
life

Article

The Link between Type 2 Diabetes Mellitus and the
Polymorphisms of Glutathione-Metabolizing Genes Suggests a
New Hypothesis Explaining Disease Initiation and Progression

Iuliia Azarova 1,2 , Elena Klyosova 2 and Alexey Polonikov 3,4,*

����������
�������

Citation: Azarova, I.; Klyosova, E.;

Polonikov, A. The Link between Type

2 Diabetes Mellitus and the

Polymorphisms of Glutathione-

Metabolizing Genes Suggests a New

Hypothesis Explaining Disease

Initiation and Progression. Life 2021,

11, 886. https://doi.org/10.3390/

life11090886

Academic Editors: Sung Jean Park,

Ji Woong Choi and Do-Hee Kim

Received: 26 June 2021

Accepted: 27 August 2021

Published: 28 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street,
305041 Kursk, Russia; azzzzar@yandex.ru

2 Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular
Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia; ecless@yandex.ru

3 Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular
Epidemiology, Kursk State Medical University, 18 Yamskaya St., 305041 Kursk, Russia

4 Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street,
305041 Kursk, Russia

* Correspondence: polonikov@rambler.ru; Tel.: +7-471-258-8147

Abstract: The present study investigated whether type 2 diabetes (T2D) is associated with polymor-
phisms of genes encoding glutathione-metabolizing enzymes such as glutathione synthetase (GSS)
and gamma-glutamyl transferase 7 (GGT7). A total of 3198 unrelated Russian subjects including
1572 T2D patients and 1626 healthy subjects were enrolled. Single nucleotide polymorphisms (SNPs)
of the GSS and GGT7 genes were genotyped using the MassArray-4 system. We found that the GSS
and GGT7 gene polymorphisms alone and in combinations are associated with T2D risk regardless of
sex, age, and body mass index, as well as correlated with plasma glutathione, hydrogen peroxide,
and fasting blood glucose levels. Polymorphisms of GSS (rs13041792) and GGT7 (rs6119534 and
rs11546155) genes were associated with the tissue-specific expression of genes involved in unfolded
protein response and the regulation of proteostasis. Transcriptome-wide association analysis has
shown that the pancreatic expression of some of these genes such as EDEM2, MYH7B, MAP1LC3A,
and CPNE1 is linked to the genetic risk of T2D. A comprehensive analysis of the data allowed propos-
ing a new hypothesis for the etiology of type 2 diabetes that endogenous glutathione deficiency might
be a key condition responsible for the impaired folding of proinsulin which triggered an unfolded
protein response, ultimately leading to beta-cell apoptosis and disease development.

Keywords: type 2 diabetes; etiology; gamma-glutamyl transferase; glutathione synthase; glutathione;
insulin folding; unfolded protein response

1. Introduction

Diabetes is a major global health threat. The International Diabetes Federation esti-
mated that 1 in 11 adults aged 20–79 years (463 million adults) was affected by diabetes
globally in 2019 [1]. In the Russian Federation, approximately 8.1 million people suffer from
diabetes, and insulin non-dependent form or type 2 diabetes is responsible for a majority
of these cases [2]. Type 2 diabetes (T2D) is a chronic metabolic disorder characterized
by persistent hyperglycemia, insulin resistance, and a relative lack of insulin. Chronic
hyperglycemia and hyperglycemia-driven micro- and macrovascular complications make
T2D the 9th cause of mortality worldwide [3].

Type 2 diabetes is a multifactorial highly heterogeneous polygenic disease determined
by tight interactions between various genetic, epigenetic, and environmental factors [4–6].
Numerous studies have identified hundreds of genetic polymorphisms associated with
T2D susceptibility and disease-related pathological conditions such as β-cell function
and mass, insulin action/resistance, glucagon secretion/action, incretin secretion/action,
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and fat distribution [7,8]. It has been argued that decreased peripheral glucose uptake
combined with augmented endogenous glucose production resulting in insulin resistance
is associated with the diminished β-cell function and decreased secretion of insulin by the
pancreas in type 2 diabetes [9]. In addition, abnormal redox homeostasis and oxidative
stress have been found to play a crucial role in the disease’s pathogenesis [10,11]. In
particular, numerous studies have shown that the increased production of free radicals,
poor antioxidant defense, and associated oxidative stress contribute to type 2 diabetes,
beta-cell apoptosis and insulin resistance and disease complications [10,12–16].

Although the advent of genomic, transcriptomic, proteomic, and metabolomic tech-
nologies facilitated rapid advances in characterizing the pathological processes underlying
type 2 diabetes in the molecular details, nevertheless, the exact etiological factors and mech-
anisms responsible for the initiation of apoptosis leading to a progressive loss of β-cell
function remain elusive. The lack of progress in our understanding of the true triggering
factors of type 2 diabetes seems to be explained by a poor understanding of the causal
relationships between the key disease processes such as hyperglycemia, insulin secretion,
insulin resistance, beta-cell apoptosis, oxidative stress, inflammation, and endoplasmic
reticulum stress, thereby complicating the pathophysiological interpretation of newly
discovered biomarkers in the context of their associative or causal link to the disease’s
pathogenesis. This problem justifies the need to move beyond conventional insights into
the primary mechanisms of type 2 diabetes and propose novel disease hypotheses that
should be tested in relation to known pathological disorders underlying diabetes.

It is well known that the balance between oxidants and antioxidants is largely de-
termined by the ability of cells to synthesize glutathione, a tripeptide (gamma-glutamyl-
cysteinyl-glycine) with powerful antioxidant activity [17]. Glutathione has critical biologi-
cal and molecular functions in the cell, including the regulation of gene expression, DNA
and protein synthesis, protein folding, cell proliferation and apoptosis, signal transduction,
the regeneration of vitamins C and E, control of cytokine production, antiviral defense, and
the regulation of immune response [18–20]. Glutathione exists in reduced (GSH) and oxi-
dized or glutathione disulfide (GSSG) forms, representing the major redox couple in cells.
GSH functions as an antioxidant scavenging reactive oxygen species (ROS) protecting the
cell from oxidative damage, and GSSG possesses a strong regulatory potential concerning
posttranslational protein modulation (e.g., glutathionylation) and the epigenetic control of
gene expression [21–23]. The deficiency of endogenous glutathione contributes to oxidative
stress and plays a key role in both the aging and pathogenesis of many cardiovascular
and degenerative diseases as well as type 2 diabetes [24]. Although abnormal glutathione
metabolism plays an obvious role in the development of type 2 diabetes and its compli-
cations, existing explanations regarding the specific role of glutathione deficiency in T2D
pathogenesis are limited by a hypothesis that decreased antioxidant defense and increased
oxidative stress both contribute to the development and progression of this disease.

The present study was designed to hypothesize that the endogenous deficiency of
glutathione, particularly in pancreatic beta-cells, is the initial factor triggering a chain of
sequential pathological conditions, not limited by oxidative stress, that ultimately lead to
the development of type 2 diabetes. Our hypothesis is based on research findings obtained
over the last sixty years which show that glutathione deficiency seems to occur initially
in type 2 diabetes due to impaired biosynthesis and/or the depletion of GSH [25–30].
This hypothesis is supported by our [31–35] and some other [36–38] studies which have
revealed that single nucleotide polymorphisms (SNPs) at genes encoding glutathione-
metabolizing enzymes such as catalytic and modifier subunits of glutamate cysteine ligase,
gamma-glutamyl cyclotransferase, glutathione S-transferases (mu, pi, and theta classes),
gamma-glutamyltransferase-6 and glutathione peroxidase-1 substantially contribute to
type 2 diabetes’ susceptibility. This means that glutathione metabolism represents an
attractive pathway for genetic research into type 2 diabetes because these genes are di-
rectly involved in biosynthesis, catabolism, and the utilization of reduced glutathione
and thereby may influence disease risk. The purpose of this study was to investigate



Life 2021, 11, 886 3 of 37

whether genetic susceptibility to type 2 diabetes is associated with common SNPs at genes
encoding glutathione synthetase (GSS), the second enzyme in glutathione biosynthesis,
and gamma-glutamyl transferase 7 (GGT7), an enzyme involved in glutathione recycling.
We also performed for the first time a comprehensive bioinformatics analysis in an attempt
to unravel the molecular mechanisms by which the glutathione-metabolizing enzymes
contribute to the pathogenesis of type 2 diabetes.

2. Materials and Methods
2.1. Study Participants and Diagnosis of Type 2 Diabetes

The study protocol was approved by the Ethical Review Committee of Kursk State
Medical University. Written informed consent was obtained from each participant before
enrollment in the study. A total of 3198 unrelated Russian individuals were recruited for
the study, including 1572 T2D patients and 1626 age- and sex-matched healthy subjects.
All study subjects were mainly from the Kursk region, Central Russia.

Patients with T2D were admitted to the Division of Endocrinology of Kursk Emer-
gency Hospital from November 2016 to October 2019. T2D was diagnosed based on
WHO criteria [39] such as fasting blood glucose (FBG) levels ≥7.0 mmol/L or random
blood glucose levels ≥11.1 mmol/L and/or glycated hemoglobin HbA1c levels ≥6.5%.
The criteria for inclusion in the group of patients were: (1) a physician-verified disease
confirmed by clinical, laboratory, and instrumental investigations; (2) age over 35 years;
and (3) written informed consent to participate in the study. Criteria for the exclusion of
patients in the case group were the following: (1) below 35 years of age; (2) the absence of
written informed consent to participate in the study; and (3) clinical conditions such as a
pronounced degree of decompensation of T2D or coma, immune-mediated or idiopathic
type 1 diabetes, gestational diabetes, MODY types of diabetes, diseases of the exocrine
pancreas such as pancreatitis, pancreatic trauma or pancreatectomy, pancreatic tumors,
hereditary diseases affecting the pancreas, and any other endocrine disorders. The control
group included healthy volunteers who visited Kursk Blood Transfusion Station within the
same time frame as well as healthy individuals recruited in our previous studies [31,40–42].
The criteria for the inclusion of persons in the control group were: (1) age over 35 years;
(2) normal blood glucose levels according to the WHO criteria; (3) the absence of chronic
diseases; and (4) written informed consent. The exclusion criteria from the control group
were the following: (1) age under 35 years; (2) a history of hyperglycemia, the presence of
chronic diseases; and (3) a lack of written informed consent. Subjects of the control group
had normal FBG levels and 75 g oral glucose tolerance test results.

2.2. Blood Specimen Collection and Processing

Fasting venous blood samples of study participants were collected by venipuncture in
two separate tubes: the first one with EDTA solution (0.5 M) for genomic DNA extraction
and genotyping and the second one with lithium heparin for biochemical investigations of
redox homeostasis. Blood samples for molecular genetic analysis were frozen and main-
tained at −80 ◦C until processed. Blood samples with lithium heparin were centrifuged
at 3500 rpm according to the manufacturer’s instructions (Cell Biolabs Inc., San Diego,
CA, USA; Abcam, Waltham, MA, USA) immediately after blood sampling. Then, plasma
samples were aliquoted and stored at −80 ◦C until further use. For total GSH determi-
nation, plasma was immediately deproteinized with 5% metaphosphoric acid. Genomic
DNA was purified from thawed blood samples by phenol–chloroform extraction or by
spin-column QIAamp Blood mini kit with the use of the robotic workstation QiaCube
(QIAGEN). Samples were measured spectrophotometrically and DNA concentration was
adjusted to a value of 10 ng/mL and stored at −80 ◦C until genotyping.

2.3. SNP Selection and Molecular Genetic Analysis

The SNPinfo bioinformatics tools such as GenePipe and FuncPred [43] were used for
functional SNP selection (https://snpinfo.niehs.nih.gov, date of access 18 September 2017),

https://snpinfo.niehs.nih.gov
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as described previously [32]. Briefly, SNP selection was based on the default settings of
GenePipe (genotype data from HapMap, CEU population, minor allele frequency cutoff
value 0.05) with value 2 as a minimum number of SNPs tagged by a tag SNP. FuncPred was
utilized to assess the functional significance of SNPs (regulatory potential, transcription
factor binding site, etc.). Initially, the following SNPs such as rs13041792, rs6087653,
rs6088660 of GSS and rs11546155, rs6119536, and rs6119534 of GGT7 were selected by the
GenePipe tool. The FuncPred tool confirmed the functional significance for all the SNPs
except for rs6087653 and rs6119534. Then, SNP rs6087653 was substituted for rs1801310,
a functionally significant polymorphism of the glutathione synthetase gene known from
the literature [44]. SNP rs6119534 of GGT7 was saved in the SNP set as an alternative
to the rs6087653 polymorphism, which was excluded by Assay Design Suite (Agena
Bioscience, USA), as it did not meet the conditions for co-genotyping in a single multiplex
panel. Thus, the final multiplexing panel included three SNPs (rs13041792, rs1801310, and
rs6088660) of the GSS gene and two SNPs (rs11546155 and rs6119534) of the GGT7 gene.
The genotyping of the polymorphisms was performed by MALDI-TOF mass spectrometry
iPLEX technology with the MassArray System (Agena Bioscience Inc, San Diego, CA, USA).
Primer sequences used for genotyping are available upon request. To ensure quality control,
10% of the samples were randomly selected for repeat genotyping that was performed
blindly to the case–control status, and the repeatability test resulted in a 100% concordance
rate.

2.4. Biochemical Analysis

Plasma ROS levels were assessed in 426 T2D patients and 153 healthy volunteers,
whereas GSH levels were assessed in 258 patients and 137 controls were recruited during the
final phase of this study. The total GSH levels were determined by colorimetric assay using
the OxiSelectTM Total Glutathione (GSSG/GSH) Assay Kit (Cell Biolabs, USA). The ROS
levels were quantified by a fluorometric assay using the OxiSelectTM In Vitro ROS/RNS
Assay Kit (Cell Biolabs, USA). The assay employs a proprietary quenched fluorogenic
probe, dichlorodihydrofluorescin DiOxyQ (DCFH-DiOxyQ), which is a specific ROS/RNS
probe. It was first primed with a quench removal reagent and subsequently stabilized in
the highly reactive DCFH form. In this reactive state, ROS and RNS can react with DCFH,
which is rapidly oxidized to the highly fluorescent 2′,7′-dichlorodihydrofluorescein (DCF).
The standard curve of H2O2 was used to quantify the levels of free radicals such as ROS
and RNS in plasma samples. Absorbance was measured on a microplate reader Varioscan
Flash (Thermo Fisher Scientific, Waltham, MA, USA) at 405 nm and fluorescence at 480 nm
excitation/530 nm emission.

