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Abstract

Native cattle breeds can carry specific signatures of selection reflecting their adaptation to

the local environmental conditions and response to the breeding strategy used. In this

study, we comprehensively analysed high-density single nucleotide polymorphism (SNP)

genotypes to characterise the population structure and detect the selection signatures in

Russian native Yaroslavl and Kholmogor dairy cattle breeds, which have been little influ-

enced by introgression with transboundary breeds. Fifty-six samples of pedigree-recorded

purebred animals, originating from different breeding farms and representing different sire

lines, of the two studied breeds were genotyped using a genome-wide bovine genotyping

array (Bovine HD BeadChip). Three statistical analyses—calculation of fixation index (FST)

for each SNP for the comparison of the pairs of breeds, hapFLK analysis, and estimation of

the runs of homozygosity (ROH) islands shared in more than 50% of animals—were com-

bined for detecting the selection signatures in the genome of the studied cattle breeds. We

confirmed nine and six known regions under putative selection in the genomes of Yaroslavl

and Kholmogor cattle, respectively; the flanking positions of most of these regions were elu-

cidated. Only two of the selected regions (localised on BTA 14 at 24.4–25.1 Mbp and on

BTA 16 at 42.5–43.5 Mb) overlapped in Yaroslavl, Kholmogor and Holstein breeds. In addi-

tion, we detected three novel selection sweeps in the genome of Yaroslavl (BTA 4 at 4.74–

5.36 Mbp, BTA 15 at 17.80–18.77 Mbp, and BTA 17 at 45.59–45.61 Mbp) and Kholmogor

breeds (BTA 12 at 82.40–81.69 Mbp, BTA 15 at 16.04–16.62 Mbp, and BTA 18 at 0.19–

1.46 Mbp) by using at least two of the above-mentioned methods. We expanded the list of

candidate genes associated with the selected genomic regions and performed their func-

tional annotation. We discussed the possible involvement of the identified candidate genes

in artificial selection in connection with the origin and development of the breeds. Our
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findings on the Yaroslavl and Kholmogor breeds obtained using high-density SNP genotyp-

ing and three different statistical methods allowed the detection of novel putative genomic

regions and candidate genes that might be under selection. These results might be useful

for the sustainable development and conservation of these two oldest Russian native cattle

breeds.

Introduction

National livestock genetic resources are the most important carriers of the unique forms of

variability; they are necessary to ensure the sustainability of local agricultural production sys-

tems [1]. In Russia, over a long period, various cattle breeds have formed, which are character-

ised by good adaptation to the local environmental conditions and better suitability for the

development of geographic production systems [2]. Among the Black-and-White cattle breeds,

Kholmogor and Yaroslavl dairy cattle have remarkable importance for animal husbandry in

the Central and Northern regions of European Russia. Both breeds originated from small-stat-

ure Great Russian Cattle (height at withers is 105–110 cm, body weight up to 325–390 kg [3,

4]. The first records of the presence of cattle on the islands in the upper reaches of the North-

ern Dvina River near the Kholmogory town in Northern Russia date back to the sixteenth cen-

tury (the breed was named after this town) [5]. Over a long history, the good pastures and

hayfields in the Kholmogor breeding zone have contributed to the development of the tall cat-

tle breed well suited for dairy production.

In the 18th–19th centuries, the Kholmogor cattle were well-known in Russia and abroad

owing to their high productivity and excellent quality of dairy products. Cattle breeding began

to develop in the Yaroslavl region (near Moscow), based on which the breed is named, in the

seventeenth and eighteenth centuries [5]. The Yaroslavl cattle were selected for adaptability,

high feed efficiency and good reproductive ability even in poor forage conditions during win-

ter. Moreover, this breed was in great demand among peasants and small cattle holders [4].

Most researchers suggested that foreign breeds, including Holsteins contributed little in the

development of the Yaroslavl and Kholmogor cattle populations [6, 7], which was subse-

quently confirmed by molecular genetics studies [8–10]. The studies of the historical speci-

mens of Yaroslavl and Kholmogor cattle, dated from the end of 19th to the first half of 20th

century using microsatellites, indicated that Russian breeds and Holsteins were developed

from different ancestral populations [11]. In the 1960s, the number of Kholmogor and Yaro-

slavl cattle was close to million individuals (993 and 951 thousand, respectively) each; in con-

trast, in 2015, their census population size remarkably decreased to 222.9 and 50.5 thousand

heads, respectively [12]. During the last decade, along with the remarkable decrease in popula-

tion size, crossbreeding has been actively used in the remaining purebred animals, which

could lead to the loss of genetic distinctness.

Several molecular genetic studies have attempted to characterise the demographic history

and population structure of the modern populations of Yaroslavl and Kholmogor breeds and

their relationship to other taurine breeds [9, 10, 13, 14], but their results were, in some cases,

controversial. By using microsatellite-based clustering, Li and Kantanen [13] suggested the

composite origin of these breeds. Whole-genome studies performed using medium-density

SNP chips showed that Yaroslavl and Kholmogor cattle are valuable national genetic resources,

which have been little influenced by introgression with non-Russian breeds [9, 10]. The main-

tenance of a visible part of historical components in the modern populations both of Yaroslavl

and Kholmogor breeds was confirmed by the study of historical specimens [11]. Further
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elucidation of the genetic architecture of these two breeds and more precise identification of

genomic regions that are affected by putative selection may be achieved by using more power-

ful molecular genetic tools such as bovine high-density SNP BeadChip (Illumina Inc., USA)

which contains 777,962 SNPs.

Several studies have explored the genome diversity and adaptation of cattle breeds by using

high-density DNA arrays [15–17]. However, the patterns of genetic variation within Russian

cattle breeds have not yet been assessed using this powerful genetic tool. Identification of the

genome regions exhibiting evidence of being subjected to selective pressure during the breed-

ing process is of particular interest [18]. Detailed analysis of these ‘signatures of selection’ can

help to elucidate the breed history and to identify genes responsible for the adaptive and eco-

nomically significant traits in livestock populations [19].

Studies have highlighted the importance of utilising multiple methodologies for detecting

regions of the genome that have been the target of selection [20], including fixation index

(FST), hapFLK analysis and identification of runs of homozygosity (ROH) islands. FST quanti-

fies the differences in allele frequencies between populations [21, 22] and is routinely used for

identifying highly differentiated alleles [23, 24]. The hapFLK statistics is a haplotype-based

method for the detection of positive selection in multiple population data [25]. ROH islands

are genomic regions with high homozygosity around the selected locus that might harbour tar-

gets of positive selection [26–28].

Several studies have focused on identifying signatures of selection in transboundary and

local cattle populations by using high-throughput SNP genotypes and FST [29–31], hapFLK,

and ROH statistics [32]. However, only a limited number of studies have thus far attempted to

identify signatures of selection in Russian cattle breeds, and they were based on the medium-

density SNP genotypes [33, 34].

In this study, we performed the comprehensive analysis of high-density SNP genotypes to

characterise the population structure and detect the signatures of selection in two old Russian

cattle breeds (Yaroslavl and Kholmogor), by using Holsteins as the reference. The three meth-

ods (FST, hapFLK, and ROH) were implemented to detect the genome regions that could be

under putative selection. We identified the regions revealing signatures of selection in each of

the two breeds, annotated the genes localised within or close to the selected regions, and per-

formed a functional study of these genes. Our results might be useful for the genetic improve-

ment of Yaroslavl and Kholmogor cattle breeds and developing programs for the conservation

of their biodiversity.

Materials and methods

Ethics statement

This study does not involve any endangered or protected species. Samples were derived in part

from the Bioresource Collection of the L.K. Ernst Federal Science Center for Animal Hus-

bandry, supported by the Russian Ministry of Science and Higher Education. Blood samples (5

ml of whole blood) were collected for routine diagnostic purposes by trained personnel under

strict veterinary rules. Sperm samples were provided by the artificial insemination (AI) stations

according to specific scientific collaboration agreements.

The genotyping data supporting the results of this study are deposited in the Dryad Digital

Repository (https://doi.org/10.5061/dryad.vt4b8gtq9).

