene products at different times throughout an organism‘s life, 
potentially increasing information processing ability longitudi-
nally and responding to stimuli and stressors (de Magalhães and 
Sandberg, 2005; Louvi et al., 2004; Nelson et al., 2006; Russo et al., 
2005). Like genes, whole neurons could increase their informa-
tion processing contribution combinatorially by serving different 
functions over the course of the lifespan – a pleiotropy of cellu-
lar function in the temporal domain. The neurons of the cortical 
SP are one candidate population of cells that may behave in this 
manner. The SP cells emerge from the ventricular zone under the 
cerebral cortex, migrating below the marginal zone to the cortical 
preplate (Stewart and Pearlman, 1987) that is then split by the dif-
ferentiating neurons of the cortical plate – some neurons taking up 
residence in the marginal zone and others settling below the corti-
cal plate in the SP (König et al., 1981; Luskin and Shatz, 1985a,b; 
Marin-Padilla, 1971, 1978). The cortical plate neurons form most 
of the cortical layers (layers 2–6) while the marginal zone neurons 
become layer 1 and the SP neurons become interstitial cell of the 
cortical white matter as well as clustering at the bottom of the 
cortical plate just below layer 6 (layer 6b – DeDiego et al., 1994; 
Marin-Padilla and Marin-Padilla, 1982; Valverde et al., 1989; Woo 
et al., 1991). These SP cells are among the fi rst cortical neurons to 
differentiate into a neuronal phenotype; they express microtubule 
associated protein-2 and neuropeptides before the cortical plate 
neurons (Arias et al., 2002; Clancy et al., 2001; Finney et al., 1998; 
Luskin and Shatz, 1985), they receive synaptic inputs and generate 
action potentials through embryonic development (Hanganu et al., 
2001; Kanold, 2004; Kanold et al., 2003). These cells also serve as 
pioneers issuing axons into the internal capsule where they serve an 
important role by innervating the thalamus and providing a scaf-
fold for the innervation of the cortex by the thalamocortical axons 
(Allendoerfer and Shatz, 1994; Friauf et al., 1990; Ghosh et al., 1990; 
Herrmann et al., 1994; Kanold et al., 2003; McConnell et al., 1989). 
The SP neurons are also transiently innervated by the in growing 
thalamocortical axons before the eventual thalamocortical target 
neurons within cortical layer 4 settle in their ultimate positions 
in the cortical plate to receive their innervation. Layer 4 neurons 
receive innervation by both SP neurons and thalamic axons during 
this period (Kanold, 2004; Kanold et al., 2003) followed by removal 
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on their axons in other cortical layers have been demonstrated 
for individual surviving white matter and SP neurons where their 
axonal arborizations are visualized by intracellular single cell fi ll-
ing (Clancy et al., 2001). An example of a SP neuron whose axon 
projects upward through the visual cortical layers is illustrated in 
Figure 4. Although SP and WM cells are not numerous, their axonal 
arborizations can be expansive, covering span up to a millimeter of 
cortex in the medio-lateral axis (Clancy et al., 2001). These neurons 
also issue axon collaterals within the white matter and deep layer 6, 
providing the neuroanatomical substrate for them to play a role in 
a local functional neuronal network.

FUNCTIONAL PROPERTIES, CONNECTIVITY AND 
NEUROMODULATORY PHENOTYPES
Surviving SP neurons generate action potentials; they receive both 
excitatory and inhibitory synaptic inputs; and they respond to sus-
tained membrane depolarization with minimal spike frequency 
adaptation (Torres-Reveron and Friedlander, 2007). Thus, these cells 
retain a neuronal phenotype, they receive synaptic inputs from other 
neurons and they innervate the various cortical layers. We have also 
recently found (Torres-Reveron and Friedlander, 2005) that these 
cells provide glutamatergic excitatory synaptic inputs to neurons in 
cortical layer 6. An example is illustrated (Figure 5A) as recordings 

FIGURE 1 | Photomicrograph of biocytin fi lled white matter neuron in 

slice preparation from rat visual cortex. Patch pipette and recording 
arrangement are schematized. Tissue was counter-stained with cresyl violet 
after biocytin processing. Scale bar = 50 µm.

FIGURE 2 | Photomicrograph of biocytin fi lled subplate neuron in the 

subplate (SP) area at the bottom of layer 6, also from rat visual cortex 

acute brain slice preparation. Some of the cell’s dendrites can be seen 
extending into layer 6. The inset shows an electrophysiological response of the 
cell recorded under current clamp with whole cell patch recording in response 
to a sustained depolarization, producing a non-decrementing train of action 
potentials.