2.5. Statistical Power Calculation

Statistical power for the study was estimated using the genetic association study
power calculator [45] available online at http://csg.sph.umich.edu/abecasis/gas_power_
calculator/, date of access 12 May 2020. Association analysis between the polymorphisms
of GSS and GGT7 genes and the risk of T2D could detect the genotype relative risk (GRR)
of 1.26–1.51 assuming 85% power and a 5% type I error (α = 0.05) on the sample size of
1572 cases and 1626 controls.

2.6. Association of GSS and GGT7 Gene Polymorphisms with Type 2 Diabetes

The overall study pipeline is summarized in Figure 1. Allele and genotype frequencies
in cases and controls were counted and compared by the chi-square test with the values
predicted by the assumption of the Hardy–Weinberg equilibrium. The association of
SNPs with the risk of T2D was evaluated by multiple logistic regression analysis with
the calculation of odds ratios (ORs) and 95% confidence intervals (95%CI) adjusted for
covariates such as age, sex, and body mass index (BMI) using the SNPStats software [46]
available online at https://snpstats.net, date of access 12 May 2020. Haplotypes and

http://csg.sph.umich.edu/abecasis/gas_power_calculator/
http://csg.sph.umich.edu/abecasis/gas_power_calculator/
https://snpstats.net
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linkage disequilibrium (LD, D, and D’ values) between the polymorphisms were estimated
and analyzed using the SNPStats software.

Figure 1. Overall study pipeline. The upper part of the figure shows the statistical genetic analysis for the association
between type 2 diabetes risk and GSS and GGT7 gene polymorphisms. The lower part of the figure shows a comprehensive
bioinformatics analysis of the observed associations. Methods of statistical/bioinformatics analyses are indicated in blue
rectangles. The key findings are designated by ellipses. Hypotheses tested at each stage of data analysis are indicated
in Italics. Abbreviations used: KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; EPC, Elsevier
Pathway Collection. Figure is created using software yEd Graph Editor.



Life 2021, 11, 886 6 of 37

2.7. A Replication of the Associations in Independent Populations

It was argued that the replication of genetic association in independent populations
provides additional evidence that the association is not due to uncontrolled bias [47].
However, inter-population differences in allele frequencies and linkage disequilibrium
between SNPs may be significant factors influencing a replication of marker-disease as-
sociation in a distinct individual population [48]. In the present study, we conducted a
replication study in several populations at once and analyzed the frequencies of alleles
and linkage disequilibrium between the markers in each and the populations to assess
whether there are population-specific effects of GSS and GGT7 gene polymorphisms on the
risk of type 2 diabetes. The genotype–phenotype datasets from genome-wide association
studies (GWAS) deposited in the T2D Knowledge Portal (https://t2d.hugeamp.org, date
of access 31 January 2021) were utilized to validate associations between the SNPs with
type 2 diabetes or disease-related traits in independent cohorts. Interethnic differences
in the association between type 2 diabetes and functionally significant SNPs of GSS and
GGT7 genes were evaluated in two independent samples of diabetics from the UK Biobank
(http://geneatlas.roslin.ed.ac.uk, date of access 14 January 2021). Allele frequencies and
linkage disequilibrium (D’) between SNPs across the HapMap populations were evaluated
with the LDpair tool available through the website https://ldlink.nci.nih.gov/?tab=ldpair
(date of access 20 January 2021).

2.8. Analysis of the Contribution of SNP–SNP Interactions to T2D Susceptibility

It has been advised that if an SNP has not been replicated in an independent popula-
tion, this polymorphism may be checked for interactions with other genetic variants [48].
This motivated us to perform an analysis of SNP–SNP interactions to evaluate whether
epistatic interactions between the gene polymorphisms contributed to T2D susceptibil-
ity. Two-order SNP–SNP interactions associated with the risk of type 2 diabetes were
evaluated with the model-based multifactor dimensionality reduction (MB-MDR) method
proposed by Calle and co-workers [49], a dimension reduction method for exploring gene–
gene and gene–environment interactions, and implemented in mbmdr package for R [50].
Statistical significance for each mbmdr model was assessed through permutation tests.
For each significant SNP–SNP interaction model, the post hoc comparisons of genotype
combinations between the groups were performed using the chi-square test. A false dis-
covery rate (FDR) was calculated for all SNP–disease associations to control for multiple
testing. FDR calculations were performed using the FDR calculator available online at
http://www.sdmproject.com/utilities/?show=FDR (date of access 28 May 2021).

2.9. Impact of GSS and GGT7 Gene Polymorphisms on Biochemical Parameters

Biochemical parameters were analyzed for normality with the Kolmogorov–Smirnov
test. Age and body mass index (BMI) showed normal distribution, expressed as the mean
(M) with standard deviation (SD) and compared between the groups using the Student’s
t-test. Non-normally distributed traits such as glycated hemoglobin (HbA1c), fasting
blood glucose (FGB), total cholesterol, high- and low-density lipoproteins, triacylglycerol,
hydrogen peroxide, and total glutathione were expressed as the median (Me) with the
first and third quartiles (Q1–Q3). The impact of GSS and GGT7 gene polymorphisms on
biochemical parameters such as glutathione, hydrogen peroxide, fasting blood glucose
levels, and glycated hemoglobin in diabetics was evaluated by the Kruskal–Wallis test
using STATISTICA for Windows 10.0 package (StatSoft, Tulsa, OK, USA).

The upper part of the figure shows the statistical genetic analysis for the association
between type 2 diabetes risk and GSS and GGT7 gene polymorphisms. The lower part of
the figure shows a comprehensive bioinformatics analysis of the observed associations.
Methods of statistical/bioinformatics analyses are indicated in blue rectangles. The key
findings are designated by ellipses. Hypotheses tested at each stage of data analysis are
indicated in Italics.

https://t2d.hugeamp.org
http://geneatlas.roslin.ed.ac.uk
https://ldlink.nci.nih.gov/?tab=ldpair
http://www.sdmproject.com/utilities/?show=FDR
http://www.sdmproject.com/utilities/?show=FDR
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The abbreviations used include: KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; EPC, Elsevier Pathway Collection. Figure was created using the
software yEd Graph Editor.

2.10. Functional Annotation of GSS and GGT7 Gene Polymorphisms

GSS and GGT7 gene polymorphisms significantly associated with the risk of type 2 di-
abetes were a subject for comprehensive bioinformatics analysis (Figure 1). The functional
annotation of SNPs associated with T2D risk included a tissue-specific trans- and cis-eQTL
analysis. In particular, bioinformatics tools of the quantitative trait loci (QTL) databases
such as the GTEx portal (https://gtexportal.org, date of access 11 November 2020) [51],
eQTLGen Consortium (https://www.eqtlgen.org, date of access 12 November 2020) [52],
and QTLbase (http://mulinlab.tmu.edu.cn/qtlbase/index.html, date of access
14 November 2020) [53], were used to evaluate whether the GSS and GGT7 gene poly-
morphisms represent significant QTLs correlating with a variation of molecular traits
such as mRNA expression (eQTL), methylation (mQTL), histone modification (hQTL)
and splicing events (sQTL). GTEx portal and QTLbase databases were used to identify
various QTLs for the studied SNPs in a tissue-specific manner focusing on the pancreas
and insulin-sensitive tissues such as skeletal muscle cells, visceral adipose tissue and the
liver. The GTEx portal is a comprehensive public resource to study tissue-specific gene
expression and regulation. QTLbase is a database curating and compiling genome-wide
QTL summary statistics for multiple human molecular traits across over 70 tissues and
cell types. The eQTLGen Consortium database, incorporating 37 datasets with a total of
31,684 individuals, was used to assess eQTLs for the studied SNPs in whole blood. Genes
whose expression in the pancreas was found to be associated with a carriage of the risk
alleles of GSS and GGT7 (i.e., genes co-expressed genes with the SNPs) were explored
using the UCSC Genome Browser (genome.ucsc.edu/cgi-bin/hgTracks?db, date of access
20 May 2021) which was also used to characterize the genomic region spanning GSS, GGT7
and co-located or co-expressed genes.

2.11. Transcriptome-Wide Association Analysis of Genes Co-Expressed with GSS and GGT7

A transcriptome-wide association study (TWAS) was done with the purpose to esti-
mate the genetic association between the risk of type 2 diabetes and the pancreatic expres-
sion of the genes using the TWAS hub (http://twas-hub.org, date of access 9 June 2021).
TWAS is a known integrative method for identifying the genes causally associated with
phenotypes through the construction of expression prediction models for every gene using
its cis-SNPs as predictors [54]. The TWAS hub, an integrative bioinformatics resource,
was utilized to estimate the genetic association between the risk of type 2 diabetes and
the expression of genes whose mRNA levels in various tissues are associated with the
disease susceptibility loci observed in the present study. The TWAS hub interactive browser
was developed to allow enabling the genetic association between gene expression and a
complex phenotype using only GWAS summary-level data [55]. Gene-expression predic-
tion models were built using the GWAS summary-level data implemented in the TWAS
hub and transcriptome–genotype data from the GTEx [52], METSIM [56], NTR [57], and
YFS [58] eQTL projects. Transcriptomic data on the major T2D-related tissues (pancreas,
adipose tissue, skeletal muscle, and whole blood) available from public datasets [59–61]
and The Neale lab were applied to estimate a predictive association model with a Z-score
for each gene whose mRNA levels were related with SNPs of GSS (rs13041792) and GGT7
(rs6119534 and rs11546155) genes. The Z-score shows the number of standard deviations
that a value of gene expression is away from the mean of all the expression values for
a gene in the same group. Probability Q-values for Z-scores were estimated with the
Z-score Calculator (https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html,
date of access 11 June 2021). Thus, the TWAS analysis ultimately allows identifying the
link between genes of interest and disease susceptibility.

https://gtexportal.org
https://www.eqtlgen.org
http://mulinlab.tmu.edu.cn/qtlbase/index.html
genome.ucsc.edu/cgi-bin/hgTracks?db
http://twas-hub.org
https://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html
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2.12. In Silico Prediction of Transcription Factors Co-Regulating Expression of the Target Genes

Transcription factors co-regulating the target genes were predicted by hTFtarget
(http://bioinfo.life.hust.edu.cn/hTFtarget/, date of access 14 June 2021), a comprehensive
database for the investigation of TF-target regulations in humans [62]. The only transcrip-
tion factors whose co-regulation effects have been confirmed by two or more independent
datasets were selected to include in a gene set. Among them, TFs that are significantly
expressed in the pancreas (FDR≤ 0.05), as assessed by the Tissue Expression database (also
called as “Jensen Tissues”), were used for further analysis. TFs expressed in the pancreas
at excessively low levels (TPM value less than 0.003 at the GTEx portal) were excluded
from the gene set. Molecular function annotation for the selected TFs (i.e., activator or re-
pressor function) was done with the use of databases such as Gene Ontology, UniProt, and
GeneCards. Protein–protein interaction (PPI) networks of transcription factors belonging
to the T2D pathways were constructed by STRING, a database of known and predicted
protein–protein interactions [63].

2.13. Gene Set Enrichment Analysis

Genes with the up- and downregulated expression and co-located to GSS and GGT7
were annotated towards a biological process using databases such as Gene Ontology, KEGG,
Reactome, WikiPathways, and Elsevier Pathway Collection by Enrichr [64], an interactive
gene list enrichment analysis available online at https://maayanlab.cloud/Enrichr/ (date
of access 7 May 2021). Enrichment analysis was also used to annotate genes spanning
genomic cluster 20q11.22 as well as the transcription factors expressed in the pancreas
towards biological processes and molecular functions. Finally, the enrichment analysis
was performed to evaluate whether the query TFs significantly overlap with the annotated
gene sets representing pathogenetically important pathways for type 2 diabetes.

3. Results
3.1. Demographic, Clinical and Laboratory Characteristics of the Study Participants

Demographic, clinical and laboratory characteristics of the study groups are shown
in Table 1. The study groups were matched according to both sex and age. The majority
of T2D patients (87.1%) were overweight or obese. Most T2D patients suffered from
hypertension, and approximately one-third had coronary artery disease. The number
of patients with a positive history of diabetes was greater in the case group than in the
control group. The number of smokers was higher among healthy subjects than among
diabetics. Plasma ROS levels were significantly higher in diabetics compared to the controls
(p < 0.0001), whereas total glutathione concentration was lower in T2D patients than in
healthy subjects (p = 0.037). Moreover, diabetic patients showed significantly increased
levels of glycated hemoglobin, FBG, triacylglycerols, total cholesterol, and low-density
lipoproteins as compared with healthy controls. Meanwhile, the levels of high-density
lipoproteins were higher in healthy subjects than in T2D patients.

3.2. Association of GSS and GGT7 Gene Polymorphisms with the Risk of T2D

Genotype and allele frequencies for the studied SNPs are shown in Table 2. Genotype
frequencies for all polymorphisms were in Hardy–Weinberg equilibrium in both cases
and controls. As can be seen from Table 2, SNPs such as rs13041792 of GSS, rs11546155,
and rs6119534 of GGT7 showed associations with the risk of type 2 diabetes. In particular,
genotypes G/A-A/A at rs13041792 were significantly associated with an increased risk
of T2D (OR 1.21, 95CI 1.04–1.42, p = 0.046) and this association remained significant after
making adjustments for age, sex and body mass index (Q = 0.06). Meanwhile, SNPs
rs6119534 (OR 0.73, 95%CI 0.53–0.99) and rs11546155 (OR 0.42, 95%CI 0.22–0.80) of the
GGT7 gene showed significant associations with a decreased risk of T2D regardless of sex,
age and BMI after adjustment for multiple testing by the FDR procedure. The frequency
of minor allele rs6119534-T GGT7 was higher in controls compared to patients (OR 0.85,
95CI 0.76–0.95, Q = 0.03).

http://bioinfo.life.hust.edu.cn/hTFtarget/
https://maayanlab.cloud/Enrichr/
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Table 1. Demographic and clinical characteristics of the study participants.