Sampling and DNA extraction

The pedigree records were analysed to identify the purebred animals of Yaroslavl (YRSL) and

Kholmogor (KHLM) breeds (S1 Fig).
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Only individuals having purebred ancestors on the both sides of pedigrees at least in three

generations were selected for the analyses. To cover more breed variability, we sampled the

animals originating from different breeding farms and representing different sire lines for

each of the two breeds. Blood or semen samples were collected from 56 animals, including 31

samples of Yaroslavl breed and 25 samples of Kholmogor breed. DNA was extracted using

Nexttec columns (Nexttec Biotechnology GmbH, Germany), according to manufacturer’s

instructions. The concentrations of dsDNA solutions were measured using a Qubit 3.0 fluo-

rometer (Thermo Fisher Scientific, Wilmington, DE, USA). The purity of DNA samples was

checked by determining the OD260/280 ratio by using NanoDrop-2000 (Thermo Fisher Scien-

tific, Wilmington, DE, USA). In addition, the DNA quality was checked using 1% agarose gel

electrophoresis.

SNP genotyping and quality control

The Illumina Bovine HD BeadChip (Illumina, San Diego, CA, USA) was used for genotyping.

High-density SNP genotypes for European Holsteins (n = 25) obtained from Bahbahani et al.

[16, 35] were included in the dataset as the reference. R software [36] was used to create input

files. Valid genotypes for each SNP were determined by setting the cut-off of 0.5 for the Gen-

Call (GC) and GenTrain (GT) scores [37]. PLINK 1.9 software [38] was used to perform SNP

quality control. All animals were subjected to filtering for genotyping efficiency (—mind 0.1).

The SNPs genotyped in less than 90% of the samples (—geno 0.1) and those located on sex

chromosomes were excluded from the analysis. The final data set used for analysis included

650,134 autosomal SNPs. Additional filters for linkage disequilibrium (LD) and minor allele

frequency (MAF) were used to calculate several statistical parameters (see below). The posi-

tions of SNPs were assigned according Bos taurus genome assembly UMD 3.1.1 (https://www.

ncbi.nlm.nih.gov/assembly/GCF_000003055.6).

Genetic diversity

Within-population genetic diversity was evaluated using 133,685 SNPs after LD-based pruning

by using PLINK 1.9 [38]. One locus from each SNP pair where the LD (r2) exceeded 0.5 within

50 SNP windows was removed (—indep-pairwise 50 5 0.5 flag, where 50 is the size of the slid-

ing window, 5 is the number of SNPs shifted in each step, and 0.5 is the r2 threshold). We cal-

culated the observed heterozygosity (HO), unbiased expected heterozygosity (UHE) [39],

rarefied allelic richness (AR), and inbreeding coefficient (UFIS) based on the unbiased expected

heterozygosity by using R package “diveRsity” [40]. The genomic inbreeding coefficient based

on ROH (FROH) was computed as the ratio of the sum of the length of all ROHs per animal to

the total autosomal SNP coverage (2.51 Gb; for ROH estimation, see section ‘Runs of homozy-

gosity’ below).

Effective population size

Trends of effective population size were estimated from LD by using the SNeP tool, as

described by Barbato et al. [41]. We applied default parameters, except for sample size correc-

tion, mutation occurrence (α = 2.2) [42], and recombination rate between a pair of genetic

markers, according to Sved and Feldman [43]. To determine the rate of NE changes in the 50

most recent generations, we determined the NE changing ratio (NEC) by calculating the slope

of each segment that links a pair of neighbouring NE estimates and normalising the values by

using the median of the most recent 50 NE estimates. Only SNPs with an MAF of>0.05 were

used to estimate the effective population size.
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Runs of homozygosity

A window-free method for consecutive SNP-based detection (consecutive runs method [44]

implemented in R package “detectRUNS” [45] was used for the estimation of ROHs. We

allowed one SNP with missing genotype and up to one possible heterozygous genotype in one

run to avoid the underestimation of the number of ROHs that were longer than 8 Mb [46].

The minimum ROH length was 1000 kb. For minimising false-positive results, we calculated

the minimum number of SNPs (l) as was initially proposed by Lencz et al. [47] and then by

Purfield et al. [48]:

l ¼ logeða=ns�niÞÞ=ðlogeð1 � hetÞ; where

ns = the number of genotyped SNPs per individual; ni = the number of genotyped individuals;

α = the percentage of false-positive ROHs (set to 0.05 in our study), and het = the mean hetero-

zygosity across all SNPs. In our case, the minimum number of SNPs was 31.

The ROH number was estimated for each individual and then distributed between the fol-

lowing ROH length classes: (1, 2), (2, 4), (4, 8), (8, 16), and >16. To estimate the proportion of

genome covered by different ROH segments, we calculated the sum of ROHs for different

minimum lengths (>1,>2, >4,>8, or>16 Mb). The number and length of ROHs were aver-

aged per animal within each breed.

Principal component analysis, Neighbor-Net, and admixture

To characterize the relationship within and between populations at the genomic level and to

assess the individuals with regard to their assignment to the corresponding breed, we per-

formed principal component analysis (PCA), Neighbor-Net clustering, and model-based clus-

tering (admixture). PLINK v1.9 software was used to perform PCA, and R package “ggplot2”

was used to visualise the results [49]. A Neighbor-Net tree was constructed on the basis of pair-

wise identical-by-state (IBS) distances in SplitsTree4 [50]. We employed Admixture v1.3 [51]

for genetic admixture and R package “pophelper” [52] for plotting the results. The number of

assumed ancestral populations (K) was estimated on the basis of the lowest cross-validation

(CV) error compared to other K values by using a standard admixture cross-validation proce-

dure [53].

Selection signature analysis

We used three different statistics for detecting the signatures of selection in the genome of the

studied cattle populations: calculation of the fixation index (FST) for each SNP for comparison

of the pairs of breeds, hapFLK analysis, and estimation of the ROH islands, which were over-

lapped among different animals within each breed.

We calculated pairwise genetic differentiation (FST) [53] between all SNPs in pairs of the

studied cattle breeds (KHLM/HLST, YRSL/HLST, and KHLM/YRSL) by using PLINK 1.9. We

applied a low threshold for MAF of less than 5% (—maf 0.05), because the filtering of SNPs

based on MAF may affect the probability of identifying alleles related to selection [33]. The

data set used for FST analysis included 567,206 autosomal SNPs. The top 0.1% FST values were

used to represent the selection signature, as was previously considered by Kijas et al. [18] and

Zhao [24].

The hapFLK method considers the haplotype structure of the population [25]. We used

hapFLK 1.4 program [25] to detect the signatures of selection through haplotype differentia-

tion among the studied populations. The number of haplotype clusters per chromosome was

determined in fastPHASE by using cross-validation-based estimation and was set at 25 [54].
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For detailed analyses, we selected the hapFLK regions containing at least one SNP with p-value

threshold of 0.001 (-log10(p) > 3). The hapFLK regions carrying at least one SNP with p-value

threshold of 0.00001 (-log10(p) > 5) were defined as the strongest hapFLK regions. To limit

the number of false positives, we calculated q-values by using R package qvalue [55]. We

applied a q-value threshold of 0.05 (corresponds to a false discovery rate of 5%).

We used R package “detectRUNS” [45] for ROH estimation. We selected the overlapping

ROH segments with the minimal ROH length of 0.3 Mb shared by more than 50% of the sam-

ples as an indicator of possible ROH islands in the genome. Special attention was paid to the

ROH islands shared by more than 70% of the samples, which were defined as the strongest

ROH islands.

The results obtained by the three different methods (FST, hapFLK, and ROH) were com-

pared, and genomic regions selected by at least two different methods were identified. More-

over, we compared our results with the data previously obtained by Yurchenko et al. [34] by

using de-correlated composite of multiple signals (DCMS) statistics [56] for the presence of

the overlapping genomic regions. Besides, we compared the identified genomic regions with

the meta-assembly of selection signature in cattle [57].

Identification of genes and gene function within selected regions of the

genome

The FST statistic windows of 0.4 Mb (0.2 Mb upstream and 0.2 Mb downstream of the top

0.1% SNPs) were investigated to select overlapping gene segments. For hapFLK and ROH

analyses, the genes were selected if they were localised entirely or in part within the identified

genomic regions. Gene identification was performed using Bos_taurus_UMD_3.1.1 genome

assembly (https://www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6). The selected genes

were considered as candidate genes. In addition, genes were compared with quantitative trait

locus (QTL) regions included in the Cattle QTL database (http://www.animalgenome.org/

cgi-bin/QTLdb/index) [58]. Phenotypes that are known to be associated with the identified

candidate genes were inferred from the most recent literature, by integrating PubMed database

of the National Center of Biotechnological Information (https://pubmed.ncbi.nlm.nih.gov/).