MORPHOLOGY AND NITRIC OXIDE SYNTHASE
SP cells have been shown to be particularly susceptible to or play 
a role in the pathogenesis of disorders including early neonatal 
hypoxic-ischemic injury (McQuillen et al., 2003), trisomies (Cheng 
et al., 2004), microcephaly (Takano et al., 2006) and seizures 
(Kadam and Dudek, 2007). Although their potential role in such 
diseases has been studied, there are few studies of the functional 
properties of the surviving SP neuronal population in the normal 
brain likely due to their sparseness and location, making such stud-
ies diffi cult. These surviving cells express markers typical of neurons 
including MAP-2 and NeuN (Clancy et al., 2001; Torres-Reveron 
and Friedlander, 2007) and many express the synthetic enzyme 
for the production of nitric oxide (NO), nitric oxide synthase 
(NOS) that can be visualized as NADPH diaphorase (NADPHd) 
activity. This is illustrated in Figure 3 where white matter neurons 
from human (Figures 3A,B) and rat brain (Figures 3C,D) that are 
positive for NADPHd are shown in tissue from young and mature 
brains. Human cortical tissue was obtained from resections from 
patients for treatment of epilepsy at the University of Alabama 
at Birmingham Hospital under an IRB protocol for utilization of 
waste tissue for histological processing and electrophysiology.

Note that not only the somata and dendrites are positive for 
NADPHd but that there is also considerable staining of fi ne proc-
esses and varicosities, suggesting the possibility that these cells may 
provide a diffusible signal (NO) in the white matter that could play 
a role in plasticity and/or pathogenesis (Garthwaite, 2008).

Retrogradely transported tracers applied to the surface of the 
cortex (layer 1) backfi ll surviving WM and SP neurons’ somata, 
indicating that their axons reach the cortical surface (Clancy and 
Caullier, 1999). This projection as well as the presence of boutons 
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from a pair of synaptically connected SP – layer 6 cells recorded in 
dual whole cell patch clamp mode. In this case, a SP neuron at the 
bottom of layer 6 was patched and individual spikes were elicited 
every 10 s while several putative postsynaptic neurons in layer 5 and 
layer 6 were also patched and tested for the presence of evoked unitary 
postsynaptic responses. The layer 6 neuron responded with small 
unitary EPSPs (EPSPs evoked from a single action potential in a single 
presynaptic neuron) that can be seen in individual trails and as an 
averaged response in Figure 5B. Thus, surviving SP neurons not only 
are positioned to receive inputs from either axon collaterals of supra- 
or infragranular cortical projection neurons, from cortical afferents 
and from each other but some of them also provide excitatory synaptic 
input to the overlying cortical plate neurons. Interestingly, GABAergic 
white matter neurons with projection axons have been identifi ed in 
primates (Tomioka and Rockland, 2007) and we have seen a subset of 
GABAergic WM and SP neurons in rat using immunohistochemistry, 
although we have yet to record from an identifi ed surviving presy-
naptic GABAergic neuron. In addition to having fast glutamatergic 
excitatory synaptic output, these cells also stain positively for various 
neuromodulators including substance P, CCK, somatostatin and NOS. 
Sections that have been immuno-stained for these various substances 
are illustrated in Figure 6. The diversity of secreted chemical that 
these surviving cells contain together with their capacity to maintain 
protracted non-decrementing trains of action potentials in response 
to a sustained depolarizing drive may afford these surviving neurons 

FIGURE 3 | NOS positive neurons in WM and SP. (A,B) Photomicrographs of 
white matter and subplate area in visual cortex from tissue obtained from human 
brain (after tissue resection for epilepsy surgery) from a young (3 years of age) 
and an older (40 years of age) subject and (C,D) from adult rat (42 days postnatal) 
visual cortex where tissue has been processed for NADPH diaphorase 
histochemistry. All photomicrographs are oriented with the cortical surface to the 
right. The human tissue shows numerous white matter neurons that are 

NADPHd positive in the white matter and considerable staining of processes, as 
well. The rat tissue sections illustrate a standard Nissl stain (C) where the 
subplate neurons can be visualized as a compressed layer at the bottom of layer 
6 and the white matter is seen below. The section in (D) (an adjacent section) has 
been processed for NADPHd histochemistry – several NADPHd positive neurons 
can be seen in the white matter and in the subplate subgriseal area at the bottom 
of layer 6. Scale bar = 50 µm and applies to all four panels.