Baseline Characteristics Healthy Controls,
n = 1626

T2D Patients,
n = 1572 p-Value

Age, mean ± standard deviation 60.8 ± 6.4 61.3 ± 10.4 0.34

Sex
Males, n (%) 601 (37.0) 584 (37.2)

0.89Females, n (%) 1024 (63.0) 988 (62.8)

Body mass index (kg/m2), mean ± standard deviation 27.21 ± 3.55 31.92 ± 6.65 0.001

Duration of diabetes, median (Q1; Q3) - 9.0 (3.0; 15.0) -

Hypertension, n (%) 24 (1.5) 1340 (85.2) <0.0001

CAD, n (%) - 511 (32.5) <0.0001

Smokers (ever/never), n (%) 501 (31.0%) 412 (26.1%) 0.004

Positive family history of diabetes, n (%) 33 (2.1%) 602 (38.1%) <0.0001

HbA1C (%), Me (Q1; Q3) 4.58 (4.11; 4.87) 9.02 (7.70; 10.80) <0.0001

FBG (mmol/L), Me (Q1; Q3) 4.71 (4.39; 4.84) 12.20 (9.70; 15.20) <0.0001

Total cholesterol (mmol/L), Me (Q1; Q3) 3.06 (2.86; 3.12) 5.10 (4.27; 6.09) <0.0001

LDL (mmol/L), Me (Q1; Q3) 1.74 (1.60; 1.79) 3.03 (2.40; 4.05) <0.0001

HDL (mmol/L), Me (Q1; Q3) 1.47 (1.36; 1.62) 0.85 (0.74; 1.07) <0.0001

Triacylglycerides (mmol/L), Me (Q1; Q3) 1.15 (0.98; 1.23) 2.20 (1.55; 3.00) <0.0001

H2O2 (mmol/L), Me(Q1;Q3) 2.81 (2.18; 3.63) 3.70 (2.65; 4.97) <0.0001

GSSG/GSH (mmol/L), Me(Q1;Q3) 1.91 (0.83; 5.41) 1.63 (0.56; 3.79) 0.037

CAD, coronary artery disease; HbA1C, glycated hemoglobin; FBP, fasting blood glucose; LDL, low-density lipoproteins; HDL, high-density
lipoproteins; H2O2, hydrogen peroxide; GSSG/GSH, total glutathione. Bold indicates statistically significant p-values.

3.3. Associations of GSS and GGT7 Haplotypes with Disease Susceptibility

The estimated haplotype frequencies of GSS and GGT7 genes in T2D patients and
healthy controls are given in Table 3. Four and three common haplotypes were identified
for GSS and GGT7 genes, respectively. Haplotype rs1801310G–rs6088660C–rs13041792A
of the GSS gene showed a significant association with an increased risk of T2D (OR 1.26,
95% CI 1.08–1.47). Haplotypes rs6119534T–rs11546155G (OR 0.80, 95% CI 0.68–0.95) and
rs6119534C–rs11546155A (OR 0.76, 95% CI 0.61–0.94) of the GGT7 gene were associated with
a decreased T2D risk. The observed associations remained significant after adjustments for
multiple tests (Q ≤ 0.05). Supplementary Table S1 shows linkage disequilibrium values
between the polymorphisms of GSS and GGT7 genes. SNPs of the GSS gene were found in
a strong (D’ > 0.8) negative linkage disequilibrium to each other (p < 0.0001), meaning that
the reference alleles such as rs13041792-G, rs1801310-G, and rs6088660-C are more likely
to be associated with the alternative alleles rs6088660-T rs13041792-A and rs1801310-A of
GSS. Polymorphisms rs6119534 and rs11546155 of the GGT7 gene were also in negative
linkage disequilibrium with each other (D’ = 0.8228, p < 0.0001). Moreover, the SNPs of the
GSS gene were in significant linkage disequilibrium to the SNPs of the GGT7 gene. The
D’values between pairs of the studied SNPs across populations from the 1000 Genomes
Project are shown in Supplementary Table S2.
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Table 2. Genotype and allele frequencies for the studied SNPs among T2D patients and healthy controls.

Gene,
SNP

Genotype,
Allele

Healthy
Controls,
n = 1626
n (%) 1

T2D
Patients,
n = 1572
n (%) 1

OR
(95% CI) 2 p-Value 2 adjOR

(95% CI) 3
p-Value

3

GSS
rs13041792

G > A

G/G 1022 (66) 957 (61.9) 1.00
0.046

1.00
0.027G/A 460 (29.7) 523 (33.8) 1.21 (1.04–1.42) 1.24 (1.06–1.44)

A/A 66 (4.3) 66 (4.3) 1.07 (0.75–1.52) 1.07 (0.75–1.53)
A 0.191 0.212 1.14 (1.01–1.29) 0.043 - 0.05

GSS
rs1801310

G > A

G/G 590 (36.4) 581 (36.8) 1.00
0.16

1.00
0.18G/A 761 (47) 773 (49) 1.03 (0.89–1.20) 1.04 (0.89–1.21)

A/A 270 (16.7) 225 (14.2) 0.85 (0.69–1.04) 0.85 (0.69–1.06)
A 0.401 0.387 0.94 (0.85–1.04) 0.25 - 0.38

GSS
rs6088660

C > T

C/C 792 (50.5) 815 (52.4) 1.00
0.44

1.00
0.43C/T 647 (41.3) 628 (40.4) 0.94 (0.81–1.09) 0.94 (0.81–1.09)

T/T 128 (8.2) 112 (7.2) 0.85 (0.65–1.12) 0.85 (0.64–1.12)
T 0.288 0.274 0.93 (0.83–1.04) 0.21 - 0.26

GGT7
rs11546155

G > A

G/G 1297 (80.5) 1283 (81.3) 1.00
0.013

1.00
0.022G/A 282 (17.5) 282 (17.9) 1.01 (0.84–1.21) 1.02 (0.85–1.22)

A/A 33 (2) 13 (0.8) 0.40 (0.21–0.76) 0.42 (0.22–0.80)
A 0.108 0.098 0.89 (0.76–1.05) 0.17 0.21

GGT7
rs6119534

C > T

C/C 241 (19.8) 352 (27.1) 1.00
0.0001

1.00
0.0003C/T 864 (71) 832 (64.2) 0.63 (0.51–0.79) 0.67 (0.56–0.82)

T/T 111 (9.1) 113 (8.7) 0.62 (0.43–0.88) 0.73 (0.53–1.00)
T 0.447 0.408 0.85 (0.76–0.95) 0.006 - 0.012

1 Absolute number and percentage of individuals/chromosomes with a particular genotype/allele. 2 Odds ratio with 95% confidence
intervals (crude analysis) with one degree of freedom. 3 Odds ratio with 95% confidence intervals adjusted for age, sex and BMI with one
degree of freedom. Bold indicates statistically significant p-values/ORs (95%CI).

Table 3. Estimated common haplotype frequencies of GSS and GGT7 genes in T2D patients and controls.

Haplotypes of the GSS Gene (Global Haplotype Association p-Value 0.039)

rs1801310 rs6088660 rs13041792
Healthy
Controls
(n = 1626)

T2D Patients
(n = 1572)

OR
(95% CI) *

p-Value
(Q-Value)

A C G 0.3915 0.3782 1.00 -
G T G 0.2823 0.2713 1.02 (0.89–1.17) 0.78 (0.91)
G C A 0.1821 0.203 1.26 (1.08–1.47) 0.003 (0.011)
G C G 0.1334 0.1373 0.99 (0.83–1.18) 0.92 (0.92)

Haplotypes of the GGT7 Gene (Global Haplotype Association p-Value 0.0018)

rs6119534 rs11546155 Healthy Controls
(n = 1626)

T2D patients
(n = 1572)

OR
(95% CI) *

p-value
(Q-value)

C G 0.4570 0.4992 1.00 -
T G 0.4350 0.4032 0.80 (0.68–0.95) 0.009 (0.026)
C A 0.0971 0.0931 0.76 (0.61–0.94) 0.011 (0.026)

* Odds ratio with 95% confidence intervals adjusted for age, sex and BMI. Rare haplotypes (frequency <1%) are not shown. T2D, type 2
diabetes; OR, odds ratio; CI, confidence interval. Bold is statistically significant p- and Q-values.

3.4. Epistatic Interactions between the Polymorphisms and Susceptibility to Type 2 Diabetes

The MB-MDR method was applied to evaluate two-order SNP–SNP interaction models
determining genetic susceptibility to type 2 diabetes. The significance level (pperm) for each
mbmdr model was assessed by permutations. Table 4 shows seven statistically significant
two-order SNP–SNP interaction mbmdr-models associated with the risk of type 2 diabetes.
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The strongest epistatic interactions (pperm < 0.001) were observed between SNP rs6119534
of the GGT7 gene and polymorphisms rs13041792, rs1801310, and rs6088660 of the GSS
gene, as well as between rs6119534 and rs11546155 of GGT7. Then, pairwise genotype
combinations were compared between the study groups using the chi-square test for
all seven mbmdr-models associated with disease risk. Table 5 lists eighteen genotype
combinations significantly associated with the risk of type 2 diabetes after controlling
for the false-discovery rate (Q ≤ 0.05). As can be seen from Table 5, the presence of the
rs6119534-C/T GGT7 genotype possessed a protective effect against the risk of type 2
diabetes by eliminating the negative effects of seven genotype combinations such as G1, G4,
G5, G7, G8, G11, and G12 on the disease risk. However, genotype rs13041792-G/A GSS was
found to eliminate the protective effects of the rs6119534-C/T GGT7 genotype against T2D
risk. In addition, we found that genotype rs11546155-A/A GGT7 also possesses a protective
effect against type 2 diabetes by eliminating the negative effects of GSS rs6088660-C/T, GSS
rs1801310-G/G, and GSS rs13041792-G/G genotypes (i.e., G15, G16, and G18 in Table 5)
on the disease risk. These results demonstrate that the polymorphisms of GGT7 and GSS
genes are in tight epistatic interactions with each other, and the observed antagonism
between some SNPs (especially between rs6119534 GGT7 and rs13041792 GSS) determines
the likelihood of disease development.

Table 4. Two-order SNP–SNP interaction mbmdr-models associated with the risk of type 2 diabetes.

SNP–SNP Interaction mbmdr-Models NH β H WH NL β L WL pperm

1 GGT7 rs6119534 × GSS rs13041792 2 0.111 30.53 1 −0.118 32.37 <0.001
2 GGT7 rs6119534 × GSS rs1801310 2 0.104 17.66 1 −0.256 22.74 <0.001
3 GGT7 rs11546155 × GGT7 rs6119534 2 0.109 21.07 3 −0.079 13.93 <0.001
4 GGT7 rs6119534 × GSS rs6088660 2 0.107 20.08 2 −0.060 8.36 <0.001
5 GGT7 rs11546155 × GSS rs6088660 0 NA NA 1 −0.319 8.93 0.034
6 GGT7 rs11546155 × GSS rs1801310 0 NA NA 1 −0.223 7.89 0.046
7 GGT7 rs11546155 × GSS rs13041792 1 0.040 4.05 1 −0.208 7.52 0.046

Models are obtained using the model-based multifactor dimensionality reduction method (MB-MDR package for R). β H, regression
coefficient for high-risk exposition in the step 2 analysis; β L, regression coefficient for low-risk exposition in the step 2 analysis; NH, number
of significant high-risk genotypes in the interaction; NL, number of significant low-risk genotypes in the interaction; pperm, permutation
p-value for the interaction model. The models were adjusted for age, sex and BMI; WH, Wald statistic for the high-risk category; WL, Wald
statistic for the low-risk category.

Table 5. Association analysis of genotype combinations with the risk of type 2 diabetes.

No. Genotype Combination

T2D
Patients Healthy Controls

OR (95% CI) 1 p 2 Q 3

N % N %

G1 GGT7 rs6119534-C/C × GSS rs13041792-G/G 333 26.1 223 18.9 1.52 (1.25–1.84) 0.00002 0.0001
G2 GGT7 rs6119534-C/T × GSS rs13041792-G/G 409 32.1 509 43.1 0.62 (0.53–0.73) 1.6 × 10−8 2.9 × 10−7

G3 GGT7 rs6119534-C/T × GSS rs13041792-G/A 379 29.7 305 25.8 1.21 (1.02–1.45) 0.03 0.04
G4 GGT7 rs6119534-C/C × GSS rs1801310-G/A 168 13.0 109 9.0 1.51 (1.17–1.94) 0.002 0.01
G5 GGT7 rs6119534-C/C × GSS rs1801310-A/A 135 10.4 93 7.7 1.40 (1.06–1.84) 0.017 0.03
G6 GGT7 rs6119534-C/T × GSS rs1801310-A/A 24 1.9 65 5.4 0.33 (0.21–0.54) 2.0 × 10−6 1.8 × 10−5

G7 GGT7 rs6119534-C/C × GGT7 rs11546155-G/G 247 19.0 163 13.4 1.52 (1.22–1.88) 0.0001 0.0005
G8 GGT7 rs6119534-C/C × GGT7 rs11546155-G/A 98 7.6 67 5.5 1.40 (1.02–1.93) 0.04 0.042
G9 GGT7 rs6119534-C/T × GGT7 rs11546155-G/G 696 53.7 703 57.9 0.84 (0.72–0.99) 0.03 0.04
G10 GGT7 rs6119534-C/T × GGT7 rs11546155-A/A 1 0.1 9 0.7 0.15 (0.03–0.82) 0.02 0.03
G11 GGT7 rs6119534-C/C × GSS rs6088660-C/C 236 18.3 156 13.0 1.50 (1.21–1.87) 0.0003 0.001
G12 GGT7 rs6119534-C/C × GSS rs6088660-C/T 103 8.0 70 5.8 1.40 (1.03–1.92) 0.03 0.04
G13 GGT7 rs6119534-C/T × GSS rs6088660-C/T 367 28.5 388 32.3 0.83 (0.70–0.99) 0.04 0.042
G14 GGT7 rs6119534-C/T × GSS rs6088660-T/T 56 4.3 73 6.1 0.70 (0.49–1.00) 0.05 0.05
G15 GGT7 rs11546155-A/A × GSS rs6088660-C/T 4 0.3 18 1.2 0.24 (0.09–0.68) 0.01 0.02
G16 GGT7 rs11546155-A/A × GSS rs1801310-G/G 11 0.7 29 1.8 0.38 (0.19–0.77) 0.005 0.01
G17 GGT7 rs11546155-G/G × GSS rs13041792-G/A 457 29.6 406 26.3 1.18 (1.00–1.38) 0.04 0.042
G18 GGT7 rs11546155-A/A × GSS rs13041792-G/G 13 0.8 31 2.0 0.41 (0.22–0.79) 0.006 0.01