The information for the annotation of some specific genes was sourced from Gene Cards

(http://www.genecards.org/).

Results

Genetic diversity

The estimation of the average heterozygosity within each breed indicated significant genetic

diversities among the studied breeds (Table 1).

The average level of UHE for the Yaroslavl breed was lower, whereas that for the Kholmogor

breed was higher than that of Holsteins. The calculation of UFIS indicated heterozygote excess

Table 1. Summary statistics for the studied breeds calculated on the basis of the high-density SNP genotypes.

Breed Acronym n HO UHE UFIS [CI 95%] FROH AR NE5

Yaroslavl YRSL 31 0.354±0.0001 0.349±0.0001 -0.013 [-0.014; -0.012] 0.103±0.006 1.967±0.0001 111

Kholmogor KHLM 25 0.370±0.0001 0.361±0.0001 -0.022 [-0.023; -0.021] 0.059±0.003 1.977±0.0001 130

Holstein HOL 25 0.358±0.0001 0.354±0.0001 -0.01 [-0.011; -0.009] 0.108±0.006 1.966±0.0001 95

Note: n, the number of individuals; HO, observed heterozygosity; UHE, unbiased expected heterozygosity; UFIS, the inbreeding coefficient; FROH, inbreeding coefficient,

calculated on the basis of ROH; AR, allelic richness; NE5, effective population size 5 generations ago.

https://doi.org/10.1371/journal.pone.0242200.t001

PLOS ONE Selection signatures in native cattle breeds

PLOS ONE | https://doi.org/10.1371/journal.pone.0242200 November 16, 2020 6 / 30

https://www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6
http://www.animalgenome.org/cgi-bin/QTLdb/index
http://www.animalgenome.org/cgi-bin/QTLdb/index
https://pubmed.ncbi.nlm.nih.gov/
http://www.genecards.org/
https://doi.org/10.1371/journal.pone.0242200.t001
https://doi.org/10.1371/journal.pone.0242200


in all populations beyond the expected number of heterozygotes. The UFIS values were similar

for Yaroslavl and Holstein breeds, whereas the Kholmogor breed had higher heterozygote

excess. The estimation of inbreeding coefficients based on FROH showed a similar pattern.

That is, the FROH values for Yaroslavl and Holstein breeds were significantly higher than those

of the Kholmogor breed (0.103 and 0.108 vs 0.059, p< 0.001). Higher FROH values are associ-

ated with increased degree of inbreeding. We did not observe differences in allele richness

(AR) between Yaroslavl and Holstein breeds; in contrast the Kholmogor breed had higher AR

values.

Effective population size

The Yaroslavl and Kholmogor breeds had higher effective population size (NE5 = 111 and 130,

respectively) than that of Holsteins (NE5 = 95) (Table 1). The NE values for Kholmogor breed

declined over time, whereas the lowest NE value was observed for Yaroslavl breed 5 genera-

tions ago (NE = 111) with the subsequent increase to 118 at 3 generation ago (Fig 1A, S2 Fig).

All the three studied breeds had a similar pattern of the NE slope changes up to 7 genera-

tions ago. We observed 3 common peaks in NE changes characterised by accelerated decline of

the effective population size 23, 15, and 7 generations ago. The most recent peak in NE for

Kholmogor breed was found 4 generations ago (Fig 1B).

Estimates of ROHs and FROH

The ROH segments were found in all the studied breeds, with an average number of

71.84 ± 3.27 segments in Yaroslavl breed and 58.96 ± 2.38 segments in Kholmogor breed and

mean ROH length of 3.59 and 2.50 Mb, respectively. In Holsteins, the values of the above-

mentioned estimations were 74.60 ± 2.28 segments and 3.62 Mb, respectively. Short segments

(ROH1–2 Mb), caused by common ancestors around 25 to 50 generations ago, were the most

distributed through the genome and accounted for 38.73% in Yaroslavl breed and 57.26% in

Kholmogor breed of all ROHs identified, although the proportion of the genome covered by

ROHs of this length class was relatively small (15.0% and 31.1%, respectively). In Holsteins,

44.97% of ROHs were characterised by the shortest ROH segments, which covered 17.2% of

the genome (Fig 2, S1 Table).

The proportion of ROH segments with the greatest length (>16 Mb), typically caused by

inbreeding to a very recent ancestor, as in parent–offspring, half-sib mating, or first cousin

mating, was extremely low in the Yaroslavl and Holstein breeds (0.65% and 0.10% of the total

number of ROHs, respectively). The genome coverage by the longest ROHs was the lowest and

averaged 9.6% in the Yaroslavl breed. We did not find long ROH segments (>16 Mb) in the

Kholmogor breed.

Breed relationship and admixture

The results of PCA revealed well-separated clusters corresponding to each of the three breeds.

The first component, which explained 7.02% of the genetic variability, split the Yaroslavl breed

from the Kholmogor breed and Holsteins, suggesting an early divergence of Yaroslavl from

old Friesians; in contrast, the Kholmogor breed was separated from Holsteins by the second

component, which was responsible for 5.03% of diversity (S3A Fig).

A Neighbor-Net tree based on pairwise IBS distances showed breed-specific distribution of

individuals between three branches, which joined individuals of the same breed (S3B Fig). To

identify ancestry and admixture level among the studied breeds, we performed admixture

analysis for the number of clusters (K) from 1 to 5 (S3C Fig). At K = 2, the Yaroslavl breed was

clearly divided from Holsteins, confirming its earlier divergence. At K = 3 (corresponding to
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the minimal value of CV error; S3D Fig), each of the three breeds formed their own clusters.

Only slight level of admixture was observed in the several animals of Yaroslavl breed, whereas

the Kholmogor breed was characterised by slightly greater level of admixture.

FST statistics

We observed variation in genetic differentiation between breeds, based on FST through the

genome (Fig 3A–3C).

The average pairwise FST values between breeds were 0.090 for Yaroslavl and Kholmogor

breeds, 0.107 for Yaroslavl and Holstein breeds, and 0.081 for Kholmogor and Holstein breeds.

We identified 561, 564, and 565 SNPs with FST beyond the cut-off value for the above-men-

tioned pairs of breeds, respectively, and thus considered them to be under selection pressure

(S2 Table). The selected SNPs included single SNPs as well as SNP blocks consisting of several

Fig 1. The effective population size (NE) across generations from approximately 50 generations ago based on linkage disequilibrium

(LD) calculations (a) and NE slope (b). Note: Breed: YRSL, Yaroslavl; KHLM, Kholmogor; HOL, Holsteins.

https://doi.org/10.1371/journal.pone.0242200.g001
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neighbour SNPs. The greatest number of top 0.1% SNPs for YRSL/HOL comparison was

obtained on chromosomes 2, 16, 6, 11, 1, 26, 5, 20, 17, and 18 (74, 45, 39, 37, 33, 33, 30, 30, 28,

and 24 SNPs, respectively), and the lowest was obtained on chromosomes 25, 22, 9, 27, and 21

(5, 3, 2, 1, and 0 SNPs, respectively). The KHLM/HOL comparison revealed the greatest num-

ber of top 0.1% SNPs on chromosomes 20, 8, 29, 2, 7, 5, 16, 1, 10, and 6 (60, 59, 48. 46, 34, 30,

30, 27, 26, and 25 SNPs), whereas the lowest were on chromosomes 25, 22, and 28 (5, 3, and 0

SNPs, respectively). Although the distribution of selected top 0.1% SNPs was breed specific in

most cases, we identified a small number of SNPs which were under selection pressure in two

pairs of breeds, including 37 SNPs for YRSL/KHLM and YRSL/HOL, 28 SNPs for YRSL/HOL

and KHLM/HOL, and 10 SNPs for KHLM/HOL and YRSL/KHLM (Fig 4, S3 Table).

Fig 2. Descriptive statistics of runs of homozygosity (ROH) by ROH length class. Note: Breed: YRSL, Yaroslavl;

KHLM, Kholmogor; HOL, Holsteins. (A). Number of ROHs by ROH length class: axis X, ROH classes (1–2 Mb, 2–4

Mb, 4–8 Mb, 8–16 Mb, and>16 Mb); axis Y, mean number of ROHs; (B). Length of ROHs by ROH length class: axis

X, ROH classes (>1 Mb,>2 Mb,>4 Mb,>8 Mb, and>16 Mb); axis Y, mean length of ROHs.

https://doi.org/10.1371/journal.pone.0242200.g002
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The hapFLK analysis

The hapFLK analysis revealed 24 putative regions affected by selection, which were distributed

among 16 autosomes (S4 Table, Fig 5).