FIGURE 4 | Line drawing of a rat subplate neuron that has been fi lled with 

biocytin in a brain slice experiment. The cell’s dendrites cluster around the 
soma at the base of layer 6 but its axon extends vertically into the cortical plate.
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FIGURE 5 | Functional synaptic connections between SP and layer 6 

neurons. (A) Photomicrograph of the brain slice preparation where three cells 
were patched, recorded and tested for synaptic interactions. The lower cell 
located in the subgriseal area (SG) of the subplate at the bottom of layer 6 
functionally innervated the layer 6 neuron above it (but not the layer 5 neuron 
above that). (B) The functional synaptic connection was ascertained through dual 
whole cell patch clamp electrophysiological recording where a single action 

potential was evoked every 10 s in the subplate neuron (trace second from 
bottom) while the evoked unitary synaptic responses were recorded under 
current clamp conditions from the layer 6 cell (10 individual trials shown in top 
traces). Note that on some trials, there was no detectable response (an apparent 
transmission failure) while in most trials, a small depolarizing postsynaptic 
response was evoked. The resting membrane potential of the layer 6 neuron 
was −70 mV.

FIGURE 6 | WM and SP neuron immuno-positivity for four 

neuromodulatory compounds. Four sections of rat visual cortex (postnatal day 
12–14) that were immuno-stained for various neuromodulators. (A) anti-GABA; 

(B) anti-NPY; (C) anti-neuronal (type 1) nitric oxide synthase (NOS);
 (D) anti-cholycystekinin (CCK). The dotted lines indicate the lower boundary 
of the subplate and the beginning of the white matter proper.
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the capacity to provide strong neuromodulatory effects to cells in the 
overlying cortex.

POTENTIAL ROLE FOR SP NEURONS FOR INFORMATION 
PROCESSING IN THE MATURE CORTEX
That these cells remain as neurons but also have the capacity to play 
different roles at different stages of development is suggested by 
several factors. These include the persistence of intrinsic electro-
physiological and synaptic properties, survival of the glutamatergic 
phenotype, receipt of excitatory and inhibitory synaptic inputs from 
other sources after the loss of their thalamocortical inputs and the 
re-arrangement of their axonal outputs from transiently innervat-
ing layer 4 to innervating all cortical layers. Much of the informa-
tion about the properties of these surviving cells must, by necessity 
be obtained from in vitro brain slice preparations so there is little 
known about their properties within the circuitry of the intact brain. 
While their basic electrophysiological properties can be studied in 
the brain slice preparation, features such as how they process sensory 
information or identifying the sources of their synaptic inputs from 
distant sites are diffi cult to determine in vivo since the cells are sparse 
(WM interstitial cells) or compressed in a thin sheet (the SP cells at 
the bottom of layer 6 or subgriseal cells). Thus, although we now 
know somewhat more about the intrinsic and local synaptic proper-
ties of these cells in the postnatal brain, there precise function within 
the mature cortical network must remain somewhat speculative.

The surviving group of SP neurons may function as a sort of 
cortical gatekeeper, modulating information fl ow into and out of 
modules of overlying cortex to other cortical sites. Neurons of the 
nucleus reticularis thalami (NRT) proximal to thalamic nuclei carry 
out a similar function as a scattered cohort of GABAergic neurons 
that are embedded within the internal capsule and receive collat-
eral excitatory innervation from thalamocortical axons as well as 
from cortico-thalamic axons and provide connectivity to each other 
within the NRT (Bokor et al., 2005; Gentet and Ulrich, 2004). They 
innervate thalamic neurons in inhibitory feedback projection from 
the thalamus and provide an inhibitory feed-forward projection 
from layer 6 of the cortex, as well. The NRT cells can modify the 
information processing state and the relay of information from the 
sensory periphery to the cortex by modulating membrane potential 
(Kim and McCormick, 1998; Ulrich and Huguenard, 1996). The 
cohort of surviving white matter and SP neurons may perform a 
related function in the cortex.