1 Odds ratio with 95% confidence intervals for a particular genotype combination (crude analysis). 2 p-values for association of particular
genotype combination with T2D (Pearson’s chi-square test). 3 Q-values, adjusted p-values for multiple tests using false discovery rate
(FDR). Bold indicates statistically significant p- and Q-values.
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3.5. Influence of GSS and GGT7 Gene Polymorphisms on Biochemical Parameters

Table 6 summarizes the impact of the studied polymorphisms on biochemical pa-
rameters such as redox homeostasis (hydrogen peroxide and total glutathione levels) and
fasting blood glucose (FBG) in both entire and sex-stratified groups (Kruskal–Wallis test).
Polymorphisms rs13041792 (p = 0.026) and rs6088660 (p = 0.007) of GSS were found to
be associated with increased and decreased levels of FBG in diabetic males, respectively.
An SNP rs6088660 of GSS showed association with decreased plasma levels of hydrogen
peroxide in diabetic females (p = 0.039). Furthermore, SNP rs1801310 of GSS was associ-
ated with decreased levels of total glutathione in the plasma of T2D females (p = 0.039).
However, the above genotype–phenotype associations did not survive after adjustment for
multiple tests (Q > 0.05). Polymorphism rs6119534 of the GGT7 gene showed association
with increased levels of H2O2 in both sexes, but the association was stronger in females
than in males after controlling the false-discovery rate. In particular, a carriage of the
rs6119534-T allele of GGT7 correlated with higher plasma levels of hydrogen peroxide in
T2D patients, especially in females (Q = 0.02). In addition, the rs6119534-T allele of GGT7
was associated with higher plasma levels of fasting blood glucose (p = 0.035), whereas
genotype rs11546155-G/A of GGT7 was associated with higher levels of hydrogen per-
oxide (p = 0.046), but these associations were only seen in diabetic females and did not
remain significant after controlling the FDR (Q = 0.18). The carriers for the rs11546155-G/A
genotype had higher glutathione levels in plasma than the carriers for other genotypes at
this locus (p = 0.023).

Associations of GSS and GGT7 haplotypes with plasma levels of hydrogen peroxide,
glutathione, and fasting blood glucose are shown in Figure 2. A significant association
between the CTG haplotype (rs1801310–rs6088660–rs13041792) of GSS and the increased
levels of glutathione was exclusively observed in diabetic females (p = 0.026). In contrast,
two common haplotypes of GGT7 were significantly associated with the levels of both
hydrogen peroxide and glutathione in patients with type 2 diabetes. A haplotype TG of
GGT7 was associated with increased levels of ROS (p < 0.0001) in both sexes but more
strongly in females than males. Increased levels of glutathione were associated with
haplotypes TG (p = 0.03) and CA (p = 0.02) in females and males, respectively. No significant
associations were revealed between fasting blood glucose and haplotypes of the GSS and
GGT7 genes.

3.6. Validation for the Observed SNP-Disease Associations in Independent Populations

Replication of original association between SNP and disease phenotype in indepen-
dent populations has become the gold standard for assessing the statistical results of genetic
association studies [48]. In keeping with this approach, we performed a replication study
for the observed SNP associations with type 2 diabetes and diabetes-related phenotypes
in independent populations. We utilized population-specific whole-genome genotype
datasets obtained from a large number of patients integrated into the T2D Knowledge
Portal with the purpose of analyzing a relationship between the studied SNPs and type 2
diabetes as well as diabetes-related traits. Table 7 summarizes the results of the validation
study for associations of SNPs with the T2D risk and disease-related phenotypes.

As can be seen from Table 7, the association of the SNP rs11546155 of the GGT7 gene
with a decreased risk of type 2 diabetes observed in our population has been successfully
replicated in a large cohort of ethnically diverse individuals (n = 1,277,880, p = 0.018).
In addition, this polymorphism was found to be associated with decreased levels of
fasting plasma glucose in both diabetics and non-diabetics (n = 16,076, p = 0.016), as
well as with decreased body mass index (n = 2,814,100, p = 0.027). In contrast with the
above observations, SNP rs11546155 of GGT7 also showed associations with increased
waist–hip ratio adjusted by BMI (n = 1,834,510, p = 0.0009), the risk of chronic kidney
disease (n = 300, p = 0.004), and neuropathy (n = 2344, p = 0.025) in type 2 diabetics, and
increased levels of glycated hemoglobin (HbA1c) adjusted by BMI (n = 7267, p = 0.05).
However, no associations of rs13041792 of GSS and rs6119534 GGT7 with T2D susceptibility
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observed in our population were replicated in the studied population cohorts. Nonetheless,
polymorphisms rs13041792 of GSS (n = 3,167,810, p = 0.0005) and rs6119534 of GGT7
(n = 1,335,110, p = 0.0002) showed significant associations with an increased body mass
index, as a diabetes-related phenotype, in two distinct cohorts of patients, respectively.
Interestingly, a carriage of allele rs1801310 g of GSS in females and allele rs11546155-A of
GGT7 in males that are related to the increased levels of total glutathione in our population
showed the link to a decreased fasting plasma glucose concentration in both diabetics and
non-diabetics in a large cohort of individuals (n = 16,076).

Table 6. Associations of the studied polymorphisms with biochemical parameters in diabetics.

Gene, SNP Genotype
Entire Group Males Females

T2D Patients
(n = 489)

p-Value *
(Q-Value)

T2D Patients
(n = 145)

p-Value *
(Q-Value)

T2D Patients
(n = 344)

p-Value *
(Q-Value)

H2O2, µmol/L

GSS rs13041792
G > A

G/G 3.67 (2.66; 4.96) 0.54
(0.72)

3.55 (2.44; 4.81) 0.17
(0.31)

3.79 (2.73; 5.02) 0.56
(0.72)G/A 3.77 (2.65; 5.09) 3.46 (2.39; 4.47) 3.80 (2.74; 5.10)

A/A 3.88 (2.76; 5.44) 3.67 (2.61; 6.94) 3.88 (2.76; 5.38)

GSS rs1801310
G > A

G/G 3.56 (2.64; 4.91) 0.56
(0.72)

3.26 (2.29; 4.07) 0.26
(0.42)

3.75 (2.70; 5.04) 0.88
(0.90)G/A 3.80 (2.72; 5.14) 3.59 (2.42; 4.81) 3.88 (2.90; 5.17)

A/A 3.68 (2.46; 4.61) 4.37 (2.46; 5.33) 3.63 (2.49; 4.22)

GSS rs6088660
C > T

C/C 3.77 (2.54; 4.96) 0.056
(0.18)

3.66 (2.30; 5.13) 0.73
(0.78)

3.81 (2.70; 4.94) 0.039
(0.18)C/T 3.79 (2.83; 5.21) 3.76 (2.60; 5.18) 3.79 (2.90; 5.23)

T/T 3.37 (2.64; 4.07) 3.21 (2.41; 3.56) 3.43 (2.64; 5.87)

GGT7 rs11546155
G > A

G/G 3.67 (2.63; 4.96) 0.62
(0.73)

3.55 (2.42; 4.81) 0.30
(0.45)

3.72 (2.66; 4.96) 0.046
(0.18)G/A 3.95 (2.74; 5.12) 3.01 (2.20; 4.24) 4.48 (3.23; 5.35)

A/A 3.67 (2.64; 5.04) 2.08 (2.08; 2.08) 4.15 (3.19; 5.87)

GGT7rs6119534
C > T

C/C 3.33 (2.20; 4.42)
0.0002
(0.009)

3.10 (2.13; 4.24) 0.05
(0.18)

3.39 (2.22; 4.82)
0.0009
(0.02)

C/T 3.74 (2.76; 5.05) 3.60 (2.42; 4.79) 3.79 (2.90; 5.09)
T/T 3.97 (3.05; 7.93) 3.61 (3.08; 7.93) 4.63 (2.76; 7.74)

Total glutathione, µmol/L

GSS rs13041792
G > A

G/G 1.41 (0.60; 3.67) 0.52
(0.72)

2.11 (0.91; 3.86) 0.60
(0.73)

1.34 (0.56; 3.53) 0.26
(0.42)G/A 2.31 (0.46; 4.01) 1.40 (0.67; 3.82) 2.42 (0.44; 4.03)

A/A 0.84 (0.27; 3.65) 2.56 (1.02; 4.23) 0.64 (0.27; 1.35)

GSS rs1801310
G > A

G/G 2.43 (0.54; 3.92) 0.26
(0.42)

2.16 (0.77; 3.84) 0.67
(0.75)

2.44 (0.46; 4.07) 0.039
(0.18)G/A 1.40 (0.58; 3.68) 1.64 (0.74; 3.75) 1.28 (0.48; 3.53)

A/A 1.30 (0.56; 3.18) 1.78 (0.60; 3.94) 1.29 (0.56; 2.70)

GSS rs6088660
C > T

C/C 1.35 (0.56; 3.65) 0.16
(0.30)

2.20 (0.88; 3.92) 0.70
(0.77)

1.30 (0.49; 3.35) 0.086
(0.19)C/T 2.01 (0.53; 3.88) 1.31 (0.50; 3.67) 2.28 (0.54; 3.89)

T/T 2.11 (0.77; 4.21) 2.12 (1.23; 3.86) 2.93 (0.40; 4.36)

GGT7 rs11546155
G > A

G/G 1.47 (0.54; 3.68) 0.077
(0.18)

1.47 (0.61; 3.75) 0.023
(0.18)

1.46 (0.51; 3.68) 0.66
(0.75)G/A 2.01 (0.65; 4.21) 3.55 (1.05; 4.42) 1.49 (0.39; 4.19)

A/A 3.11 (1.42; 4.09) 3.11 (2.45; 3.77) 2.39 (0.38; 4.40)
GGT7

rs6119534
C > T

C/C 1.36 (0.51; 3.34) 0.13
(0.25)

2.57 (0.88; 3.93) 0.053
(0.18)

1.28 (0.49; 2.90) 0.063
(0.18)C/T 1.70 (0.51; 3.89) 1.55 (0.56; 3.82) 1.93 (0.46; 3.97)

T/T 3.91 (0.91; 4.53) 4.70 (4.59; 3.81) 3.57 (0.59; 4.00)

Fasting blood glucose, mmol/L

GSS rs13041792
G > A

G/G 12.00 (9.40; 15.00) 0.032
(0.18)

12.20 (9.20; 15.00) 0.026
(0.18)

11.90 (9.40; 15.00) 0.29
(0.45)G/A 12.50 (10.00; 15.40) 12.50 (10.10; 15.40) 12.45 (9.92;15.35)

A/A 13.00 (10.20; 16.30) 13.50 (11.90; 17.60) 12.20 (9.06;16.20)

GSS rs1801310
G > A

G/G 12.40 (9.50; 15.60) 0.47
(0.68)

12.50 (9.16; 15.20) 0.10
(0.20)

12.40 (9.57;16.00) 0.60
(0.73)G/A 12.00 (9.80; 15.00) 12.60 (10.00; 15.20) 12.00 (9.63; 14.90)

A/A 12.20 (9.40; 15.40) 12.50 (9.00; 15.20) 12.00 (9.45; 15.49)

GSS rs6088660
C > T

C/C 12.00 (9.70; 15.20) 0.10
(0.20)

12.50 (10.10; 15.15) 0.007
(0.11)

12.00 (9.51; 15.20) 0.78
(0.82)C/T 12.20 (9.60; 15.00) 12.62 (9.60; 15.40) 12.00 (9.70; 15.00)

T/T 11.90 (8.30; 15.50) 10.90 (7.30; 15.00) 12.60 (9.50; 16.20)

GGT7 rs11546155
G > A

G/G 12.20 (9.70; 15.30) 0.053
(0.18)

12.50 (9.70; 15.20) 0.06
(0.18)

12.10 (9.70; 15.30) 0.069
(0.18)G/A 11.60 (9.25; 14.80) 12.70 (9.20; 15.00) 11.45 (9.26; 14.60)

A/A 15.00 (7.50; 16.30) 13.85 (10.05; 24.95) 15.00 (7.43; 16.30)
GGT7

rs6119534
C > T

C/C 11.60 (9.18; 14.75) 0.07
(0.18)

12.15 (10.00; 14.65) 0.96
(0.96)

11.30 (8.83; 14.84) 0.035
(0.18)C/T 12.17 (9.71; 15.00) 12.60 (9.52; 15.40) 12.00 (9.80; 15.00)

T/T 12.70 (10.00; 15.92) 13.10 (10.20; 15.20) 12.60 (9.60; 16.00)

* p-values for the Kruskal–Wallis one-way analysis of variance. Bold indicates statistically significant p- and Q-values.
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Figure 2. Relationship between the biochemical parameters and GSS and GGT7 haplotypes in T2D patients: (A) haplotypes
of the GSS gene (rs1801310, rs6088660 and rs13041792) in entire and sex-stratified groups; (B) haplotypes of the GGT7
gene (rs6119534 and rs11546155) in entire and sex-stratified groups. The histograms show deviations of biochemical
parameters from the median values (in µmol/L) in the assessed haplotypes according to the reference haplotypes such as
the ACG of GSS and CG of GGT7. ROS, reactive oxygen species (hydrogen peroxide); GSH, total glutathione; FBG, fasting
blood glucose.