Fig 3. Genomic distribution of FST values estimated between pairs of breeds. (A). Yaroslavl and Kholmogor breeds. (B). Yaroslavl and Holstein breeds. (C).

Kholmogor and Holstein breeds. Note: Axis X, cattle autosomes (the breadth of autosomes corresponds to their length); axis Y, FST values. SNPs were plotted

relative to their positions within each autosome. The horizontal line on each plot indicates the threshold, which was estimated as the top 0.1% for FST values. The

SNPs with FST beyond the cut-off value were considered to be under selection pressure.

https://doi.org/10.1371/journal.pone.0242200.g003
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Thirteen hapFLK regions were identified in the Yaroslavl breed, 6 in the Kholmogor breed,

and 12 in Holsteins. In most cases, the chromosomal distribution of these regions was breed-

specific. The regions identified by the hapFLK analysis were observed on 9 autosomes (BTA4,

BTA5, BTA6, BTA11, BTA13, BTA14, BTA15, BTA16, and BTA22) in Yaroslavl breed and on

6 autosomes (BTA4, BTA6, BTA12, BTA15, BTA18, and BTA23) in Kholmogor breed. For

comparison, the hapFLK regions were detected on nine autosomes (BTA1, BTA3, BTA7,

BTA8, BTA11, BTA13, BTA14, BTA22, and BTA23) in Holsteins. Both Yaroslavl and Kholmo-

gor breeds had hapFLK regions overlapping with Holsteins (4 and 1 region, respectively) and

with each other (2 regions). The sizes of the putative regions to be under selection pressure

ranged from 0.336 to 2.974 Mb in Yaroslavl breed, from 0.284 to 1.266 in Kholmogor breed,

and from 0.080 to 2.974 in Holsteins.

Identification of ROH islands

Overlapping ROH islands observed in more than 50% of samples within each breed were

found across the genome in all the studied breeds (S5 Table, S4 Fig).

We identified 17 and 20 ROH islands which were distributed among 12 chromosomes in

the genome of Kholmogor and Yaroslavl cattle breeds, respectively. In most cases, the genomic

distribution of ROH islands was specific for each breed both in length and localisation across

chromosomes. The lengths of ROHs varied from 304.8 to 1276.9 kb in Kholmogor breed and

from 297.2 to 1640.6 kb in Yaroslavl breed and were averaged 638.1 ± 59.4 and 691.0 ± 71.6

kb, respectively.

For comparison, in Holsteins, 29 ROH islands were identified, which were distributed

among 16 autosomes. The mean ROH length was 735.6 ± 85.8 kb with variation from 304.8 to

2741.3 kb. We identified several overlapping ROHs, which were common for two or three

breeds. The ROHs located on BTA3 (positions from 9,205,782 to 9,515,045), BTA6 (positions

5,252,711 to 6,502,610), and BTA14 (positions 24,419,295 to 25,066,322) were common for all

the three studied breeds. The ROH regions on BTA7 (positions 52,077,420 to 52,572,307),

BTA13 (positions 50,231,261 to 50,724,998), BTA16 (positions 42,691,909 to 43,535,617), and

BTA29 (positions 38,947,760 to 39,252,602) were common for Kholmogor and Holstein

breeds. The common ROH islands on BTA12 (positions 72,509,035 to 73,492,233), BTA16

(positions 43,804,119 to 44,269,629), and BTA21 (positions 2,082,072 to 2,482,464) were

observed in the genome of Yaroslavl and Holstein breeds. Among the described ROH islands,

we identified 6 strongest ROHs (present in more than 70% of samples) in the genome of Yaro-

slavl breed on BTA5 (positions 24,567,855 to 24,934,918), BTA6 (positions 5,252,711 to

6,522,730), BTA7 (positions 20,531,857 to 21,146,198), BTA16 (positions 39,698,386 to

40,620,308 and 42,507,253 to 43,049,359), BTA17 (35,494,057 to 36,118,075), and BTA21

(positions 2,082,072 to 2,504,481) as well as 3 strongest ROHs in the genome of Kholmogor

breed on BTA7 (positions 51,178,057 to 51,555,664), BTA14 (positions 24,562,756 to

24,874,608), and BTA16 (positions 42,691,909 to 43,472,069). One strongest ROH region com-

mon for Kholmogor and Holstein breeds and one region common for Yaroslavl and Holstein

breeds was found on BTA14 and BTA16 (S5 Table).

Comparison of the genomic localisation of the regions identified in our study by using FST,

hapFLK, and ROH analyses, as well as in the previous study performed by Yurchenko et al.

[34] by using DCMS statistic [56] showed the presence of several genomic regions under puta-

tive selection in the studied breeds identified at least by two different methods (Table 2).

Twelve such regions were detected in Yaroslavl breed and nine in Kholmogor breed com-

pared to 17 regions in Holsteins.
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Identification of candidate genes within selected regions of the genome

We identified candidate genes within which the SNPs selected by FST analysis were localised

(S2 Table), as well as the genes entirely or in part localised within the detected hapFLK regions

and ROH islands (S6 Table). For more thorough analysis, we selected the genes, localised

within genomic regions, which revealed the signature of selection identified by hapFLK and/or

carried the strongest ROHs (ROH islands observed in more than 70% of animals) or were

detected at least by two different methods (Table 3).

Functional annotation of the identified candidate genes showed the presence of genes asso-

ciated with growth (localised on BTA 4, BTA 6, BTA 7, BTA 14, BTA 15, BTA 16, BTA 17,

BTA 18, and BTA 21), carcass-related traits (BTA 6, BTA 7, BTA 15, and BTA 18), feed effi-

ciency (BTA 14, BTA 15, and BTA 18), milk production (BTA 5, BTA 6, BTA 14, and BTA

16), and reproduction (BTA 1, BTA 4, BTA 6, BTA 7, BTA 9, BTA 15, BTA 16, BTA 17, and

BTA 18), involved in the metabolic process (BTA 6, BTA 7, BTA 15, BTA 16, and BTA 24),

Fig 4. Venn diagram illustrating the distribution of the top 0.1% of SNPs by FST value between pairs of breeds. Note: Breed: YRSL, Yaroslavl; KHLM,

Kholmogor; HOL, Holsteins.

https://doi.org/10.1371/journal.pone.0242200.g004
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and responsible for immunity (BTA 5, BTA 6, BTA 7, BTA 15, BTA 16, BTA 17, and BTA 18)

and adaptation (BTA 18; S7 Table).

Discussion

Genetic diversity, effective population size, and breed relationship

To our knowledge, this is the first comprehensive genome-wide study of putative signatures of

selection in the genomes of Yaroslavl and Kholmogor breeds performed on the basis of the

analysis of high-density SNP genotypes (650,134 autosomal SNPs) generated using Bovine

SNP HD BeadChip (Illumina, USA). In our recent studies, we showed that these two oldest

Russian native breeds have been little influenced by introgression with transboundary breeds

Fig 5. Genome-wide scan for the signature of selection based on the hapFLK statistics. Note: Each dot corresponds to a single SNP; axis X, genomic coordinates by

chromosome; axis Y, statistical significance (−log10 P-values); the red and blue lines indicate the thresholds of significance: 10−5 and 10−3, respectively; the figures

above and below the plot present the magnified plots of the chromosome areas containing the hapFLK regions.

https://doi.org/10.1371/journal.pone.0242200.g005
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Table 2. Genomic regions under putative selection in the two old Russian cattle breeds compared to those in Holsteins identified at least by two different methods.