The dendritic arborizations of the WM and SP neurons within 
cortical layer 6 position them strategically to receive synaptic input 
that is otherwise destined for layer 4 from collaterals of thalamo-
cortical axons that also arborize in layer 6 (Binzegger et al., 2005; 
Douglas and Martin, 2004; Molinari et al., 1995). In addition, they 
could also receive synaptic input from cortical layer 2 and 3 cells’ 
axons that send axon collaterals to layer 6 (Douglas and Martin, 
2004; Martin, 2002) and even into the white matter so that these 
neurons could also receive a copy of information that has been 
processed within the cortical columnar structure and is being relayed 
to other cortical areas. Although their somata are located within 
the white matter, many of the interstitial white matter neurons also 
have dendrites located in layer 6 where they are also positioned 
to potentially receive similar synaptic inputs. A difference between 
these neurons and the NRT cells is that most of the surviving SP 

and many white matter neurons are glutamatergic vs. GABAergic. 
However, it is interesting to note that a substantial fraction of the SP 
neurons are GABAergic, although we apparently have only recorded 
from the glutamatergic ones in our paired recordings since in all 
cases, the postsynaptic response was excitatory. It is not clear why 
our recordings should select only the glutamatergic neurons in the 
SP but because our results are so far limited to that sub-population, 
the multi-tasking behavior of these cells might be limited to certain 
subsets. The excitatory synaptic output of the SP and WM neurons 
to the cortical layers above could provide either feed-forward (for the 
thalamocortical inputs) and/or feedback (for the cortical efferents) 
information. Since the surviving SP neurons are mostly excitatory 
and they innervate neighboring SP cells in addition to the overly-
ing cortical neurons, they could act as an amplifi cation network for 
important signals through activating of a local network of neigh-
boring like-type cells as well as a subset of postsynaptic targets in 
the overlying cortex. Recurrent excitation in such an arrangement 
could however, create network instability or seizures (Scharfman, 
2007; Winokur et al., 2004) but depending on the types of cells that 
are targeted (e.g. glutamatergic excitatory vs. GABAergic inhibitory 
neurons), the properties of such a circuit may allow for selective 
amplifi cation and contrast enhancement through feedback inhibi-
tion. The neuromodulatory chemicals in the SP and WM neurons 
such as NOS (Clancy et al., 2001) and various neuropeptides such as 
substance P (Chun and Shatz, 1989; Chun et al., 1987; Uylings and 
Delalle, 1997) further enhance the potential of these cells’ output 
functions through signal gating or selective amplifi cation that could 
be useful for attention, sensory learning by enhancing signal to noise 
ratios or changing activation thresholds and synaptic integration 
properties of neurons within the cortical network.

SUMMARY
There still remain considerable issues to be resolved regarding the 
role of these intriguing SP neurons within the mature neocortex. For 
example, how do the surviving cells avoid elimination during devel-
opment? Which cells provide the synaptic inputs to these neurons? 
What are the functional properties of these neurons in vivo? What role 
do the many neuromodulators released by these cells play in informa-
tion processing? Do these surviving white matter and SP neurons 
retain the capacity to re-enable early developmental processes in the 
adult cortex after injury or disease? The answers to many of these 
questions must await experiments where these cells are studied in 
the adult brain in vivo with selective targeting techniques. However, 
it is clear that SP neurons perform important functions in the cortex 
during early development and that a substantial number of these cells 
organizes into a different functional network in the postnatal brain 
that could contribute to cortical function in other ways. Whether such 
longitudinal pleiotropy of neuronal phenotype applies throughout 
the lifespan to the aging brain and/or to other neuronal populations 
remains to be evaluated. If so, this would dramatically enhance the 
capacity of neuronal networks throughout the lifespan.

ACKNOWLEDGEMENTS
This work was supported by NIH grants EY 12782 and HD-38760 
to MJF and F31 NS 10608 to JTR. We thank Felecia Hester and 
Susanna Kiss for technical assistance and Iskander Ismailov for 
help with the fi gures.



Frontiers in Neuroanatomy www.frontiersin.org August 2009 | Volume 3 | Article 15 | 7

Friedlander and Torres-Reveron Changing roles for subplate neurons

Lindsten, T., Zong, W. X., and 
Thompson, C. B. (2005). Defining 
the role of the Bcl-2 family of proteins 
in the nervous system. Neuroscientist 
11, 10–15.

Liu, L., van Groen, T., Kadish, I., and 
Tollefsbol, T. O. (2009). DNA meth-
ylation impacts on learning and 
memory in aging. Neurobiol. Aging  
30, 549–560.

Louvi, A., Sisodia, S. S., and Grove, E. A. 
(2004). Presenilin 1 in migration 
and morphogenesis in the central 
nervous system. Development 131, 
3093–3105.

Luskin, M. B., and Shatz, C. J. (1985a). 
Neurogenesis of the cat’s primary 
visual cortex. J. Comp. Neurol. 242, 
611–631.