To evaluate whether there exist interethnic differences in the association between
type 2 diabetes and GSS and GGT7 gene polymorphisms, we attempted to investigate
all functionally significant SNPs (eQTL-SNPs) of these genes concerning the association
with T2D in a large cohort of the UK Biobank, including two cohorts of patients, such as
with non-insulin-dependent diabetes mellitus (19,860 cases and 432,404 controls) and with
type 2 diabetes (2889 cases and 449,375 controls). For the association analysis, the GTEx
database (date of access: 12 May 2021) was used to select 878 and 1292 significant eQTLs
for the GSS and GGT7 genes in skeletal muscle, respectively (no significant eQTLs for the
genes were observed in both pancreas and liver). Supplementary Table S3 summarizes
the results of SNP–disease associations in the two samples of the UK Biobank. A total of
220 SNPs (almost 20% of the genotyped/imputed SNPs in the cohort) at the GGT7 gene
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were found to be associated with the risk of non-insulin-dependent diabetes mellitus at
a p-value ≤ 0.05 (rs4911408, the top SNP associated at p = 9.9 × 10−5). Meanwhile, only
54 of 1034 SNPs (about 5% of the genotyped/imputed SNPs) of the GGT7 gene showed
disease association (p-value ≤ 0.05) in the type 2 diabetes cohort (rs73099541, the top SNP
associated at p = 0.01). A relatively fewer number of T2D-associated SNPs were observed
for the GSS compared to the GGT7 gene: 53 (about 8% of the genotyped/imputed SNPs) in
the NIDDM cohort and only 1 SNP rs78116891 (p = 0.02) in the T2D cohort.

Table 7. Replication analysis for associations of GSS and GGT7 gene polymorphisms with type 2 diabetes and diabetes-
related phenotypes.

Gene, SNP
(Effective Allele) Phenotype p-Value Beta/Odds Ratio Sample Size

GSS
rs13041792 (A)

Waist–hip ratio adj BMI 0.00006 H−0.0103 1,542,860
BMI 0.0005 N0.0071 3,167,810

Non-proliferative diabetic retinopathy 0.018 H0.9042 3045
Waist–hip ratio 0.033 H−0.0056 2,046,830

GSS
rs1801310 (G)

Insulin sensitivity 0.007 H−0.0738 2765
Insulin sensitivity adj BMI 0.013 H−0.0690 2764

Diabetic retinopathy 0.014 H0.9239 3959
Non-proliferative diabetic retinopathy 0.018 H0.9508 3045

Acute insulin response adj BMI–SI 0.023 H−0.0525 4385
Peak insulin response adj BMI–SI 0.033 H−0.0491 4389

Fasting plasma glucose in diabetics and
non-diabetics 0.037 H−0.0191 16,076

Acute insulin response adj SI 0.047 H−0.0457 4386

GSS
rs6088660 (T)

Obesity 0.0009 N1.1090 11,743
Waist circumference adj BMI–smoking status 0.02 N0.0102 282,202

Fasting proinsulin 0.04 H−0.0150 10,701

GGT7
rs11546155 (A)

Type 2 diabetes 0.018 H0.9835 1,277,880
Waist–hip ratio adj BMI 0.0009 N0.0077 1,834,510

Chronic kidney disease in type 2 diabetics 0.004 N1.2590 300
Fasting plasma glucose in diabetics and

non-diabetics 0.016 H−0.0275 16,076

Neuropathy in type 2 diabetics 0.025 N1.2462 2344
BMI 0.027 H−0.0062 2,814,100

HbA1c adj BMI 0.05 N0.0496 7267

GGT7
rs6119534 (T)

BMI 0.0002 N0.0069 1,335,110
Waist–hip ratio adj BMI 0.001 H−0.0063 971,589

Data obtained at the T2D Knowledge Portal (https://t2d.hugeamp.org), date of access, 31 January 2021; SI, insulin sensitivity; BMI, body
mass index; HbA1c, glycated hemoglobin.

3.7. Functional Annotation of GSS and GGT7 Gene Polymorphisms

Bioinformatics tools of the eQTLGen Consortium, GTEx portal, and QTLbase were
used to assess whether the GSS and GGT7 gene polymorphisms represent significant ex-
pression quantitative trait loci (QTL) correlating with a variation of molecular traits such
as mRNA expression (eQTL), methylation, histone modification and splicing events. The
databases allowed identifying significant eQTLs for each studied polymorphism. The
results of tissue-specific eQTL analysis for the GSS and GGT7 gene polymorphisms are
summarized in Supplementary Table S4 (full list of statistically significant eQTLs obtained
from QTLbase and GTEx portal are shown in Supplementary Tables S5 and S6, respec-
tively). Genetic variation at GSS (rs13041792) and GGT7 (rs11546155 and rs6119534) attracts
great interest as the SNPs were found to be associated with the risk of type 2 diabetes in the
present study. As can be seen from Supplementary Table S4, the rs13041792-A allele is asso-
ciated with increased expression of the GSS gene only in the liver (p = 0.009). Meanwhile,
this allele was associated with increased mRNA levels of MYH7B (p = 4.4 × 10−8), PROCR

https://t2d.hugeamp.org
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(p = 2.8 × 10−10), and EDEM2 (p = 1.3× 10−18) genes in the pancreas (Supplementary Table S6),
MAP1LC3A (p = 9.9× 10−14), MYH7B (p = 6.3× 10−8) in adipose tissue, GGT7 (p = 7.5× 10−10),
and NFS1 (p = 0.0003) in skeletal muscle, as well as MYH7B (p = 4.5 × 10−5) and PROCR
(p = 1.1 × 10−6) in the liver. The pancreatic expression of genes correlated with the T2D-
associated SNPs of GSS and GGT7 has attracted the most attention since the organ is
primarily involved in the development of type 2 diabetes. Pursing this interest, HaploReg
and GTEx databases were used to explore pancreatic eQTLs for SNPs that are in strong
linkage disequilibrium (r2 > 0.8) with polymorphisms rs11546155 and rs6119534 of GGT7
and rs13041792 of GSS (Supplementary Table S7). Sixteen identified SNPs have been in a
strong LD with rs13041792, and all these polymorphisms, especially SNP rs7261969, were
associated with the pancreatic expression of EDEM2, PROCR, and MYH7B. Moreover,
eight SNPs were also associated with the expression level of TRPC4AP, and one SNP
(rs6088662) was associated with the expression level of FER1L4. As can be seen from
Supplementary Table S7, no SNPs with a strong LD were identified for the rs11546155
of the GGT7 gene. In contrast, fifty-five polymorphisms were strongly linked to SNP
rs6119534 of GGT7, and they were all associated with the pancreatic expression of EDEM2.
A majority of these SNPs were associated with the expression level of PROCR, MYH7B and
also MAP1LC3A in the pancreas. Thus, a carriage for the T2D-associated alleles of GSS and
GGT7 is related to the expression level of MYH7B, PROCR, and EDEM2 in the pancreas
as well as with the levels of MYH7B, PROCR, EDEM2, MAP1LC3A, GGT7, NFS1, PIGU,
NCOA6, TRPC4AP and ACSS2 in insulin-sensitive tissues.

The UCSC Genome Browser allowed identifying that all these genes are co-located
with GSS and GGT7 at a genomic cluster 20q11.22. Supplementary Table S8 shows that
the genomic region spans 50 genes. The enrichment analysis of these genes performed by
Enrichr has revealed numerous significantly enriched terms overlapping with various path-
ways, molecular functions, and biological processes that may be linked to the pathogenesis
of type 2 diabetes: sulfur amino acid metabolism (AHCY, GSS, GGT7, NFS1), regulation of
carbohydrate (EIF6) and lipid metabolism (RALY, NCOA6, ACSS2, MMP24, EIF6), glucose
transmembrane transport (MYH7B), notch signaling pathway (ITCH, MAP1LC3A), TGF-
beta signaling pathway (ITCH, DYNLRB1), regulation of protein translation (EIF2S2, EIF6,
UQCC1), protein ubiquitination and degradation (ITCH, TRPC4AP, EDEM2), endoplasmic
reticulum (ER) protein possessing and unfolded protein response (EDEM2, CHMP4B), qual-
ity control of unfolded/misfolded proteins (PIGU), regulation of reactive oxygen species
(EIF6, ROMO1), autophagy (CHMP4B, MAP1LC3A, TP53INP2), apoptosis (E2F1, CHMP4B,
MAP1LC3A) and host–virus interactions (ACTL10, CHMP4B, ITCH). Notably, some the
genes at cluster 20q11.22 overlapped with pathogenetically important pathways for type 2
diabetes: ASIP (“Proteins Involved in Diabetes Mellitus Type 2”, “Insulin Regulation of
Blood Glucose” and “Insulin-mediated Glucose Transport”), EDEM2 (“Hyperglycemia and
Hyperlipidemia Trigger beta-Cell Apoptosis” and “Nitric Oxide Effects on beta-Cell”) and
EIF6 (“Regulation of Glycolytic Process” and “Response to Insulin”). Thus, a number of
genes located at 20q11.22 are involved in the pathways of unfolded protein response and
the regulation of proteostasis.

3.8. Transcriptome-Wide Association Study for Genes Co-Expressed with GSS and GGT7

A transcriptome-wide association analysis was performed by the TWAS hub to es-
timate the genetic association between the risk of type 2 diabetes and tissue-specific
expression of the genes whose co-expression is related to the disease risk alleles of SNPs of
the GSS (rs13041792) and GGT7 (rs6119534 and rs11546155) genes. A heatmap in Figure 3
summarizes statistically significant (Q ≤ 0.05) predictive T2D-association models for genes
whose mRNA levels in the pancreas, adipose tissue, skeletal muscle, or whole blood have
been related to the T2D-associated SNPs of GSS and GGT7. In diabetic relatives (parents
and/or siblings) from the UK cohort, EDEM2 expression was increased in the pancreas
(Z = 2.2, Q = 0.01) and decreased in visceral adipose tissue (Z = −2.2, Q = 0.01) and blood
(Z = −2.5, Q = 0.006). The genetic susceptibility to type 2 diabetes was associated with
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increased levels of MYH7B in pancreatic tissue (Z = 2.4, Q = 0.008). The increased risk of
type 2 diabetes was significantly associated with the MAP1LC3A expression in various
tissues such as the pancreas (Z = 2.4, Q = 0.008), skeletal muscle (Z = 2.5, Q = 0.006), adipose
tissue (Z = 2.4, Q = 0.008), and whole blood (Z = 2.3, Q = 0.01). The risk of type 2 diabetes
was associated with decreased levels of CPNE1 in the pancreas (Z =−2.1, Q = 0.02), skeletal
muscle (Z = −2.1, Q = 0.02), and blood (Z = −2.3, Q = 0.01). Thus, the TWAS analysis
allowed revealing the genetic association between the changes in pancreatic expression of
genes such as EDEM2, MYH7B, MAP1LC3A, and CPNE1 and the risk of type 2 diabetes.

Figure 3. Heatmap of association between gene expression and diabetes traits across different diabetes-related tissues. The
heatmap shows Z-score values calculated by bioinformatics tools of the TWAS hub (http://twas-hub.org, date of access
5 July 2021) for an association between expression of genes whose mRNA levels related with the T2D-associated SNPs of
GSS and GGT7 genes and diabetes traits in disease-related tissues (* Z-score values averaged from several cited diabetes
traits). Color intensity shows the strength of association between gene expression and a trait. The following datasets were
utilized to evaluate diabetes-related trait models: (1) Type 2 Diabetes (T2D) (2012), N = 48,761 [59]; (2) Type 2 Diabetes (T2D)
(2018) UKBB N = 459,324 [60]; (3) Diabetes diagnosed by doctor, UKBB N = 336,473 [www.nealelab.is/uk-biobank, date
of access 5 July 2021]; (4) Diabetes (self-reported) N = 337,159 [www.nealelab.is/uk-biobank, date of access 5 July 2021];
(5) Diabetes (father) UKBB N = 293,407 [www.nealelab.is/uk-biobank, date of access 5 July 2021]; (6) Diabetes (mother)
UKBB N = 309,953 [www.nealelab.is/uk-biobank]; (7) Illnesses of siblings: Diabetes UKBB N = 261,075 [www.nealelab.is/uk-
biobank, date of access 5 July 2021]; (8) HbA1C N = 46,368 [61]. GTEx (Genotype-Tissue Expression) portal, a comprehensive
public resource to study tissue-specific gene expression and regulation [51]; METSIM (METabolic Syndrome In Men), an
expression quantitative trait locus (eQTL) study on abdominal subcutaneous adipose tissue [56]; NTR (Netherlands Twin
Register), whole blood eQTL data from a large population-based sample including twins, their parents, siblings, spouses,
and their adult offspring [57]; YFS (Young Finns Study), a large longitudinal study of cardiovascular risk from childhood to
adulthood [58].

http://twas-hub.org
www.nealelab.is/uk-biobank
www.nealelab.is/uk-biobank
www.nealelab.is/uk-biobank
www.nealelab.is/uk-biobank
www.nealelab.is/uk-biobank
www.nealelab.is/uk-biobank
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3.9. Prediction of Transcription Factors Co-Regulating Expression of T2D Associated Genes and
Their Enrichment Analysis

Transcription factors co-regulating the pancreatic expression of EDEM2, MYH7B,
MAP1LC3A, and CPNE1 genes that associated with type 2 diabetes have been predicted by
the hTFtarget tool. Supplementary Table S9 shows a list of 107 predicted TFs co-regulating
the expression of MAP1LC3A, MYH7B, CPNE1, and EDEM2 genes. A total of 99 tran-
scription factors were selected by Enrichr (as assessed by the Tissue Expression database
and TPM values of the GTEx portal) as being expressed in the pancreas for further func-
tional enrichment analysis to assess whether the selected transcription factors co-regulating
expression of EDEM2, MYH7B, MAP1LC3A, and CPNE1 significantly overlap with an-
notated gene sets representing known diabetes-related pathways. The enriched terms
were manually checked to identify the annotations linked to the pathogenesis of type 2
diabetes such as TGF-beta signaling, notch signaling, Wnt signaling, TP53 signaling, cell
cycle, apoptosis, autophagy, SUMOylation, insulin resistance, and energy metabolism
(i.e., pathways selected from the KEGG, Reactome, and WikiPathways databases). The
functional terms significantly enriched (FDR ≤ 0.05) with the set of TFs are listed in Supple-
mentary Table S10. PPI networks of TFs belonging to the T2D pathways were constructed
with the STRING database. For instance, transcription factors such as CREB1, NR1H2,
STAT3, NR1H3, FOXO1, and NFKB1 were significantly enriched (Q = 7.6 × 10−5) with the
term insulin resistance (KEGG), whereas CREB1, HDAC1, EP300, PPARG, NRF1, FOXO3,
FOXO1, and GABPA were enriched (Q = 2.1 × 10−9) with the term energy metabolism
(WikiPathways), pathways involved in the pathogenesis of type 2 diabetes.