BTA Breed Genomic regions (Mbp) under selection identified by different methods

FST 1 hapFLK1 ROH501 DCMS2

1 HOL 32.45–32.51 32.45–32.53

YRSL 65.31–65.61 65.25–65.69

HOL 84.20–84.23 83.68–84.55 83.86–84.48

2 HOL 101.86–102.34 101.68–102.16 101.84–102.00

3 HOL 8.97–9.72 9.39–9.53

HOL 53.89–54.25 54.26–54.33 53.81–54.80

4 YRSL 5.01–5.11 4.74–5.36

5 YRSL 23.76–24.40 24.48–25.26 23.95–26.34

6 KHLM 60.34–60.70 60.05–60.74 60.30–60.76

YRSL 71.46–71.55 71.38–72.04 71.24–71.96

7 YRSL 10.22–10.69 10.07–10.29

YRSL 20.53–21.19 20.63–20.98

HOL 43.01–43.61 43.43–43.57

HOL 46.96–47.97 47.38–47.74

HOL 52.08–52.60 51.57–52.42

8 HOL 59.67–60.32 59.81–60.21

HOL 107.80 – 108.58 107.44–109.46a 107.62–108.84 107.76–108.68

9 KHLM 64.53–65.13 64.86–65.11

12 KHLM 81.45–81.58 81.40–81.69

13 HOL, YRSL 5.18–5.67 4.97–6.82 5.28–6.40

14 KHLM 1.54–2.09 1.70–1.89

HOL 21.12 21.10–21.58

HOL, YRSL, KHLM 24.42–25.07 24.43–25.10

HOL 28.58–28.69 28.34–29.17

15 KHLM 16.13, 16.14 16.04–16.62

YRSL 18.03, 18.25 17.80–18.77

16 YRSL 41.91–42.48 42.48–43.13 42.43–43.37

HOL 42.56–43.54 42.79–43.50

KHLM 42.69–43.54 42.87–43.17

17 YRSL 45.60 45.59–45.61

18 KHLM 0.85, 0.88 0.19–1.46

KHLM 14.04–14.98 14.12–14.99

24 YRSL 41.74 41.76–41.89 41.67–42.18

26 HOL 19.53–20.28 19.19–20.29

HOL 21.20–22.91 22.13–23.01 21.53–22.95

29 HOL 38.67–38.92 38.95–39.25 38.41–39.33

Note: BTA, Bos taurus autosome; Breed: YRSL, Yaroslavl; KHLM, Kholmogor; HOL, Holsteins; genomic regions: start and end positions (Mbp) according to

Bos_taurus_UMD_3.1.1 genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6); methods used for the identification of the signature of

selection: FST, top 0.1% SNPs by FST value at pair-wise breed comparison; hapFLK, regions identified by hapFLK analysis; ROH50, ROH segments distributed in more

than 50% of animals within each of the studied breed
1present study
2Yurchenko et al. [34]; pairs of breeds, used for FST calculations
aKHLM/HOL
bYRSL/HOL
cYRSL/KHLM
dweak selection signal was also observed in Kholmogor breed.

https://doi.org/10.1371/journal.pone.0242200.t002
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and maintained their historical genomic components [9, 11]; thus, they may carry specific sig-

natures of selection, reflecting their adaptation to the local environmental conditions and

response to the breeding strategy used. Adaptation to the changing environment is increas-

ingly important [59]; thus, native cattle breeds might become valuable sources of genetic

Table 3. Genes localised within the genomic regions affected by putative selection in Yaroslavl and Kholmogor cattle breeds.

BTA Region

(Mb)

Breed Methods Genes

1 65.3 – 65.7 YRSL ROH50, DCMS1 GSK3B, GPR156

4 4.7 – 5.4 YRSL FST, hapFLK Grb10, DDC�

5 24.5 – 25.3 YRSL hapFLK, ROH,

DCMS

PLXNC1, CCDC41, TMCC3, NDUFA12, FGD6, VEZT, MIR331

6 5.2 – 6.5 YRSL ROH MAD2 , MAD2L1, MGC134093

6 60.1 – 60.8 KHLM FST, hapFLK,

DCMS

WDR19, KLB�, RPL9�, LIAS�, UGDH�, UBE2K, PDS5A

6 71.4 – 72.1 YRSL FST, hapFLK,

DCMS

PDGFRA�, KIT

7 10.2 – 10.7 YRSL ROH, DCMS

7 20.5 – 21.2 YRSL ROH, DCMS TICAM1, FEM1A, MIR7, DPP9, TNFAIP8L1, SEMA6B, PLIN5, LRG1, PLIN4, HDGF2UBX, N6, CHAF1A,

SH3GL1, STAP2, MPND, FSD1, TMIGD2, SHD, CCDC94, EBI3, ANKRD24, SIRT6, CREB3L3, MARP2K2

7 51.2 – 51.6 KHLM ROH NME5, BRD8, MIR2459, GFRA3, KIF20A, CDC23, FAM53C, CDC25C, REEP2, EGR1, ETF1, HSPA9

9 64.5 – 65.1 KHLM ROH, DCMS SYNCRIP, NT5E

12 81.4 – 81.7 KHLM FST, hapFLK NALCN
13 5.0 – 6.8 YRSLa FST, hapFLK,

DCMS

BTBD3�

14 1.5 – 2.1 KHLM ROH, DCMS LRRC24, LRRC14, RECQL4, MFSD3, GPT, PPP1R16A, FOXH1, CYHR1, NFKBIL2, SLC39A4, CPSF1, ADCK5,

GPR172B, FBXL6, SCRT1, DGAT1, HSF1, BOP1, SCXB, HEATR7A, MAF1, SHARPIN, CYC1, GPAA1, EXOSC4,

OPLAH, GRINA, PARP10, MIR23089

14 24.4 – 25.1 YRSLa ROH, DCMS XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1, CHCHD7
14 24.4 – 25.1 KHLMa ROH, DCMS

15 16.0 – 16.6 KHLM FST, hapFLK PIWIL4, FUT4�, MGC137061�, CWF19L2, GUCY1A2

17.8 – 18.8 YRSL FST, hapFLK RAB39, CUL5�, ACAT1�, NPAT, ATM, KDELC2�, EXPH5, DDX10

16 39.7 – 40.6 YRSL ROH FMO1, FMO4, BAT2L2, MYOC, VAMP4, METTL13, MIR214, MIR199A1
42.5 – 43.1 YRSLa hapFLK, ROH,

DCMS

VPS13D, TNFRSF1B, TNFRSF8, MIIP, MFN2, PLOD1, KIAA2013, NPPB, NPPA, CLCN6, MTHFR, AGTRAP,

MAD2L2, FBXO6, FBXO44, FBXO2, PTCHD2

42.7 – 43.5 KHLMa ROH, DCMS NPPB, NPPA, CLCN6, MTHFR, AGTRAP, MAD2L2, FBXO6, FBXO44, FBXO2, PTCHD2, UBIAD1, MTOR,

ANGPTL7, EXOSC10, SRM, MASP2, TARDBP

17 35.5 – 36.1 YRSL ROH IL2, ADAD1

18 0.2 – 1.5 KHLM FST, hapFLK UQCRFS1�, VSTM2B, VAC14

14.0 – 15.0 KHLM ROH, DCMS CDT1, APRT, GALNS, TRAPPC2L, CBFA2T3, ACSF3, CDH15, MGC157263, ANKRD11, SPG7, RPL13, CPNE7,

DPEP1, CHMP1A, CDK10, SPATA2L, ZNF276, FANCA, TCF25, SPIRE2, MC1R, TUBB3, MIR220D, DEF8,

CENPBD1, DBNDD1, GAS8, SHCBP1

21 2.0 – 2.5 YRSL ROH UBE3A

24 41.7 – 41.9 YRSL FST, ROH, DCMS NDUFV2�

Note: BTA, Bos taurus autosome; region, start and end positions of the genomic region affected by putative selection (Mbp) according to Bos_taurus_UMD_3.1.1

genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6); breed: YRSL, Yaroslavl; KHLM, Kholmogor; methods: FST, top 0.1% SNPs by FST value

at pair-wise breed comparison; hapFLK, regions identified by hapFLK analysis; ROH, ROH segments distributed in more than 50% of animals within each of the studied

breed (genes localised within ROH segments identified in more than 70% of animals are shown by bold)
1the signature of selection identified previously by Yurchenko et al. [34] based on de-correlated composite of multiple signals (DCMS)
agenomic regions, which are common with Holsteins

�causative SNPs, detected by FST analyses were localized within 0,4 Mb windows; functionally annotated genes are underlined.

https://doi.org/10.1371/journal.pone.0242200.t003
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variability, which will be necessary for developing sustainable animal production systems in

the future.

Considering the relatively small sample size, we were very thoughtful when choosing ani-

mals for research. The selected individuals represented different sire lines and different breed-

ing farms, and unveiled the low amount of Holstein ancestral components (S3 Fig). Besides,

the small sample sizes appear to be sufficient to obtain the reliable results using high-density

SNP markers [56].