Luskin, M. B., and Shatz, C. J. (1985b). 
Studies of the earliest generated cells 
of the cat’s visual cortex: cogenera-
tion of subplate and marginal zones. 
J. Neurosci. 5, 1062–1075.

Mallamaci, A., and Stoykova, A. (2006). 
Gene networks controlling early 
cerebral cortex arealization. Eur. 
J. Neuroscience. 23, 847–856.

Marin-Padilla, M. (1971). Early prenatal 
ontogenesis of the cerebral cortex 
(neocortex) of the cat (Felis domes-
tica). A Golgi study. I. The primordial 
neocortical organization. Z. Anat. 
Entwicklungsgesch. 134, 117–145.

Marin-Padilla, M. (1978). Dual origin 
of the mammalian neocortex and 
evolution of the cortical plate. Anat. 
Embryol. (Berl.) 152, 109–126.

Marin-Padilla, M., and Marin-
Padilla, T. M. (1982). Origin, prenatal 
development and structural organiza-
tion of layer I of the human cerebral 
(motor) cortex. A Golgi study. Anat. 
Embryol. (Berl.) 164, 161–206.

Martin, K. A. (2002). Microcircuits in 
visual cortex. Curr. Opin. Neurobiol. 
12, 418–425.

McClung, C. A., and Nestler, E. J. 
(2008). Neuroplasticity medi-
ated by altered gene expression. 
Neuropsychopharmacology 33, 3–17.

McConnell, S. K., Ghosh, A., and 
Shatz, C. J. (1989). Subplate  neurons 
pioneer the fi rst axon pathway from 
the cerebral cortex. Science 245, 
978–982.

McConnell, S. K., Ghosh, A., and 
Shatz, C. J. (1994). Subplate pioneers 
and the formation of descending 
connections from cerebral cortex. 
J. Neurosci. 14, 1892–1907.

McQuillen, P. S., Sheldon, R. A., 
Shatz, C. J., and Ferriero, D. M. 
(2003). Selective vulnerability of 
subplate neurons after early neona-
tal hypoxia-ischemia. J. Neurosci. 23, 
3308–3315.

Mehler, M. F., and Mattick, J. S. (2007). 
Noncoding RNAs and RNA editing 

Hanganu, I. L., Kilb, W., and Luhmann H. J. 
(2001). Functional synaptic pro-
jections onto subplate neurons in 
neonatal rat somatosensory cortex. 
J. Neurosci. 22, 7165–7176.

Herrmann, K., Antonini, A., and 
Shatz, C. J. (1994). Ultrastructural 
evidence for synaptic interactions 
between thalamocortical axons and 
subplate neurons. Eur. J. Neurosci. 6, 
1729–1742.

Hevner, R. F. (2006). From radial glia to 
pyramidal-projection neuron: tran-
scription factor cascades in cerebral 
cortex development. Mol. Neurobiol. 
33, 33–50.

Jansen, P., Giehl, K., Nyengaard, J. R., 
Te n g ,  K . ,  L i o u b i n s k i ,  O. , 
Sjoegaard, S. S., Breidhoff, T., 
Gotthardt, M., Lin, F., Eilers, A., 
Petersen, C. M., Lewin, G. R., 
Hempstead, B. L., Willnow, T. E., and 
Nykjaer, A. (2007). Roles for the pro-
neurotrophin receptor sortilin in neu-
ronal development, aging and brain 
injury. Nat. Neurosci. 10, 1449–1457.

Kadam, S. D., and Dudek, F. E. (2007). 
Neuropathogical features of a rat 
model for perinatal hypoxic-ischemic 
encephalopathy with associated epi-
lepsy. J. Comp. Neurol. 505, 716–737.

Kanold, P. O. (2004). Transient micro-
circuits formed by subplate neurons 
and their role in functional develop-
ment of thalamocortical connections. 
Neuroreport 15, 2149–2153.

Kanold, P. O., Kara, P., Reid, R. C., and 
Shatz, C. J. (2003). Role of subplate 
neurons in functional maturation 
of cortical columns. Science 301, 
521–525.

Kerr, J. N., de Kock, C. P., Greenberg, D. S., 
Bruno, R. M., Sakmann, B., and 
Helmchen, F. (2007). Spatial organiza-
tion of neuronal population responses 
in layer 3/3 of rat barrel cortex. 
J. Neurosci. 27, 13316–13328.

Kim, U., and McCormick, D. A. (1998). 
The functional infl uence of burst and 
tonic fi ring mode on synaptic interac-
tions in the thalamus. J. Neurosci. 18, 
9500–9516.