Online resources such as Gene Ontology, KEGG, Reactome, Wikipathways, and Else-
vier Pathway Collection (EPC) were used to annotate the biological functions of EDEM2,
MYH7B, MAP1LC3A, and CPNE1 (Figure 4). EDEM2 was annotated with multiple
terms covering the following biological processes: protein quality control, transport and
degradation in the endoplasmic reticulum (R-HSA-392499, R-HSA-901032, R-HSA-901042,
GO:1904294, GO:0030433, GO:0070863 and GO:1904152); ER stress/unfolded protein re-
sponse (R-HSA-901042); and pro-inflammatory (nitric oxide) and pro-apoptotic (hyper-
glycemia and hyperlipidemia) effects on pancreatic beta-cells. MYH7B was annotated with
terms related to the regulation of glucose transport into the cell (KEGG, R-HSA-199991,
R-HSA-5653656, and R-HSA-1445148). MAP1LC3A was annotated with terms including
autophagy (R-HSA-1632852, GO:0000045, GO:0016236, GO:0097352, GO:1905037, WP2509,
R-HSA-5205647), protein/organelle degradation (GO:0031625, GO:0043241, GO:0061726,
GO:0000422), apoptosis (WP4313, WP2509), and the age-associated decline of the autophagic–
lysosomal system and inhibition of beta-cell function (EPC). CPNE1 was annotated with
terms reflecting the repression of NF-kappa-B signaling (GO:0051059, GO:0043122, GO:1901223),
the activation of the pro-inflammatory pathway (GO:1903265, GO:0001961), and endopep-
tidase activity/proteolysis (GO:0004175, GO:0070011, GO:0016192).
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Figure 4. Functional annotation of EDEM2, MYH7B, MAP1LC3A and CPNE1 genes. The following datasets were utilized to
evaluate diabetes-related trait models: (1) type 2 diabetes (T2D) (2012), n = 48,761 [59]; (2) type 2 diabetes (T2D) (2018) UKBB
n = 459,324 [60]; (3) diabetes diagnosed by doctor, UKBB n = 336,473; (4) diabetes (self-reported) n = 337,159; (5) diabetes
(father) UKBB n = 293,407; (6) diabetes (mother) UKBB n = 309,953; (7) illnesses of siblings: diabetes UKBB n = 261,075;
(8) HbA1C n = 46,368 [61]. The Genotype-Tissue Expression (GTEx) portal, a comprehensive public resource to study
tissue-specific gene expression and regulation [51]; Metabolic Syndrome in Men (METSIM), an expression quantitative trait
locus (eQTL) study on abdominal subcutaneous adipose tissue [56]; Netherlands Twin Register (NTR), whole-blood eQTL
data from a large population-based sample including twins, their parents, siblings, spouses, and their adult offspring [57];
Young Finns Study (YFS), a large longitudinal study of cardiovascular risk from childhood to adulthood [58]. The upper
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part of the figure depicts clusters of transcription factors (TFs) co-regulating the expression of EDEM2, MYH7B, MAP1LC3A,
and CPNE1 in the pancreas (data obtained from the GTEx portal). The enrichment analysis of the transcription factors is
described in Material and Methods. The middle part of the figure includes functional annotations for EDEM2, MYH7B,
MAP1LC3A, and CPNE1 whose expression levels in the pancreas were associated with the risk of type 2 diabetes, as
identified by the TWAS analysis (Figure 2). Ten T2D-associated pathways along with their PPI networks are shown around
the annotations. The abbreviations used include: KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology;
R-HSA, Reactome Homo Sapiens; WP, WikiPathways; EPC, Elsevier Pathway Collection. Figure was created using the yEd
Graph Editor software.

4. Discussion
4.1. Overview of the Main Findings

The present study was designed to test a hypothesis that genetic predisposition to
type 2 diabetes is associated with polymorphisms of genes encoding two important en-
zymes of glutathione metabolism such as glutathione synthetase and gamma-glutamyl
transferase 7, and to analyze in silico the potential mechanisms by which these genes
contribute to disease pathogenesis. We found that the SNPs rs11546155 and rs6119534
of the GGT7 are significantly associated with susceptibility to type 2 diabetes regardless
of sex, age and body mass index. A polymorphism rs13041792 of the GSS gene was also
associated with disease risk, but at a borderline significance level. Haplotype analysis
revealed that the rs1801310G–rs6088660C–rs13041792A haplotype of GSS increased the
risk of type 2 diabetes, whereas, on the contrary, two haplotypes such as rs6119534T–
rs11546155G and rs6119534C–rs11546155A of GGT7 decreased disease risk. A sex-specific
relationship between the studied gene polymorphisms and biochemical parameters in
patients with type 2 diabetics was observed. In particular, SNPs rs13041792 and rs6088660
of GSS were associated with increased and decreased levels of fasting blood glucose in
diabetic males, respectively. An SNP rs6088660 of GSS was associated with decreased
levels of hydrogen peroxide in females. An SNP rs1801310 of GSS showed association
with decreased levels of total glutathione in females. A haplotype rs1801310C–rs6088660T–
rs13041792G of GSS was associated with increased levels of glutathione in diabetic females.
Furthermore, a haplotype rs6119534T–rs11546155G of GGT7 showed an association with
increased levels of reactive oxygen species in both sexes, but more strongly in females than
males. In addition, increased levels of total glutathione were associated with haplotypes
rs6119534T–rs11546155G and rs6119534C–rs11546155A in females and males, respectively.
These correlations were weak and did not survive after adjustment for multiple tests. The
MB-MDR method allowed identifying epistatic interactions between the GSS and GGT7
gene polymorphisms contributing to T2D susceptibility, generally between rs13041792,
rs1801310, rs6088660 of GSS, and rs6119534 of GGT7. Eighteen low- and high-risk geno-
type combinations were found to be significantly associated with type 2 diabetes and two
genotype combinations such as GGT7 rs6119534-C/T × GSS rs1801310-A/A GGT7 and
rs6119534-C/T × GSS rs13041792-G/G showed the strongest protective effects against
disease risk. A replication study in independent populations confirmed an association
between SNP rs11546155 of GGT7 and a decreased risk of type 2 diabetes. In addition, the
rest of the SNPs showed associations with T2D-related traits such as body mass index and
waist–hip ratio in ethnically distinct populations. A comprehensive bioinformatics analysis
was performed to unravel the complex molecular mechanisms by which the glutathione-
metabolizing enzymes contribute to the pathogenesis of type 2 diabetes. A tissue-specific
eQTL analysis of the GTEx data showed that a carriage for the T2D-associated GSS and
GGT7 alleles was correlated with the co-expression of genes encoding MYH7B, PROCR,
EDEM2, and some other genes in the pancreas as well as in insulin-sensitive tissues such
as skeletal muscle, visceral adipose tissue, and the liver. Transcriptome-wide associa-
tion study allowed revealing the genetic link between T2D susceptibility and both the
increased expression of EDEM2, MYH7B, MAP1LC3A and the decreased expression of
CPNE1 in the pancreas. Importantly, a functional enrichment analysis showed that EDEM2,
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MYH7B, MAP1LC3A, and CPNE1 genes are statistically enriched to biological terms in-
cluding protein quality control, transport, and degradation in the endoplasmic reticulum,
endoplasmic reticulum stress/unfolded protein response, autophagy, pro-inflammatory
and pro-apoptotic effects on pancreatic beta-cells, the repression of NF-kappa-B signaling,
regulation of glucose transport into the cell, protein/organelle degradation, and endopep-
tidase activity/proteolysis. Numerous transcription factors co-regulating the pancreatic
expression of EDEM2, MYH7B, MAP1LC3A, and CPNE1 genes were predicted in silico.
These transcription factors are known to be involved in the pathways playing a crucial role
in the pathogenesis of type 2 diabetes such as TGF-beta signaling, notch signaling, Wnt
signaling, tp53 signaling, cell cycle, apoptosis, autophagy, SUMOylation, insulin resistance,
and energy metabolism.

4.2. Genetic and Environmental Factors Responsible for Endogenous Deficiency of Glutathione in
Type 2 Diabetes

Several experimental and clinical studies provided a line of evidence for the decreased
glutathione levels in various tissues in both animals and patients with type 2 diabetes. In
particular, the impaired synthesis and increased loss or degradation of GSH appeared to
contribute to β-cell dysfunction and the resulting increase in blood glucose is responsible
for further depletion of glutathione and the development of long-term diabetic complica-
tions [28,30,65–68]. In particular, Lutchmansingh with colleagues observed that patients
with type 2 diabetes have lower erythrocyte concentrations of the reduced form of glu-
tathione and absolute synthesis rates than healthy controls [30]. It has been observed that
the synthesis of glutathione is markedly reduced in uncontrolled type 2 diabetes due to
the limited availability of its amino acid precursors, and intracellular GSH levels were
found to be restored with cysteine and glycine supplementation [27]. Despite numerous
findings of glutathione deficiency in type 2 diabetes, a few studies have been performed
to elucidate whether abnormal glutathione metabolism is attributed to decreased activity
and/or expression of enzymes catalyzing the synthesis of glutathione. A major portion
of biochemical studies [69–74] has revealed that patients with type 2 diabetes and pre-
diabetes exhibit the increased blood levels of γ-glutamyltransferase (GGT), and it has
been suggested that an increase in GGT concentration represents a sensitive and early
biomarker for the development of diabetes. This enzyme cleaves the gamma-glutamyl
bond of glutathione and its conjugates, releasing two components for further glutathione
synthesis such as glutamate and dipeptide cysteinyl-glycine [75]. However, Mendelian
randomization studies did not support a causal relationship between increased blood GGT
levels and susceptibility to type 2 diabetes [76,77], suggesting that the relationship could
be explained by reverse causality and/or residual confounding. A study of Murakami and
coworkers [78] provided evidence that the decreased GSH levels and increased glutathione
disulfide (GSSG) levels in the erythrocytes of patients with type 2 diabetics is attributed to
the decreased activity of enzymes involved in glutathione metabolism such as glutamate
cysteine ligase and glutathione reductase. The authors also observed that diabetics have an
approximately 70% decreased rate of outward transport of glutathione disulfide than that
of healthy subjects. Similar findings have been obtained by some other studies [79–81]. A
recent paper by Zhang and colleagues has established that glutathione has the potential to
prevent β-cell failure and prediabetes in rats on a long-term high-glucose diet [68]. The
depletion of endogenous glutathione was found to be progressively associated with an
abnormal glucose tolerance test, which could not be attributed to the impaired secretion
of insulin by beta-cells [82]. Our recent study of diabetic patients showed that the plasma
levels of GSH are inversely correlated with the content of reactive oxygen species, whereas
the GSSG levels directly correlated with fasting blood glucose concentrations, provid-
ing additional evidence for the link between glutathione and glucose metabolism [32].
High glucose concentrations were experimentally found to increase levels of intracellular
peroxide in human islets and the pancreatic β-cell line and the inhibition of glutamate
cysteine ligase augmented the increase in islet peroxide as well as the decrease in insulin
mRNA levels, in the secretion in islets and in β-cell line induced by ribose [83]. Thus,
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many studies stated a decrease in the glutathione levels occurs in type 2 diabetes and its
complications, and this condition is linked with disease pathogenesis through increased
oxidative stress. However, it is still unclear whether glutathione deficiency is a primary or
secondary condition for type 2 diabetes.

The level of glutathione is determined by both the activity and expression of the
enzymes involved in the biosynthesis of GSH. As it has been observed by the present study,
our previous [31,32,34,35] and some other [36–38] studies, the genetic factors contribute to
both the levels of glutathione and susceptibility to type 2 diabetes, and single nucleotide
polymorphisms at genes encoding enzymes for glutathione metabolism such as glutamate
cysteine ligase (catalytic and modifier subunits), gamma-glutamyl cyclotransferase, glu-
tathione S-transferases (mu, pi, and theta classes), gamma-glutamyltransferase 6 and 7 are
illustrative examples of that relationship. Although the contribution of each SNP of the
GSS and GGT7 genes was low or moderate, the joint effects of the genetic variants on the
risk of type 2 diabetes were more pronounced, as has been shown by the analysis of SNP–
SNP interactions (Tables 4 and 5). Further studies will extend the spectrum of functional
genetic variants of enzymes and other proteins involved in the regulation of glutathione
metabolism that would be attractive objects for investigating the genetic architecture of
susceptibility to type 2 diabetes.

Data from the literature indicate that the glutathione synthetic capacity of the pancreas
is significantly lower than in other organs and tissues having a high level of metabolic
activity such as the liver, skeletal muscles, and kidneys [84–86]. According to the GTEx
project, the pancreas has a relatively low expression levels of genes encoding enzymes
involved in the biosynthesis of glutathione such as GCLC, GCLM, GSS, GSR, and GGCT,
meanwhile the pancreatic expression of genes encoding enzymes catabolizing glutathione
such as GGT1, GGT6 and ANPEP are substantially higher than those involved in GSH
biosynthesis. The liver is the main organ where glutathione is synthesized and transported
through the bloodstream to various tissues and organs including the pancreas. This
means that the glutathione content in the pancreas depends on the entry of its amino
acid precursors into the cells and this process is determined by membrane-associated
enzymes such as gamma-glutamyl transferase (GGT1) and aminopeptidase N (ANPEP)
which hydrolyze plasma GSH into its constituent amino acids, thereby assisting their
transport into the cells [84]. Interestingly, a strong increase in the levels of gamma-glutamyl
transferase in plasma [69,76,77] and aminopeptidase mRNA in pancreatic islets [87,88] were
found in patients with type 2 diabetes. Working consistently, these membrane enzymes
break down extracellular glutathione, making its component amino acids such as cysteine
and glycine available to the cells for the de novo synthesis of glutathione [75]. Therefore,
we propose that the increased levels of GGT1 and ANPEP may be considered as biomarkers
of the intracellular deficiency of glutathione and their adaptive upregulation is aimed to
enhance supplementing the cell with GSH precursors.