We found that 9.36% of variability was attributed to genetic differences between breeds

(FST = 0.094), and the remaining 90.64% was the result of allelic variation within breeds. We

observed slightly higher level of genetic variability in Yaroslavl (UHE = 0.349, AR = 1.967) and

Kholmogor (UHE = 0.361, AR = 1.977) breeds (Table 1) than was previously detected using

medium-density DNA BeadChip [9, 10]. Variability was significantly lower in the Yaroslavl

breed than in the Kholmogor breed (p< 0.001), probably because of more drastic decline in

the census population size. During the last 60 years, the number of Yaroslavl cattle has

decreased by practically 20 times compared to that of Kholmogor breed, which decreased by

4.5 times [12]. Our data agreed with the findings of Xu et al. [15], who performed the genotyp-

ing of three commercial taurine breeds by using high-density DNA array and observed similar

level of genetic variability (HE = 0.337–0.356). In contrast, Stronen et al. [17] detected lower

genetic variability in taurine breeds (HE = 0.226 and 0.298); this was probably because of the

small population size of the studied native breeds. We observed slight excess of heterozygotes

in both the Russian breeds (UFIS = -0.022 and -0.013 for Kholmogor and Yaroslavl breeds,

respectively), which agrees with the findings obtained using DNA chips of lower density [9,

10]. The detected inbreeding coefficient in Holsteins (UFIS = -0.010) was similar or lower than

one which was discovered in recent reports (FIS = −0.004 [60], FIS = 0.0526 [15]), which might

reflect the differences in sample origins and population sizes.

The NE showed an overall decline for the studied breeds over generations (Fig 1A, S2 Fig).

The most recent NE values observed for Yaroslavl (NE5 = 111) and Kholmogor (NE5 = 130) cat-

tle were higher than those in Holsteins (NE5 = 95) and exceeded the critical threshold of NE =

100 estimated for long-term viability of discrete livestock breeds [61]. We observed four peri-

ods of accelerated decline in NE during the last 45 generations (Fig 1B). The more ancient peri-

ods were observed between 28 and 23 as well as 18 and 15 generations ago, which probably

reflect the World wars crisis. The subsequent acceleration was detected between 8 and 7 gener-

ations ago, which was most likely the result of the implementation of artificial insemination,

which is associated with the decrease in bull number. The recent accelerated decline in NE was

found between 5 and 4 generations ago for Kholmogor breed and between 6 and 5 generations

ago for Yaroslavl breed, when the NE decreased from 130 to 115 and 113 to 111, respectively.

The possible explanation for this could be the large decrease in the population size of the pure-

bred cattle from the mid-1990s to the mid-2000s owing to the general decline of industry in

the first decade of the post-Soviet period.

We observed visible differences in the autozygosity level among the studied breeds. The

average ROH length (258.3 Mb) in Yaroslavl breed was similar to that in Holsteins (270.1 Mb)

and exceeded that in the Kholmogor breed (147.6 Mb). The higher total ROH length in Yaro-

slavl breed might be attributed to the higher inbreeding owing to the lower population size.

Among the different length classes, short ROH segments (1–2 Mb) were prevalent (Fig 2, S1

Table), which agreed with the findings obtained in different cattle populations [48, 62, 63].

The results of the PCA plot, Neighbor-Net analysis, and admixture clustering (S3 Fig) sug-

gest a low contribution of Holstein ancestors (probably Holland cattle) in the formation of the

architecture of the Yaroslavl and Kholmogor breeds, which has been proposed by several

researchers [5, 9–11].
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Identification of genomic regions under putative selection in the

Kholmogor and Yaroslavl breeds

We applied three different statistical methods (selection of top 0.1% SNPs by FST value for

pair-wise breed comparison, identification of ROH islands shared by more than 50% of ani-

mals within each breed, and hapFLK analysis) to identify the genomic regions and genes that

are affected by selection (S2 and S6 Tables). Considering a possible impact of genetic drift or

recent inbreeding on ROHs [64], we selected the ROH islands to be under selection pressure,

if they were confirmed by at least one more method or were observed in more than 70% of ani-

mals. Results obtained using multiple analytical approaches typically have higher informative

power, furthermore, methods based on different approaches may also complement each other

[20, 65]. Fifteen of seventeen regions, identified in Holsteins were overlapped with genomic

regions, which were described by Yurchenko et al. [34] and eleven were overlapped with

regions, which were validated by meta-assembly of selection signatures (S8 Table) [57]. We

confirmed nine regions under putative selection in the genome of Yaroslavl cattle and six

regions in the genome of Kholmogor cattle, which were previously identified by Yurchenko

et al. [34] by using DCMS analysis [56] of medium-density SNP genotypes; in this study, the

flanking positions of most of these regions were expanded (Table 3). In addition, we detected

three new putative genomic regions affected by selection by using at least two different meth-

ods in the genome of Yaroslavl (BTA 4 at 4.74–5.36 Mbp, BTA 15 at 17.80–18.77 Mbp, and

BTA 17 at 45.59–45.61 Mbp) and Kholmogor (BTA 12 at 82.40–81.69 Mbp, BTA 15 at 16.04–

16.62 Mbp, and BTA 18 at 0.19–1.46 Mbp) breeds. Only two of the selected regions (localised

on BTA 14 at 24.4–25.1 Mbp and BTA 16 at 42.5–43.5 Mb) overlapped in Yaroslavl, Kholmo-

gor, and Holstein breeds. An additional overlapping region with Holsteins (localised on BTA

13 at 5.0–6.8 Mbp) was found in the Yaroslavl breed. Seventeen of twenty-one regions, found

in the Yaroslavl and Kholmogor breeds were overlapped with the signature of selections,

which were identified in other European breeds by meta-assembly [57], while two genomic

regions in each breed were novel (S8 Table).

Functional annotation of candidate genes localised within the selected

regions

We performed functional annotation of genes localised within the putative regions carrying

signals of selection in the genome of the studied breeds. Along with genes, which were previ-

ously described for Yaroslavl and Kholmogor cattle [34], we expanded the list of candidate

genes by elucidating the known genomic regions and detecting additional selection sweeps in

the genome of the studied breeds (Table 3, S6 Table).

We found two regions overlapping with the Holstein genomic region under selection pres-

sure in both Yaroslavl and Kholmogor breeds (Table 3, S6 Table). One of these regions is local-

ized on BTA 14 and contains the XKR4, TMEM68, TGS1, LYN, RPS20, MOS, PLAG1, and

CHCHD7 genes which are well-known candidates for growth, carcass-related traits [66–68],

and feed intake [69–71]. The PLAG1 gene (or PLAG1-CHCHD7 region) is a strong candidate

responsible for stature; body size, including height [72]; and weight in many cattle breeds [73–

78]. Fink et al. [79] found a strong association of the PLAG1 genotype with milk fat and pro-

tein yield. Utsunomiya et al. [80] provided an insightful account of the effect of PLAG1 in the

history of domesticated cattle. The polymorphic SNP BovineHD1400007259, located within

the intronic region of the PLAG1 gene, is considered as a causal mutation responsible for stat-

ure [81–83]. This mutation was segregated in both Yaroslavl (pA = 0.367, qC = 0.633; HO =

0.323) and Kholmogor (pA = 0.140, qC = 0.860; HO = 0.200) breeds, which could have resulted

from selection in both breeds for animals of the larger size. Selection pressure on genes,

PLOS ONE Selection signatures in native cattle breeds

PLOS ONE | https://doi.org/10.1371/journal.pone.0242200 November 16, 2020 17 / 30

https://doi.org/10.1371/journal.pone.0242200


involved in growth regulation is confirmed by identification of additional notable candidate

genes with known effect on body size and/or carcass traits, including Grb10 on BTA 4 [84–86],

PDGFRA, MAD2L and UBE2K on BTA 6 [87–90], SIRT6 on BTA 7 [91–93], and ACAT1,

KDELC2 on BTA 15 [94–96] in Yaroslavl breed, and EGR1, HSPA9 on BTA 7 [97, 98], and

CDH15, DPEP1, GAS8, GALNS, and MC1R on BTA 18 [30, 99–102] in Kholmogor breed. The

second overlapping genomic region under positive selection in Yaroslavl, Kholmogor and

Holstein breeds containing TNFRSF1B, MFN2, PLOD1, KIAA2013, NPPB, NPPA, CLCN6,

MTHFR, AGTRAP, FBXO2, MTOR, ANGPTL7, EXOSC10, and MASP2 genes was found on

BTA16 (Table 3, S6 Table). The selected candidate genes are involved in different biological

processes in cattle, including milk production—MTHFR [103] and mTOR genes [104, 105];

reproduction—PLOD1 [106], NPPA and NPPB [107], EXOSC10 genes [108]; immunity—
TNFRSF1B [109] and MASP2 genes [110, 111]; and metabolism—MFN2 gene [112].