König, N., Hornung, J. P., and Van der 
Loos, H. (1981). Identification of 
Cajal-Retzius cells in immature 
rodent cerebral cortex: a combined 
Golgi—EM study. Neurosci. Lett. 27, 
225–229.

Landgraf, R., and Neumann, I. D. (2004). 
Vasopressin and oxytocin release 
within the brain: a dynamic concept 
of multiple and variable modes of 
neuropeptide communication. Front. 
Neuroendocrinol. 25, 150–176.

Licino, J., Mastronardi, C., and Wong, M. L. 
(2007). Pharmacogenomics of neu-
roimmune interactions in human 
psychiatric disorders. Exp. Physiol. 
92, 807–811.

Clancy, B., Silva-Filho, M., and 
Friedlander, M. J. (2001). Structure 
and projections of white matter neu-
rons in the postnatal rat visual cortex. 
J. Comp. Neurol. 434, 233–252.

DeDiego, I., Smith-Fernández, A., and 
Fairén, A. (1994). Cortical cells that 
migrate beyond area boundaries: 
characterization of an early neuronal 
population in the lower intermediate 
zone of prenatal rats. Eur. J. Neurosci. 
6, 983–997.

de Magalhães, J. P., and Sandberg, A. 
(2005). Cognitive aging as an exten-
sion of brain development: a model 
linking learning, brain plasticity, and 
neurodegeneration. Mech. Ageing Dev. 
126, 1026–1033.

Douglas, R. J., and Martin, K. A. (2004). 
Neuronal circuits of the neocortex. 
Annu. Rev. Neurosci. 27, 419–451.

Finney, E. M., Stone, J. R., and Shatz, C. J. 
(1998). Major glutamatergic projec-
tion from subplate into visual cortex 
during development. J. Comp. Neurol. 
398, 105–118.

Fraser, A. G., and Marcotte, E. M. (2004). 
A probabilistic view of gene function. 
Nat. Genet. 36, 559–564.

Freeman, S. H., Kandel, R., Cruz, L., 
Rozkalne, A., Newell, K., Frosch, M. P., 
Hedley-Whyte, E. T., Locasio, J. J., 
Lipsitz, L. A., and Hyman B. T. (2008). 
Preservation of neuronal number 
despite age-related cortical brain 
atrophy in elderly subjects without 
Alzheimer’s disease. J. Neuropathol. 
Exp. Neurol. 67, 1205–1212.

Friauf, E., McConnell, S. K., and 
Shatz, C. J. (1990). Functional syn-
aptic circuits in the subplate during 
fetal and  early postnatal development 
of cat visual cortex. J. Neurosci. 10, 
2601–2613.

Friedlander, M. J., and Martin, K. A. 
(1989). Development of Y-axon 
 innervation of cortical area 18 in the 
cat. J. Physiol. 416, 183–213.

Friedlander, M. J., Martin, K. A., and 
Vahle-Hinz, C. (1985). The structure 
of the terminal arborizations of physi-
ologically identifi ed retinal ganglion 
cell Y axons in the kitten. J. Physiol. 
359, 293–313.

Garthwaite, J. (2008). Concepts of neural 
nitric oxide mediated transmission. 
Eur. J. Neurosci. 27, 2783–2802.

Gentet, L. J., and Ulrich, D. (2004). 
Electrophysiological characteriza-
tion of synaptic connections between 
 layer VI cortical cells and neurons 
of the nucleus reticularis thalami 
in juvenile rats. Eur. J. Neurosci. 19, 
625–633.

Ghosh, A., Antonini, A., McConnell, S. K., 
and Shatz, C. J. (1990). Requirement 
for subplate neurons in the forma-
tion of thalamocortical connections. 
Nature 347, 179–181.

REFERENCES
Alfonso, J., Frasch, A. C., and Flugge, G. 

(2005). Chronic stress, depression and 
antidepressants: effects on gene tran-
scription in the hippocampus. Rev. 
Neurosci. 16, 43–56.

Al-Ghoul, W. M., and Miller, M. W. 
(1989). Transient expression of Alz-50 
immunoreactivity in developing rat 
neocortex: a marker for naturally 
occurring neuronal death? Brain Res. 
481, 361–367.

Allendoerfer, K. L., and Shatz, C. J. (1994). 
The subplate, a transient neocortical 
structure: its role in the development 
of connections between thalamus 
and cortex. Annu. Rev. Neurosci. 17, 
185–218.