Although glutathione-metabolizing enzymes have an essential role in determining
cellular glutathione content, a very limited number of studies have been undertaken to
evaluate the relationship between genetic variation at genes encoding susceptibility to
type 2 diabetes [31–38]. No studies have been done to date to investigate the contribution
of polymorphisms at the GSS and GGT7 genes to the development of type 2 diabetes.
However, at the same time, the DisGeNET database (https://www.disgenet.org, date of
access 4 June 2021) comprises research findings for the associations of GSS and GGT7 gene
polymorphisms in humans with certain diseases, but not with diabetes. To date, several
genetic studies have provided evidence for the association between SNPs of the GSS gene
and hemolytic anemia [89,90], breast cancer [91], neoplasms [92], bipolar disorder [93],
alcohol dependence [94], and plasma levels of protein C [95]. Polymorphisms of the GGT7
have been associated with coronary artery disease [96], glomerular filtration rate [97], age
at menarche [98] and plasma levels of protein C [99].

The present study was the first to assess the contribution of two genes encoding
glutathione synthetase and gamma-glutamyl transferase 7 to the development of type 2 di-

https://www.disgenet.org
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abetes mellitus. Glutathione synthetase is the second enzyme of a two-step pathway, called
de novo glutathione biosynthesis, catalyzing the condensation of gamma-glutamylcysteine
and glycine, to form reduced glutathione (GSH) [100]. Unlike glutamate cysteine ligase,
GSS is not feedback-inhibited by GSH, and its activity is essentially regulated at the level of
transcription and substrate availability [101]. Gamma-glutamyl transferase 7 (also known
as γ-glutamyltranspeptidase 7) is a membrane-bound extracellular enzyme that cleaves
gamma-glutamyl peptide bonds in GSH and transfers the gamma-glutamyl compounds to
acceptors [102]. GGT7, similarly to other gamma glutamyl transferases, on the one hand,
plays the key role in glutathione homeostasis by providing substrates for glutathione syn-
thesis, especially for those tissues with a low rate of glutathione biosynthesis; on the other
hand, the enzyme counteracts oxidative stress by breaking down extracellular glutathione
and making its component amino acids available to the cells [75]. This pathway, also called
γ-glutamyl cycle, allows for released glutathione to be broken down and its constituent
amino acids utilized by cells for de novo synthesis of GSH [103]. Both GSS and GGT7
genes are located at the genomic region 20q11.22. Genes encoding glutathione synthetase
and gamma-glutamyl transferase 7 consist of 13 and 17 exons, respectively, which are all
differentially expressed in the pancreas (GTEx). It is known that the expression of GSS and
GGT7 genes is regulated by transcription factors such as Nrf1 and Nrf2 that are molecular
sensors of oxidative stress [104,105].

No functional studies have been conducted to date to analyze the impact of the GSS
and GGT7 polymorphisms on the expression or activity of these genes at the transcriptional
and/or protein levels, thereby complicating the interpretation of the genotype–phenotype
correlations. Therefore, in the present study, we used numerous bioinformatics methods for
the functional annotation of SNPs to clarify the phenotypic effects of GSS and GGT7 genes
showed significant associations with type 2 diabetes. Surprisingly, none of the studied
SNPs were associated with the expression level of GSS and GGT7 genes in the pancreas, as
assessed by the public genome–transcriptome databases. Instead, the rs13041792-A allele
of GSS that increased the T2D risk was found to be associated with an increased expression
of EDEM2, MYH7B, PROCR genes in the pancreas as well as GSS, MYH7B, PROCR, and
TRPC4AP genes in the liver. The TWAS analysis has shown that the pancreatic expression
of EDEM2, MYH7B, MAP1LC3A, and CPNE1 correlated to a carriage of T2D-associated
alleles of GSS and GGT7 is associated with the genetic risk of type 2 diabetes. We carried out
an in-depth analysis of the literature on the biological functions of genes whose expression
is interrelated with polymorphic variants of the GSS and GGT7 genes associated with
the development of type 2 diabetes (Supplementary Data S11). An interesting fact is that
almost all genes whose expression correlated with the T2D associated variants of GSS and
GGT7 represent the pathways involved in the regulation unfolded protein response and
proteostasis, as well as in biological processes that play a role in the pathogenesis of type 2
diabetes mellitus.

The absence of significant eQTLs at the GSS and GGT7 genes in the pancreas might
be explained by the extremely lower pancreatic expression of these genes (and also other
genes encoding glutathione-metabolizing enzymes) in the comparison with other organs
and tissues, as assessed by GTEx and Protein Atlas databases. This finding may indicate a
limited capacity of the pancreas to produce glutathione at a high level. It is well known
that the bulk of plasma glutathione originates from the liver playing a central role in
the inter-organ homeostasis of GSH by exporting it into plasma and bile and impacting
GSH homeostasis systemically, including the pancreas [103]. Taking into account the
importance of these genes for glutathione biosynthesis in the pancreas to ensure the
folding of maturating enzymes including insulin, we hypothesize that the absence of
genetic variants capable of affecting the pancreatic expression and/or activity of GSS and
GGT7 is attributed to the natural selection which recognizes the lower fitness of such
variants to intensive protein biosynthesis occurring in this multifunctional organ and,
respectively, removes them from the population. Despite the absence of an association
of GSS and GGT7 polymorphisms with the level of expression of their own genes, the
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SNPs were correlated with parameters of redox homeostasis such as glutathione and
ROS concentrations, thereby indicating the contribution of these polymorphisms to the
regulation of glutathione metabolism. We found that polymorphic variants at GSS and
GGT7 genes, alone and in combination, are correlated to the biochemical parameters of
redox homeostasis such as ROS and glutathione content as well as to fasting blood glucose
and the risk of diabetes. This means that, on the one hand, the studied SNPs are functionally
significant variants at GSS and GGT7 genes and may impact on glutathione metabolism;
on the other hand, the functional effect of a particular SNP could be explained by linkage
disequilibrium with a nearby locus such as EDEM2, MYH7B, PROCR and MAP1LC3A.
For instance, a polymorphism rs13041792 is located at 1.4kb 5′ of the GSS gene and is
in a strong linkage disequilibrium (D’ ≥ 0.91) to SNPs situated near or in neighboring
genes such as MYH7B (rs6120772, rs6120775, rs7261969, rs6088667, rs3746446, rs7268266,
rs6120788, rs3746436 and rs3746435), MIR499A (rs3746444) and TRPC4AP (rs752075), and
certain of these SNPs tightly linked to a polymorphism rs13041792 of the GSS gene are
associated with the risk of several common diseases (Supplementary Data S12). The
observed association between T2D and haplotype rs1801310G–rs6088660C–rs13041792A of
GSS might be interpreted by the presence of an allele rs6088660-C which is associated with
the decreased pancreatic expression of GSS or by the linkage disequilibrium of rs13041792
to some other SNP with a causative effect on the disease. The pathogenetic relationship
between the GSS gene polymorphisms and T2D susceptibility was also supported by the
findings that the rs6088660-C and rs13041792-A alleles are associated with increased levels
of fasting blood glucose. The GGT7 haplotypes were associated with increased levels of
ROS (rs6119534-T–rs11546155-G) and total glutathione (rs6119534-T–rs11546155-G and
rs6119534-C–rs11546155-A). These associations may reflect that the increased activity or
expression of membrane-associated gamma-glutamyl transferase 7 has a known adaptive
role against oxidative stress through providing the cell with amino acid precursors derived
from a cleavage of extracellular GSH [75]. Therefore, the protective effects of the GGT7
haplotypes against the risk of type 2 diabetes may be attributed to the GGT7-mediated
increase in the de novo biosynthesis of glutathione. Thus, the associations of GGT7 and GSS
gene polymorphisms with the levels of glutathione and ROS show that the genes have the
potential to impact the glutathione homeostasis and loss-of-function effects of their alleles,
may contribute to the reduced synthesis of glutathione in the cell, and may play a role in
the pathogenesis of type 2 diabetes. Furthermore, we observed sex-specific effects of the
GSS alleles on the redox parameters: females with the rs1801310A allele, associated with
a decreased GSS expression, had a lower plasma glutathione concentration than female
carriers for a wild-type allele. Females with the rs6088660T allele (associated with increased
levels of GSS) had a decreased level of ROS and fasting blood glucose. Meantime, SNP
rs13041792 influenced the risk of T2D, and was also associated with increased concentration
of fasting blood glucose—but in males. The above findings demonstrate sex dimorphism
in the impact of genetic variants of glutathione-metabolizing enzyme both on redox and
glucose homeostasis. Notably, human and animal studies have shown that the activity
of glutathione-metabolizing enzymes such as glutamate cysteine ligase [106], glutathione
reductase [107], glutathione peroxidase [108], glutathione S-transferase [109] is higher in
females than males. Thus, these findings were expected since sex-dependent differences
were documented in both glutathione metabolism and glutathione-dependent responses,
and the sex-specific genotype–phenotype correlations may be attributed to the complex
interactions between genetic factors, levels of oxidative stress, and sex hormones [110].
Finally, multiple environmental factors such as poor diet, physical inactivity, life stress,
smoking, and chemical agents have been found to deplete the endogenous glutathione
pool, and also contribute to the development of type 2 diabetes (Supplementary Data S13).

4.3. Glutathione Deficiency as a Cause of Impaired Folding of Proinsulin in Type 2 Diabetes

Glutathione is a tripeptide consisting of three amino acids such as cysteine, glycine,
and glutamate. GSH represents the most abundant non-protein thiol in cells, serving
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as a major reducing agent as well as an antioxidant defense against oxidative damage
of cells [111]. Intracellular concentrations of reduced glutathione are maintained at the
highest (millimolar) levels suggesting its vital and multifaceted roles, not solely limited
by antioxidant defense [20]. Glutathione possesses a plethora of functions essential for
whole-body homeostasis including the detoxification of both xenobiotic and endogenous
compounds as well as the maintenance of the mitochondrial redox environment, antiviral
defense by fine-tuning the innate immune response to antiviral pathways, the regeneration
of vitamins C and E and the regulation of cellular proliferation, apoptosis and protein
folding [20,111–117]. Glutathione deficiency is well known for increasing oxidative stress,
a pathological condition capable of disturbing the redox state in the endoplasmic reticulum
and disrupt disulfide bond formation, adaptively activating ER stress and unfolded protein
response [118,119]. In parallel, a loss of glutathione was found to be associated with the
impairment of the electron transport chain function in mitochondria and leading to mito-
chondrial dysfunction [119,120]. Notably, oxidative stress and mitochondrial dysfunction
are both involved in T2D pathogenesis.

The formation of native disulfide bonds is an important process underlying the matu-
ration of proteins that enter the secretory pathway [117]. Newly synthesized proteins enter
the endoplasmic reticulum where they undergo a series of modifications, among which
folding is a critical process required for ultimate protein maturation and subsequent release
from the ER [121]. It is important to note that protein folding and disulfide bond formation
in maturated proteins occur simultaneously. It is known that protein folding in the ER
requires, on the one hand, effective protein thiol oxidation, and on the other hand, reduc-
tive processes for editing disulfides when maturated proteins secrete or degrade [122,123].
Notably, both processes are under the control of intracellular glutathione. Glutathione
has a strong influence on disulfide pairing in a target protein providing the formation of
its native tertiary structure [122–126]. Interestingly, oxidized (GSSG) and reduced (GSH)
forms of glutathione play distinct functions in the process of protein folding: GSSG acting
as an oxidant provides disulfide bond formation in protein, whereas GSH functions as
a reducing agent that cleavages mis-bridged disulfide bonds [127,128]. These properties
of glutathione are widely used by in vitro studies investigating the folding reactions of
disulfide-containing proteins [129,130]. Proteins containing cysteine residues including
insulin (Figure 5) are usually folded into the native conformation via the formation of com-
plex disulfide intermediates requiring a sufficient amount of glutathione molecules [126].
Thus, taking into account the critical role of glutathione in ensuring protein folding, there is
a reason to believe that a deficiency of glutathione in the cell, especially in the endoplasmic
reticulum, maybe the key factor responsible for ineffective protein folding, ultimately
leading to the accumulation of unfolded or misfolded proteins in the ER, protein overload
and the subsequent activation of unfolded protein response. It is important to note that
proinsulin folding is closely tuned to ER stress and unfolded protein response pathways
that may play a role in the damage of pancreatic beta-cells in type 2 diabetes [131–133].

Unfolded protein response is an evolutionary conserved cellular stress response that
is initiated as a result of the endoplasmic reticulum stress that is activated due to an
accumulation of unfolded or misfolded proteins in the ER lumen, aiming to maintain
cell viability and function [134]. UPR is activated to adjust and match the endoplasmic
reticulum’s protein-folding capacity by inhibiting protein translation that prevents protein
overload in the ER, degrading misfolded or unfolded proteins, and activating pathways
that increase the production of molecular chaperones aiding protein folding [134,135]. In
the beta-cells, the UPR may have a crucial role as a quality control system for proper
proinsulin folding by selecting correctly folded insulin molecules, their transport across
the cell membrane, and secretion into the bloodstream. Prolonged and/or severe ER stress,
as well as the inability of the UPR to restore protein-folding homeostasis, results in the
activation of numerous signaling pathways that induce cell apoptosis.
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Figure 5. The chemical structure of human insulin. Three disulfide bonds in a molecule of human
insulin are indicated by orange lines. The figure was adapted from the Biologic Description of the
PubChem database (https://pubchem.ncbi.nlm.nih.gov, PubChem CID 118984375, date of access
14 June 2020).