Additional large set of candidate genes (LRRC24, LRRC14, RECQL4, HEATR7A, MFSD3,

GPT, PPP1R16A, FOXH1, CYHR1, SLC39A4, CPSF1, ADCK5, FBXL6, BOP1, SCRT1, DGAT1,

GPAA1, EXOSC4, PARP10, HSF1, OPLAH, and GRINA), associated with milk production

traits in Kholmogor cattle was found on BTA 14. These genes were shown to be involved in

regulation of milk fatty acid composition [113–116], milk yield [117, 118], milk fat yield, and

milk fat percentage [119–123]. In contrast to Kholmogor cattle, we identified only two candi-

date genes on BTA 5, which were associated with milk production traits in Yaroslavl cattle,

including TMCC3 and DDX10 [124, 125]. The possible explanation for the presence of numer-

ous milk trait genes affected by selection in Kholmogor cattle could be that one of the breeding

targets for this breed from the middle of the 19th century was to supply the Petersburg and

Moscow citizens with high-quality dairy products [5]. This stimulated the selection of high-

producing cows with excellent milk quality, suitable for butter and cheese production, and

thus led to the alterations in the allele frequencies of genes which are involved in the regulation

of milk production and composition.

We identified a few more candidate genes associated with reproduction traits, including

GSK3B on BTA 1 [126], ADAD1 on BTA 17 [127, 128], and UBE3B on BTA 21 [129, 130], in

the Yaroslavl breed. These genes are associated mainly with female fertility traits, that can

reflect the unique capacity of cows of Yaroslavl breed to produce healthy calves even with

severe weight losses because of poor feeding in winter [4]. The genes detected in Kholmogor

breed, including WDR19 on BTA 6 [131], NME5 on BTA 7 [132, 133], NT5E on BTA 9 [134],

PIWIL4 on BTA 15 [135], TUBB3 and UQCRFS1 on BTA 18 [136, 137], are mainly related to

male fertility. Since the Kholmogor breed had become the breed of choice for the growing

market of Petersburg and Moscow in the 19th century, the use of bulls with increased fertility

was preferred.

We detected selection pressure on genes involved in lipid metabolism in Yaroslavl cattle,

including PLIN4, PLIN5, and CREB3L3 on BTA 7 [138–141], MFN2 on BTA 16 [112], and

NDUFV2 on BTA 24 [142]. This observation is probably associated with the capacity of cattle

population of Central Russia to accumulate sufficient subcutaneous fat during the pasture

period that helped them to survive under poor nutrition conditions in winter and to maintain

pregnancy [4].

In Yaroslavl breed, we found a putative signature of selection around the KIT gene on BTA

6, which is a functional candidate for coat coloration in cattle, including white spotting pat-

terns in the Holstein [143] and Fleckvieh cattle breeds [144]. According to the QTL database

[58], the region on BTA 6 between 71.4 and 72.1 Mbp, where the KIT gene is localised, con-

tains the genes associated with eye area pigmentation in Fleckvieh cattle [145]. The black pig-

mentation of the eye area is one of the well-known distinguishing features of Yaroslavl cattle

(S1 Fig).
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In summary, our study provides deeper insight into the genomic architecture of Yaroslavl

and Kholmogor cattle breeds and allowed the identification of the genomic regions and genes

that were affected by selection during the century-long history of breed formation. Our

research results will be useful for the sustainable development and conservation of these two

oldest Russian native cattle breeds.

Supporting information

S1 Fig. The photos of the pure-bred Yaroslavl and Kholmogor bulls.

(TIF)

S2 Fig. The effective population size (NE) across generations from approximately 500 gen-

erations ago based on linkage disequilibrium (LD) calculations. Note: Breeds: YRSL, Yaro-

slavl; KHLM, Kholmogor; HOL, Holsteins.

(TIF)

S3 Fig. (A). Principal Component Analysis (PCA) plot showing the distribution of the studied

cattle breeds in the dimensions of two coordinates. (B). A Neighbor-Net tree constructed on

the basis of pairwise nucleotide genetic distances among individuals of the three studied

breeds. (C). Admixture plot represents the cluster structure of the studied breeds for the num-

ber of clusters (K) 2 and 3. Different colours correspond to different ancestral populations.

(D). Cross-validation (CV) error for the different number of clusters. Note: Axis X, first princi-

pal component (PC1); Axis Y, second principal component (PC2). The part of total genetic

variability, which can be explained by each of the two components are indicated in curly

parentheses. Breed: YRSL, Yaroslavl; KHLM, Kholmogor; HOL, Holsteins.

(TIF)

S4 Fig. Distribution of ROHs within chromosomes. (a). BTA5, (b). BTA6, (c). BTA7, (d).

BTA8, (e). BTA14, (f). BTA16, (g). BTA17, (h). BTA21. Note: Axis X, chromosomal positions

(Mbps); Axis Y, the ratio of animals carrying ROHs (in percent); YRSL, Yaroslavl; KHLM,

Kholmogor; HOL, Holsteins.

(TIF)

S1 Table. Mean number and length of ROHs of different length classes. Note: Class: ROH

length class (1–2 Mb, 2–4 Mb, 4–8 Mb, 8–16 Mb, and>16 Mb); breed: YRSL, Yaroslavl;

KHLM, Kholmogor; HOL, Holsteins; n, number of animals; mean number of ROH: values,

mean values for each length class and breed; sd, standard deviation; se, standard error; ci, con-

fidence interval; %, ratio of the number of ROHs of certain length class in the common num-

ber of ROHs within each breed; mean length of ROH: values, mean values for each length class

and breed; sd, standard deviation; se, standard error; ci, confidence interval; %, ratio of the

length of ROHs of certain length class in the common length of ROHs within each breed.

(XLSX)

S2 Table. Top 0.1% SNPs by FST values during pair-wise comparison of breeds. Note: BTA,

Bos taurus autosome; breed: YRSL, Yaroslavl; KHLM, Kholmogor; HOL, Holsteins; compared

pairs of breeds indicated by different colour filling: KHLM/HOL, blue filling; YRSL/HOL,

green filling; KHLM/YRSL, pink filling; SNP, SNPs selected in top 0.1% for each pair of breeds;

POS, position of SNPs according to Bos_taurus_UMD_3.1.1 genome assembly (https://www.

ncbi.nlm.nih.gov/assembly/GCF_000003055.6); NMISS, number of missing SNPs; FST, FST

value calculated for each SNP during pair-wise breed comparison; genes, genes within which

or close (within window from 0.2 Mbp up-stream to 0.2 Mbp down-stream of the causal SNP)

to which is localised the causal SNP; the candidate genes within which the causal SNPs are
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localised are indicted in bold.

(XLSX)

S3 Table. Top 0.1% SNPs by FST value, which are common for two pairs of breeds, during

pair-wise breed comparison: YRSL/KHLM and YRSL/HOL, YRSL/HOL and KHLM/HOL,

as well as KHLM/HOL and YRSL/KHLM. Note: breed: HOL, Holsteins; KHLM, Kholmogor;

YRSL, Yaroslavl.

(XLSX)

S4 Table. Putative selective sweeps identified in the hapFLK-based analysis. Note: BTA, Bos
taurus autosome with the identified hapFLK regions; Breed: YRSL, Yaroslavl; KHLM, Khol-

mogor; HOL, Holsteins; Start and End positions, the positions of the first and last SNPs in the

identified hapFLK region according to Bos_taurus_UMD_3.1.1 genome assembly (https://

www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6); Length, length of hapFLK regions

(Mbp); No. of SNPs, the number of SNPs within localised hapFLK regions; the hapFLK regions

are sorted by chromosome and then by start position on chromosome.