Arias, M. S., Baratta, J., Yu, J., and 
Robertson, R.T. (2002). Absence of 
selectivity in the loss of neurons from 
the developing cortical subplate of 
the rat. Brain Res. Dev. Brain Res. 139, 
331–335.

Binzegger, T., Douglas, R. J., and 
Martin, K. A. (2005). Axons in the cat 
visual cortex are topologically self-
similar. Cereb. Cortex 15, 152–165.

Bokor, H., Frère, S. G., Eyre, M. D., 
Slezia, A., Ulbert, I., Luthi, A., and 
Acsady, L. (2005). Selective GABAergic 
control of higher-order thalamic 
relays. Neuron 45, 929–940.

Burger, C., López, M. C., Feller, J. A., 
Baker, H. V., Muzyczka, N., and 
Mandel, R. J. (2007). Changes in 
transcription within the CA1 fi eld of 
the hippocampus are associated with 
age-related spatial learning impair-
ments. Neurobiol. Learn. Mem. 87, 
21–41.

Cheng, A., Haydar, T. F., Yarowsky, P. J., 
and Krueger, B. K. (2004). Concurrent 
generation of subplate and cortical 
plate neurons in developing trisomy 
16 mouse cortex. Dev. Neurosci. 26, 
255–265.

Chu, Y., Kompoliti, K., Cochran, E. J., 
Mufson, E. J., and Kordower, J. H. 
(2002). Age-related decreases in Nurr1 
immunoreactivity in the human sub-
stantia nigra. J. Comp. Neurol. 450, 
203–214.

Chun, J. J., Nakamura, M. J., and Shatz, C. J. 
(1987). Transient cells of the develop-
ing mammalian telencephalon are 
peptide-immunoreactive neurons. 
Nature 325, 617–620.

Chun, J. J., and Shatz, C. J. (1989). 
Interstitial cells of the adult neocorti-
cal white matter are the remnant of 
the early generated subplate neuro-
nal population. J. Comp. Neurol. 282, 
555–569.

Clancy, B., and Caullier, I. J. (1999). 
Widespread projections from sub-
griseal neurons (layer VII) to layer I 
in adult rat cortex. J. Comp. Neurol. 
407, 275–286.



Frontiers in Neuroanatomy www.frontiersin.org August 2009 | Volume 3 | Article 15 | 8

Friedlander and Torres-Reveron Changing roles for subplate neurons

extracellular  recordings. Neuroscience 
131, 1–11.

Shinoda, Y., Sugihara, I., Wu, H. S., and 
Sugiuchi, Y. (2000). The entire trajec-
tory of single climbing and mossy fi b-
ers in the cerebellar nuclei and cortex. 
Prog. Brain Res. 124, 173–186.

Stewart, G. R., and Pearlman, A. L. (1987). 
Fibronectin like immunoreactivity 
in the developing cerebral cortex. 
J. Neurosci. 7, 3325–3333.

Takano, T., Akahori, S., and Takeuchi, Y. 
(2006). Neuronal apoptosis and gray 
matter heterotopia in microcephaly 
produced by cytosine arabinoside in 
mice. Brain Res. 1089, 55–66.

Taniura, H., Sng, J. C., and Yoneda, Y. 
(2007). Histone modifi cations in the 
brain. Neurochem. Int. 51, 85–91.

Tomioka, R., and Rockland, K. S. 
(2007). Long-distance corticocorti-
cal GABAergic neurons in the adult 
 monkey white and gray matter. 
J. Comp. Neurol. 505, 526–538.

Torres-Reveron, J. E., and Friedlander, M. J. 
(2005). Quantal Analysis of Synaptic 
Connections Between Individual 
Subplate and Cortical Plate Neurons 
in Rat Visual Cortex. Presented at 
Society for Neuroscience Annual 
Meeting, Washington, DC, USA, 
November 12–16.

Torres-Reveron, J. E., and Friedlander, M. J. 
(2007). Properties of persistent post-
natal cortical subplate neurons. 
J. Neurosci. 27, 9962–9974.

Ulrich, D., and Huguenard, J. R. (1996). 
Gamma-aminobutyric acid type B 

 temporal lobe epilepsy. Epilepsy Res. 
58, 93–105.

Woo, T. U., Beale, J. M., and Finlay, B. L. 
(1991). Dual fate of subplate neu-
rons in a rodent. Cereb. Cortex 1, 
433–443.

Wood, J. G., Martin, S., and Price, D. J. 
(1992). Evidence that the earliest 
generated cells of the murine cerebral 
cortex form a transient population in 
the subplate and marginal zone. Brain 
Res. Dev. Brain Res. 66, 137–140.