The important finding of our study was the relationship between T2D-associated
SNPs of GSS and GGT7 genes and multi-tissue expression levels of various genes located at
the same chromosome segment 20q11.22. In addition, further TWAS analysis has revealed
that the increased pancreatic expression of EDEM2, MYH7B, MAP1LC3A and decreased
levels of CPNE1 are associated with the genetic risk of type 2 diabetes. These genes as
well as other genes whose expression level in insulin-sensitive tissues correlated with the
T2D-associated SNPs of GSS and GGT7 genes are both linked to the pathogenesis of dia-
betes and represent the arms of a common metabolic pathway-unfolded protein response.
Based on extensive literature data and our findings, we hypothesize that unfolded protein
response in type 2 diabetes represents a cellular response to glutathione deficiency which
is determined by the joint effects of genes encoding glutathione-metabolizing enzymes and
environmental factors that deplete the endogenous GSH pool (Figure 6). This suggestion
could be supported by enrichment analysis showing that EDEM2, MYH7B, MAP1LC3A,
and CPNE1 genes are overrepresented with biological terms such as protein quality con-
trol, transport, and degradation in the endoplasmic reticulum, endoplasmic reticulum
stress/unfolded protein response, autophagy, pro-inflammatory and pro-apoptotic effects
on pancreatic beta-cells, repression of NF-kappa-B signaling, regulation of glucose trans-
port into the cell, protein/organelle degradation, and endopeptidase activity/proteolysis.
All these pathways are the well-recognized arms of UPR. As can be seen from Figure 6,
genes whose expression in the pancreas and insulin-sensitive tissues correlated to T2D-
associated SNPs of GSS and GGT7 genes are categorized into several groups concerning
their enriched biological functions and possible roles in disease pathogenesis: autophagic
degradation of misfolded/unfolded proinsulin (TP53INP2, MAP1LC3A and EDEM2),
protein degradation by the ubiquitin–proteasome pathway (EDEM2 and TP53INP2), ox-
idative stress, inflammation and mitochondrial dysfunction (TRPC4AP, CPNE1, NCOA6,
NFS1, UQCC1, PROCR and EIF6), insulin secretion and glucose transport into the cell
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(NCOA6, MYH7B, TRPC4AP and CPNE1), regulation of translation attenuating protein
synthesis, amino acid transport and metabolism as well as redox/detoxification (EIF6 and
EIF2S2). In addition, the in silico analysis allowed predicting a variety of transcription
factors that have the potential to co-regulate the pancreatic expression of EDEM2, MYH7B,
MAP1LC3A, and CPNE1 genes, and these TFs represent the pathways playing a key role
in the development of type 2 diabetes such as TGF-beta signaling, notch signaling, Wnt
Signaling, TP53 signaling, cell cycle, apoptosis, autophagy, SUMOylation, insulin resistance
and energy metabolism (Figure 4). Genomic region 20q11.22 is a subject of great interest
because it comprises, in addition to GSS and GGT7, genes that are related to unfolded
protein response. The UPR pathway integrates many biological processes known to play a
role in the pathogenesis of type 2 diabetes such as the transport of glucose across the cell
membrane, insulin-stimulated glucose uptake by the cell, glucose and energy metabolism,
inflammation, autophagy, apoptosis, ER-associated ubiquitin- and proteasome protein
degradation, glutathione and sulfur amino acid metabolism. Interestingly, genes such as
GDF5, CEP250, ERGIC3, FER1L4, SPAG4, CPNE1, and RBM12 at 20q11.22 were enriched
with a term BMI-adjusted waist-to-hip ratio (GWAS catalog), a trait which is known to be
associated with diabetes risk [136] as well as polymorphisms rs143384 and rs224333 of the
GDF5 gene, as established by genome-wide association studies performed on type 2 dia-
betes [137,138]. Three genes also located in the genomic region 20q11–22at such as PROCR,
PIGU, ITCH, and ACSS2 were also correlated with the disease-associated alleles of GSS and
GGT7 genes. PROCR (previously denoted by the symbol EPCR), endothelial protein C re-
ceptor, represents a type 1 transmembrane glycoprotein receptor required for the activation
of protein C, known as an anti-coagulant serine protease which is involved in the blood
coagulation pathway [139]. Moreover, activated protein C (APC) possesses a variety of
endothelium-protective functions including cytoprotective and anti-inflammatory effects,
maintaining the integrity of the endothelial barrier, and preventing endothelial cell apopto-
sis [140]. Some studies provided evidence for the protective effect of APC in hyperglycemic
conditions. In particular, an experimental study in mice showed that PROCR and protein
C were found to ameliorate diabetic nephropathy by inhibiting hyperglycemia-induced
endothelial and glomerular apoptosis [141]. The cytoprotective and anti-inflammatory
functions of APC have been demonstrated by Contreras and co-workers who reported
that the administration of APC significantly reduced a loss of functional islet mass after
intraportal transplantation in diabetic mice [142]. In addition, APC-administrated animals
exhibited better glucose control, higher glucose disposal rates, and higher acute insulin
release. Therefore, it can be assumed that the deficiency of PROCR may contribute to
apoptosis-mediated beta-cell loss. Phosphatidylinositol glycan anchor biosynthesis class U
(PIGU) is a component of the glycosylphosphatidylinositol (GPI) transamidase complex
that attaches certain membrane proteins to the lipid bilayer of the cell membrane [143]. Al-
though the exact functions of PIGU in the GPI transamidase complex need to be elucidated,
nevertheless, several studies discussed above showed that PIGU may influence the activity
of the complex towards the quality control of unfolded or misfolded proteins designed for
ERAD degradation. ITCH is an itchy E3 ubiquitin-protein ligase, accepting ubiquitin from
an E3 ubiquitin-conjugating enzyme to transfer it to targeted substrates thereby playing a
role in ubiquitination and proteasomal degradation of proteins [144]. ITCH is involved in
the control of a wide range of inflammatory pathways including NF-kappaB signaling [145].
ITCH is capable of regulating apoptosis and the levels of reactive oxygen species through
the ubiquitination and proteasomal degradation of the thioredoxin interacting protein
(TXNIP), which is known to inhibit the antioxidative function of thioredoxin resulting
in ROS accumulation and oxidative stress [146]. Acyl-CoA synthetase short chain family
member 2 (ACSS2) constitutes a cytosolic enzyme catalyzing the ATP-dependent synthesis
of acetyl coenzyme A (acetyl-CoA), a molecule that participates in the metabolism of
proteins, lipid and carbohydrates. The main function of acetyl-CoA is supplying the Krebs
cycle with the acetyl group to be oxidized for energy production and the abundance of
acetyl-CoA in distinct subcellular compartments is considered as a marker for the general
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energetic state of the cell [147]. Martínez-Micaelo with co-workers [148] has identified
that ACSS2 represents a part of the nutrient-sensing system that influences inflammatory
responses. In addition, ACSS2 has been proven to affect autophagy through a translocation
into the nucleus and the upregulation of the promoter regions of lysosomal and autophagy
genes [149]. The depletion of acetyl-CoA was found to induce autophagy whereas an
excess of acetyl-CoA inhibits autophagy [150]. Thus, altogether, the study findings clearly
show that the gene cluster spanning 20q11.22 is closely related to the development of type
2 diabetes and represents a tandem of genes whose coordinated expression is most likely
necessary for the control and regulation of the adaptive cellular response to endoplasmic
reticulum stress caused by the accumulation of unfolded and misfolded proteins in the ER
lumen. The coordinated expression of these genes is very important for the pancreas, an
organ with exocrine and endocrine functions, and with the highest rate of protein synthesis
(enzymes and hormones) that requires the organization of a reliable and evolutionally
conserved system that provides post-translational protein modifications including disulfide
bridge formation, the isomerization of peptide bonds, the hydrolysis of polypeptides, and
the phosphorylation, ubiquitination, sumoylation and other biological processes aiming to
acquire protein’s proper structure and function [151,152]. The low pancreatic expression of
GSS, GGT7, and other genes encoding glutathione-metabolizing enzymes (GTEx portal),
the absence of evolutionarily conserved alleles affecting the expression and/or activity of
these genes in the population, as well as the correlation of the GSS and GGT7 alleles with
the expression of genes that are targeted by unfolded protein response all clearly indicate
that pancreatic cells are very sensitive to changes in GSH content and appear to have a
limited capacity to restore native S–S bonds in proteins under the condition of a deficiency
of glutathione, which is an essential substrate for the formation of disulfide bridges and
their correction in the case of their mis-bridged state [117,127,128]. In this context, it can
be assumed that the adaptive response of pancreatic cells to impaired protein folding, the
accumulation of unfolded and misfolded proteins, and the resulting ER stress is mediated
through the activation of UPR aimed at restoring protein folding by the mechanisms includ-
ing chaperone-assisted protein folding, a reduction in protein synthesis, and enhancing
ER-associated protein degradation. If intracellular glutathione content is not restored to
the levels necessary for the effective formation of disulfide bonds in proteins and unfolded
or misfolded proteins continue to be accumulated in the ER, the UPR pathway may induce
ER stress-associated programmed cell death.

4.4. Study Limitations

Our study has some limitations. First, the parameters of redox homeostasis including
ROS (hydrogen peroxide) and total glutathione levels were measured in plasma and only
in a subgroup of patients and controls (in total, 578 subjects), and this was the reason
why we did not obtain more reliable correlations between the genotypes and biochemical
characteristics in diabetics. Second, the eQTL and TWAS analyses were performed using
the transcriptomic data obtained from the whole pancreas, not from beta-cells or even
pancreatic islets. Therefore, the observed genotype–phenotype correlations associated
with T2D susceptibility should be interpreted with caution and warrant independent
confirmation by transcriptomic studies on pancreatic islets or beta-cells obtained from
diabetics. Finally, we did not investigate SNP–environment interactions to evaluate what
kind of known environmental risk factors for T2D (for instance, physical inactivity and poor
nutrition) have synergic effects on disease development in individuals with disease-related
GSS and GGT7 genotypes. Undoubtedly, our hypothesis that glutathione deficiency is a
trigger for type 2 diabetes needs experimental validation. It is unknown whether three
evolutionarily conserved disulfide bridges in a molecule of human insulin are critical for
its proper folding and if so, glutathione deficiency in the ER might be an essential factor
in disrupting the formation of disulfide bonds in proinsulin that enters intermolecular
disulfide-linked complexes The question remains of whether unfolded or misfolded insulin
can pass the quality control system of protein folding and be secreted into the bloodstream—
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and if so, whether the insulin resistance of tissues in type 2 diabetes is attributed to the
inability of unfolded/misfolded insulin to interact with insulin receptors in peripheral
tissues? We believe that many of these important questions will be answered in further
experimental and clinical studies.

Figure 6. Proposed mechanisms by which glutathione deficiency contributes to the pathogenesis of type 2 diabetes through
the activation of UPR. Genes whose expressions change showing an association with type 2 diabetes as a result of TWAS
analysis are tied to specific biological and pathological processes that are important for disease development. Blue and red
colors depict genes whose tissue expression in diabetics is decreased and increased, respectively. The detailed information
on genes present in the figure is summarized in Supplementary Data S11. Figure was created using the yEd Graph Editor
software.

5. Conclusions and Perspectives

The present study demonstrated for the first time that genetic variants in glutathione
synthetase and gamma-glutamyl transferase 7 genes represent novel susceptibility markers
for type 2 diabetes with the potential to influence disease risk through an impairment of
glutathione metabolism. A comprehensive bioinformatics analysis allowed suggesting that
GSS and GGT7 genes contribute to disease pathogenesis through intracellular glutathione
deficiency, a condition that we believe is a primary factor responsible for the activation
of unfolding protein response and subsequent cell death pathways as a result of the
accumulation of unfolded and/or misfolded proinsulin molecules in the endoplasmic
reticulum of pancreatic beta-cells. The results of the present study and our previous studies
suggest that the endogenous deficiency of glutathione could be the key etiological factor
underlying type 2 diabetes and polymorphisms in genes encoding enzymes involved in the
metabolism of glutathione, such as glutathione synthetase, gamma-glutamyltransferase-7
and other glutathione-metabolizing enzymes may be considered as important modifiers
of the genetic susceptibility to this disease. Glutathione deficiency in diabetics seems to
occur in many tissues, however, the degree of glutathione deficiency and cellular response
to this condition can vary from tissue to tissue depending on the tissue-specific levels of
expression of genes encoding glutathione-metabolizing enzymes. Importantly, the risk
alleles at GSS and GGT7 are correlated with the tissue-specific expression of genes involved
in the unfolded protein response pathway and regulation of proteostasis, suggesting
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that glutathione deficiency in pancreatic beta-cells might be an essential triggering factor
responsible for an impaired folding of proinsulin, a condition that has been documented
in type 2 diabetes by several studies [153–157]. This assumption is supported by the
accumulation of unfolded protein masses and amyloids that are known to be diabetogenic
factors responsible for both the induction of apoptosis and the progressive functional
incompetence of beta-cells [158]. In addition, in beta-cells undergoing ER stress and
accumulating toxic oligomers of the unfolded protein, glucose metabolism is remodeled
under conditions of hyperglycemia [159]. It is noteworthy that glutathione has also been
shown to prevent beta-cell dedifferentiation and failure caused by chronic oscillating
glucose intake [68].

Certain clinical and experimental studies have already established that replenish-
ing the endogenous deficiency of glutathione is a promising strategy in the treatment
and prevention of type 2 diabetes and its complications [66,68,160,161]. We believe that
polymorphisms of genes encoding glutathione-metabolizing enzymes represent attractive
biomarkers for the predictive genetic testing of impaired glutathione metabolism and
could be used for assessing the susceptibility of an individual to numerous pathological
conditions associated with glutathione deficiency such as diabetes [27,30], cardiovascular
diseases [162,163], cancer [164], liver diseases [165], neurodegenerative disorders [166]
as well as COVID-19 [167,168]. Genetic polymorphisms of GSS and GGT7 and other
glutathione-metabolizing enzymes may become attractive markers for pharmacogenetic
studies of type 2 diabetes and its complications [169,170] and further studies are required
to focus on a comprehensive evaluation of genes affecting glutathione metabolism for their
joint effects on glutathione metabolism and their contribution to the development and
progression of type 2 diabetes.
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