(XLSX)

S5 Table. Genomic regions in Yaroslavl and Kholmogor cattle breeds under putative selec-

tion compared to those in Holsteins revealed by ROH analysis. Note: BTA, Bos taurus auto-

some with the overlapping ROH shared by more than 50% of the animals (the strongest ROH

islands shared by more than 70% of animals are shown in bold); Breed: YRSL, Yaroslavl (indi-

cated by green color); KHLM, Kholmogor (indicated by blue color); HOL, Holsteins (indi-

cated by pink color); No. of SNPs, number of SNPs within an ROH island; Start and End

positions, the positions of the first and last SNPs in an ROH island according to Bos_tauru-
s_UMD_3.1.1 genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCF_000003055.6);

Length, length of ROH island (Mb); Percent of animals, the percent of animals carrying the

ROH island. The ROH islands are sorted by chromosome and then by start position on chro-

mosome.

(XLSX)

S6 Table. Genomic regions and genes affected by putative selection identified using

HapFLK and ROH analyses, and overlapping regions identified by FST calculations in Yar-

oslavl and Kholmogor cattle breeds. Note: BTA, Bos taurus autosome; Start_SNP and

End_SNP, the names of the start and end SNPs on Bovine HD BeadChip (Illumina Inc., USA)

flanking the genomic regions under putative selection; breed: YRSL, Yaroslavl; KHLM, Khol-

mogor; HOL, Holsteins; methods: FST, top 0.1% SNPs by FST value during pair-wise breed

comparison; hapFLK, regions identified by hapFLK analysis; ROH_50% and ROH_70%, ROH

segments distributed in more than 50% and more than 70% of animals, respectively, within

each of the studied breed (the ROH segments identified in more than 70% animals are shown

in bold); nSNP, number of SNPs localised within the identified genomic region; Start position

and End position, start and end positions of the genomic region affected by putative selection

(Mbp) according to Bos_taurus_UMD_3.1.1 genome assembly (https://www.ncbi.nlm.nih.

gov/assembly/GCF_000003055.6); length, the length of the identified genomic regions under

putative selection (Mbp); No. of genes, number of genes localised within identified genomic

regions; genes, the list of genes localised within identified genomic regions (genes localised

within ROH segments identified in more than 70% of animals are shown in bold).

(XLSX)

S7 Table. Selected genes under putative selection in Kholmogor and Yaroslavl cattle

breeds. Note: 1Genes: GSK3B—glycogen synthase kinase 3 beta; Grb10—growth factor
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receptor-bound protein 10; PLXNC1—plexin C1; TMCC3—transmembrane and coiled-coil

domain family 3; FGD6—FYVE, RhoGEF, and pH domain containing 6; MAD2L1—mitotic

arrest deficient 2 like 1; WDR19—WD repeat domain 19; KLB—klotho beta; RPL9—ribosomal

protein L9; LIAS—lipoic acid synthase; UGDH—UDP-glucose 6-dehydrogenase; UBE2K—

ubiquitin-conjugating enzyme E2 K; PDS5A—PDS5 cohesin-associated factor A; PDGFRA—

platelet-derived growth factor receptor, alpha polypeptide; KIT—V-kit Hardy–Zuckerman 4

feline sarcoma viral oncogene homolog; TICAM1—toll like receptor adaptor molecule 1;

PLIN5—perilipin 5; PLIN4—perilipin 4; SIRT6—sirtuin 6; CREB3L3—cAMP-responsive ele-

ment-binding protein 3 like 3; NME5—NME/NM23 family member 5; EGR1—early growth

response 1; HSPA9—heat shock protein family A (Hsp70) member 9; NT5E—ecto-50-nucleo-

tidase; LRRC24—leucine-rich repeat-containing protein 24; LRRC14—leucine-rich repeat-

containing protein 14; RECQL4—RecQ like helicase 4; MFSD3—major facilitator superfamily

domain containing 3; GPT—glutamic-pyruvic transaminase; PPP1R16A—protein phosphatase

1 regulatory subunit 16A; FOXH1—forkhead box H1; CYHR1—cysteine and histidine rich 1;

SLC39A4—solute carrier family 39 member 4; CPSF1—cleavage and polyadenylation specific

factor 1; ADCK5—aarF domain-containing kinase 5; FBXL6—F-Box and leucine rich repeat

protein 6; SCRT1—Scratch family transcriptional repressor 1; DGAT1—diacylglycerol acyl-

transferase 1; HSF1—Heat shock factor 1; BOP1—BOP1 ribosomal biogenesis factor; HEA-
TR7A—maestro heat like repeat family member 1; GPAA1—glycosylphosphatidylinositol

anchor attachment 1; EXOSC4—exosome component 4; OPLAH—5-oxoprolinase, ATP-

hydrolysing; GRINA—glutamate ionotropic receptor NMDA type subunit-associated protein

1; PARP10—poly(ADP-ribose) polymerase family member 10; XKR4—XK, Kell blood group

complex subunit-related family, member 4; TMEM68—transmembrane protein 8B; TGS1—

trimethylguanosine synthase 1; LYN—LYN proto-oncogene, Src family tyrosine kinase; RPS20
—ribosomal protein S20; MOS—MOS proto-oncogene, serine/threonine kinase; PLAG1—

pleomorphic adenoma gene 1; CHCHD7—coiled-coil-helix-coiled-coil-helix domain contain-

ing 7; PIWIL4—piwi like RNA-mediated gene silencing 4; GUCY1A2—guanylate cyclase 1 sol-

uble subunit alpha 2; ACAT1—acetyl-CoA acetyltransferase 1; KDELC2—KDEL (Lys-Asp-

Glu-Leu) containing 2; EXPH5—exophilin 5; DDX10—DEAD-box helicase 10; NPPB—natri-

uretic peptide B; NPPA—natriuretic peptide A; CLCN6—chloride voltage-gated channel 6;

MTHFR—methylenetetrahydrofolate reductase; AGTRAP—angiotensin II receptor associated

protein; FBXO2—F-box protein 2; TNFRSF1B—tumour necrosis factor receptor superfamily,

member 1B; MFN2—mitofusin 2; PLOD1—procollagen-lysine, 2-oxoglutarate 5-dioxygenase

1; mTOR—mammalian target of rapamycin; ANGPTL7—angiopoietin like 7; EXOSC10—exo-

some component 10; MASP2—mannose-binding lectin-associated serine protease 2; IL2—

interleukin 2; ADAD1—adenosine deaminase domain containing 1; UQCRFS1—ubiquinol-

cytochrome c reductase, Rieske iron–sulphur polypeptide 1; GALNS—galactosamine(N-ace-

tyl)-6-sulfatesulfatase; CBFA2T3—CBFA2/RUNX1 partner transcriptional co-repressor 3;

CDH15—cadherin15, type1, M-cadherin; SPG7—SPG7 matrix AAA peptidase subunit, para-

plegin; CPNE7—copine 7; DPEP1—dipeptidase 1; CHMP1A—charged multivesicular body

protein 1A; CDK10—cyclin dependent kinase 10; SPATA2L—spermatogenesis associated 2

like; FANCA—Fanconi anaemia, complementation group A; TCF25—transcription factor 25;

SPIRE2—spire type actin nucleation factor 2; TUBB3—tubulin beta 3 class III; GAS8—growth

arrest specific 8; MC1R—melanocortin 1 receptor; UBE3A—ubiquitin protein ligase E3A;

NDUFV2—NADH dehydrogenase flavoprotein 2; breed: YRSL—Yaroslavl, KHLM—Kholmo-

gor; BTA—Bos taurus autosome; positions—start and end positions of a gene (bp) according

to Bos_taurus_UMD_3.1.1 genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCF_

000003055.6).

(XLSX)
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S8 Table. Comparison of the identified genomic regions under putative selection with

those identified by meta-assembly of selection signatures. Note: BTA, Bos taurus autosome;

Breed: YRSL, Yaroslavl; KHLM, Kholmogor; HOL, Holsteins; genomic regions: start and end

positions (Mbp) according to Bos_taurus_UMD_3.1.1 genome assembly (https://www.ncbi.

nlm.nih.gov/assembly/GCF_000003055.6); methods used for the identification of the signature

of selection: FST, top 0.1% SNPs by FST value at pair-wise breed comparison; hapFLK, regions

identified by hapFLK analysis; ROH50, ROH segments distributed in more than 50% of ani-

mals within each of the studied breed; 1present study; 2Yurchenko et al. [34]; 3meta-assembly

of selection signatures, performed by Randhawa et al. [58]: overlapped MSS region (Mb)–over-

lapped genomic regions, which were validated by meta-selection scores; pairs of breeds, used

for FST calculations: aKHLM/HOL, bYRSL/HOL, cYRSL/KHLM; dweak selection signal was

also observed in Kholmogor breed.

(XLSX)
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