Zimmermann, H. (2006). Nucleotide 
signaling in nervous system develop-
ment. Pfl ugers Arch. 452, 573–588.

Conflict of Interest Statement: The 
authors declare that the research was 
conducted in the absence of any com-
mercial or financial relationships that 
could be construed as a potential confl ict 
of interest.

Received: 02 July 2009; paper pending pub-
lished: 12 July 2009; accepted: 24 July 2009; 
published online: 07 August 2009.
Citation: Friedlander MJ and Torres-Reveron 
J (2009) The changing roles of neurons in 
the cortical subplate. Front. Neuroanat. 
3:15. doi: 10.3389/neuro.05.015.2009
Copyright © 2009 Friedlander and Torres-
Reveron. This is an open-access article 
subject to an exclusive license agreement 
between the authors and the Frontiers 
Research Foundation, which permits unre-
stricted use, distribution, and reproduc-
tion in any medium, provided the original 
authors and source are credited.

receptor-dependent burst-firing in 
thalamic neurons: a dynamic clamp 
study. Proc. Natl. Acad. Sci. U.S.A. 93, 
13245–13249.

Uylings, H. B., and Delalle, I. (1997). 
Morphology of  neuropeptide 
Y-immunoreactive neurons and  fi bers 
in human prefrontal cortex during 
prenatal and postnatal development. 
J. Comp. Neurol. 379, 523–540.

Valverde, F., Facal-Valverde, M. V., 
Santacana, M., and Heredia, M. 
(1989). Development and differ-
entiation of early generated cells of 
sublayer Vlb in the somatosensory 
cortex of the rat: a correlated Golgi 
and autoradiographic study. J. Comp. 
Neurol. 290, 118–140.

Vandevelde, I. L., Duckworth, E., and 
Reep, R. L. (1996). Layer 7 and the gray 
matter trajectories of cortico-cortical 
axons in rats. Anat. Embryol. (Berl.) 
194, 581–593.

Waites, C. L., Craig, A. M., and 
Garner, C. C. (2005). Mechanisms of 
vertebrate synaptogenesis. Annu. Rev. 
Neurosci. 28, 251–274.

Webster, M. J., Herman, M. M., 
Kleinman, J. E., and Shannon 
Weickert, C. (2006). BDNF and trkB 
mRNA expression in the hippocam-
pus and temporal cortex during the 
human lifespan. Gene Expr. Patterns. 
6, 941–951.

Winokur, R. S., Kubal, T., Liu, D., 
Davis, S. F., and Smith, B. N. (2004). 
Recurrent excitation in the den-
tate gyrus of a murine model of 

in brain development, functional 
 diversification, and neurological 
 disease. Physiol. Rev. 87, 799–823.

Molinari, M., Dell’Anna, M. E., Rausell, E., 
Leggio, M. G., Hashikawa, T., and 
Jones, E. G. (1995). Auditory tha-
lamocortical pathways defined in 
monkeys by calcium-binding protein 
immunoreactivity. J. Comp. Neurol. 
362, 171–194.

Nelson, R. J., Trainor, B. C., Chiavegatto, S., 
and Demas, G. E. (2006). Pleiotropic 
contributions of nitric oxide to aggres-
sive behavior. Neurosci. Biobehav. Rev. 
30, 346–355.

Reep, R. L., and Goodwin, G. S. (1988). 
Layer 7 of rodent cerebral cortex. 
Neurosci Lett. 90, 15–20.

Russo, V. C., Gluckman, P. D., 
Feldman, E. L., and Werther, G. A. 
(2005). The insulin-like growth factor 
system and its pleiotropic functions in 
brain. Endocr. Rev. 26, 916–943.

Rygh, L. J., Suzuki, R., Rahman, W., 
Wong, Y., Vonsy, J. L., Sandhu, H., 
Webber, M., Hunt, S . , and 
Dickenson, A. H. (2006). Local and 
descending circuits regulate long-term 
potentiation and zif268 expression in 
spinal neurons. Eur. J. Neurosci. 24, 
761–772.

Scharfman, H. E. (2007). The neurobiol-
ogy of epilepsy. Curr. Neurol. Neurosci. 
Rep. 7, 348–354.

Schmitzer-Torbert, N., Jackson, J., 
Hen ze ,  D. ,  Ha r r i s ,  K . ,  a n d 
Redish, A. D. (2005). Quantitative 
measures of  cluster  quality for use in 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


